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Abstract

Typical approaches to plan recognition start from
a representation of an agent’s possible plans,
and reason evidentially from observations of the
agent’s actions to assess the plausibility of the
various candidates. A more expansive view of
the task (consistent with some prior work) ac-
counts for the context in which the plan was gen-
erated, the mental state and planning process of
the agent, and consequences of the agent’s ac-
tions in the world. We present a general Bayesian
framework encompassing this view, and focus on
how context can be exploited in plan recogni-
tion. We demonstrate the approach on a prob-
lem in traffic monitoring, where the objective is
to induce the plan of the driver from observation
of vehicle movements. Starting from a model of
how the driver generates plans, we show how the
highway context can appropriately influence the
recognizer’s interpretation of observed driver be-
havior.

1 INTRODUCTION

The problem of plan recognition is to induce the plan of ac-
tion driving an agent’s behavior, based on partial observa-
tion of its behavior up to the current time. Deriving the un-
derlying plan can be useful for many purposes—predicting
the agent’s future behavior, interpreting its past behavior,
or generating actions designed to influence the plan itself.
Researchers in AI have studied plan recognition for several
kinds of tasks, including discourse analysis (Grosz, 1996),
collaborative planning (Huber & Durfee, 1993), and adver-
sarial planning (Azarewicz et al., 1989). These works have
employed a great variety of reasoning techniques, operat-
ing on similarly various plan representations and adopting
varied assumptions about observability.

The common theme underlying these diverse motivations
and approaches is that the object to be induced is a plan,

and that this plan is the cause of observed behavior. If there
is anything special about the task of plan recognition as op-
posed to recognition in general, it must be due to special
properties of plans: how they are constituted, and how they
cause the behavior we observe and wish to predict, inter-
pret, and influence.

In this paper, we focus on one of these special properties—
the context in which the plan is generated—and how it
can be exploited in the recognition process. Whereas most
previous approaches have emphasized the relationship be-
tween plans and their observable effects, � we argue that it
is equally necessary to consider evidence that would bear
on which plan would have been appropriate for the agent
to generate. We demonstrate this point through an example
application in traffic monitoring, where the interpretation
of an individual vehicle’s action depends on the surround-
ing highway context. Our techniques for reasoning about
plan-generation context are based on Bayesian networks,
as part of a general Bayesian framework for plan recogni-
tion. This contribution can be considered a variant exten-
sion of the model of Charniak and Goldman (1993), and of
the approach advocated by Huber et al. (1994).

2 PLAN RECOGNITION

2.1 TOWARDS A GENERAL BAYESIAN
FRAMEWORK

One of the aims of our work is to elucidate the fundamen-
tal elements of plan recognition, and to develop a general
Bayesian framework for approaches to this task. Achiev-
ing generality is complicated by the diversity of represen-
tations for plans and techniques for plan generation; there-
fore, we present the framework at multiple levels of speci-
ficity. The most abstract specification is designed to ac-
commodate most conceivable versions of plan recognition,
and by introducing further distinctions we taxonomize the

�
Although, as we point out in the discussion below, several of

these approaches can also accommodate the sort of context infor-
mation we are concerned with.



approaches.

The framework for plan recognition is distinguished from
uncertain reasoning in general by two special features of
plans. First, plans are structured linguistic objects. Plan
languages considered in AI research range from simple se-
quences of action tokens to general-purpose programming
languages. In either case, the recognizer can and should
exploit the structure of plans in inducing them from partial
observations of the actions comprising the plan. Another
way to say this is that plans are descriptions of action pat-
terns, and therefore any general pattern-recognition tech-
nique is automatically a plan recognition technique for the
class of plans corresponding to the class of patterns associ-
ated with the given technique.

The second special feature of plans is that they are ratio-
nal constructions. They are synthesized by a rational agent
with some beliefs, preferences, and capabilities, that is, a
mental state. Knowing the agent’s mental state and its ra-
tionality properties strongly constrains the possible plans it
will construct. (The degree of constraint depends on the
power of the rationality theory we adopt.) The rational ori-
gin of plans is what distinguishes plan recognition from
pattern recognition. If the observations available include
evidence bearing on the beliefs, preferences, and capabili-
ties of the agent, then the recognizer should combine this
with evidence from the observed actions in reasoning about
the entire plan.

Our framework is Bayesian in that we start from a causal
theory of how the agent’s mental state causes its plan and
executing its plan causes activity, and reason from observed
effects to underlying causes. Our recognizer has uncer-
tain a priori knowledge about the agent’s mental state, the
world state, and the world’s dynamics, which can be sum-
marized (at least in principle) by a probability distribution.
It then makes partial observations about the world, and uses
this evidence to induce properties of the agent and its plan.

The remainder of this section describes our framework in
more detail. We demonstrate the utility of the framework
by showing how extensions to the underlying conception
of plans and planning generate corresponding extensions to
plan recognition. Examples from our explorations of plan
recognition in a highway traffic domain illustrate our appli-
cation of the framework to a concrete problem.

2.2 PLANNING MODEL

We begin with a model of the planning agent operating in
the world. As it begins planning, the agent has a certain
mental state, consisting of its preferences (e.g., goals), be-
liefs (e.g., about the state of its environment), and capabil-
ities (e.g., available actions). We assume the actual plan-
ning process to be some rational procedure for generating
the plan that will best satisfy the agent’s preferences based

on its beliefs, subject to its capabilities. This plan then de-
termines (perhaps with some uncertainty) the actions taken
by the agent in the world.

Most plan-recognition work concentrates only on this last
step, the relationship between a plan and the actions taken
in the world. Typical approaches start from a represen-
tation of the possible plans, and prune the set of pos-
sibilities based on the actions observed. For example,
Kautz (1986) connects plans and actions through event hi-
erarchies, which place the plan at the top of a taxonomy
of subplans and actions. Vilain (1990) presents a context-
free grammar representation of these event hierarchies as
an alternative model. Lin and Goebel (1991) restrict the
constraint language, permitting use of a faster, specialized
message-passing recognition algorithm.

Given the reduced set of possible plans that could explain
the observations, the plan recognizer must apply some pref-
erence criterion for choosing among them. For instance,
Kautz’s approach prefers explanations that involve fewer
plans. The algorithm of Lin and Goebel prefers plan sce-
narios that are more general. However, given two expla-
nations containing the same number of plans, at the same
levels of generality, neither algorithm has a basis for a
choice either way. To borrow an example from Charniak
and Goldman, suppose we hear that Jack packed a bag and
went to the airport. Depending on the exact event hierar-
chy, neither algorithm may be able to decide whether Jack
is in the process of taking a trip or conducting a terrorist
bombing.

The average reader would probably not consider the latter
possibility, since people are much more likely to take a trip
than bomb an airplane. Charniak and Goldman account for
this behavior in their recognition procedure by including
prior probabilities on plans. This allows them to distin-
guish among equally possible, but unequally plausible ex-
planations for observed activity. The recognition model of
Carberry (1990), based on the Dempster-Shafer theory of
evidential reasoning instead of Bayesian techniques, takes
a similar approach by using threshold plausibility and dif-
ference levels of belief to distinguish among competing hy-
potheses. Similar distinctions could be supported in lin-
guistic approaches as well, perhaps based on probabilistic
grammars (Wetherell, 1980).

2.3 MENTAL STATE

In a particular case, we typically have information avail-
able to us that would augment these prior probabilities.
For instance, we may know that Jack belongs to a terror-
ist organization, which would make the bombing explana-
tion of his actions more plausible. To account for this sort
of knowledge, the plan-recognition framework should ac-
commodate all possible information about the agent’s plan
selection process, beginning with its mental state. We can



break down an agent’s mental state into three distinct com-
ponents:

Beliefs. The agent’s knowledge of the state of the world
and its dynamics. Beliefs may be incomplete, uncer-
tain, or incorrect.

Preferences. The agent’s desires about the world. These
may be simple goals, or arbitrarily graded degrees of
utility.

Capabilities. The agent’s self-model of its available ac-
tions. Strictly speaking, this should be knowledge of
capabilities, but we stick to the more concise term.

We may have knowledge about any of these components
of mental state. Looking back at Jack’s situation, if we
know that he belongs to a terrorist organization, then we
might infer that his training included a lot of information
about bombs, airport security, and other matters that are not
widely known. Similarly, we may conclude that his goals
are vastly different from those of a typical person going to
the airport. For example, we may expect that Jack’s goals
include gaining worldwide attention for his group. Finally,
his terrorist background may be such that he has a reper-
toire of available actions, such as conceal-bomb, beyond
that of the vanilla air traveler.

Plan selection also relies on the agent’s beliefs about the
current world state. For instance, if Jack knows that there is
an important diplomat on an outgoing flight, then he prob-
ably believes that bombing that plane will generate even
more attention for his organization. Notice that the world
state affects plan selection only through the agent’s beliefs.
If Jack did not know about any diplomats, then the fact that
they are present is irrelevant to his planning. By the same
token, if Jack believes that a diplomat is on the plane even
if none are present, it is his erroneous belief that we must
consider.

2.4 PLAN EXECUTION

Once we have accounted for the agent’s plan-generation
process, we need to consider the effects of the plan’s exe-
cution. In many plan-recognition domains, the external ob-
server finds the agent’s actions inaccessible. In such cases,
the recognizer observes actions only indirectly, via their ef-
fects on the world (which themselves are typically only par-
tially observable). These restricted observations then form
the basis of inference.

Thus, observations of the state of the world provide two
types of evidence about the plan. First, as mentioned in
Section 2.3, the world influences the agent’s initial men-
tal state, which provides the context for plan generation.
Second, changes in the world state reflect the effects of the
agent’s actions, which result from executing its plan.

3 THE PLAN-RECOGNITION
NETWORK

To perform plan recognition tasks, we generate a Bayesian
network representing the causal planning model and use
it to support evidential reasoning from observations to plan
hypotheses. The structure of the Bayesian network is based
on the framework depicted in Figure 1. That diagram can
itself be viewed as a Bayesian network, albeit with rather
broad random variables. To make this operational, we re-
place each component of the model with a subnetwork that
captures intermediate structure for the particular problem.
The limited connections among the subnetworks reflect the
dependency structure of our generic planning model.

To illustrate this plan-recognition framework, consider the
example problem of a driver on the highway, trying to pre-
dict the actions of the other drivers. Since these actions
are normally limited to a small set of maneuvers (e.g. lane
changes, passing, exiting), recognition of a driver’s maneu-
vering plan would greatly assist in the prediction of future
actions. To this end, we have worked on a probabilistic
model of the maneuvers of a single car. We can then use
this model to identify the current maneuver of an observed
car and/or predict future actions, given only partial infor-
mation. The subnetwork descriptions below first present
the general construction techniques and then provide a spe-
cific instantiation for this specific traffic domain.

3.1 CONTEXT

The network, like the causal model, begins with the initial
world state. We must include all possibly observable events
that are relevant to formation—the process by which the
agent’s mental state is affected by the world. By including
these events, the recognition procedure can take advantage
of partial information about the agent’s mental state. Note
that even though the initial world state model may itself
include inaccessible variables, the context subnetwork in-
cludes only those which are observable. However, we may
wish to simplify the network by providing more compact
intermediate results derived from inaccessible variables.

One of the motivations for maintaining a separate initial-
state subnetwork is to distinguish between our contextual
observations and those of the agent. Therefore, we may
have an unobservable node representing an aspect of the
world state accessible to the agent, and an observable node
representing a related feature accessible to us. The depen-
dency between these nodes is essentially a sensor model. If
we are fortunate enough to have perfect sensors, then the
context variables become redundant, since they will simply
echo the values of the actual variables, and can be elimi-
nated.

In this model, the initial world state is defined as causally
prior to all agent behavior. Therefore, the corresponding
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Figure 1: Plan Recognition Framework

random variables can have links only from other such vari-
ables, representing dependencies within the state. Any de-
pendency links connecting a node from the initial state to
any node outside this subnetwork must be directed to the
outside node.

This treatment of context differs from the work of Huber et
al. (1994), where the initial situation depends on the agent’s
mental state and not the other way around as it is here. This
was possible given the planning model employed in that
work, that of the Procedural Reasoning System (PRS) (In-
grand et al., 1992). In the PRS model, plan selection is a
function of current goal and situation. Because these con-
text variables have no predecessors or substructure, the di-
rection of links can be reversed without changing the rest
of the dependency structure. However, the agent’s men-
tal state considered here may be more complex, especially
in terms of its preference structure. Even if the agent has
only simple goals, there are potential interactions among
the goals that could affect the planning process. Hopefully,
by following the causal structure in creating the network
and placing the context prior to the plan, we can represent
these interactions without greatly complicating the depen-
dency structure.

In the traffic domain, the driver must consider several as-
pects of the initial world state in rationally choosing a plan.
First of all, the current position and speed of the car are im-
portant factors, and we assume that both are observable, to

the driver as well as to us. We also assume perfect sensors,
but an extension to incorporate sensor noise is straightfor-
ward, as described above. The random variables x position
and y position of Figure 2 represent the car’s lane position
and distance from the highway’s start, respectively. The
driver can be in one of three lanes or may be off the high-
way, either preparing to enter or having just exited. The
random variable y speed, denoting the car’s speed, ini-
tially depends on the current node, since the farther left the
lane, the faster the car is usually traveling.

We can also observe the presence of other cars around the
driver of interest, who must consider them in choosing
a maneuver. For instance, if there is a car blocking the
driver’s front, then a passing maneuver is more likely. We
can observe any cars to the driver’s immediate front, back,
left, and right, as well as in the four diagonal directions.
In the Bayesian network, the Boolean random variable left
clr? represents the presence of any car to the immediate
left of the driver. There are similar variables for the right,
front, and back, as well as the four diagonal directions. The
variables indexed t0 in the first column of nodes in Figure 2
constitute the context subnetwork.

3.2 MENTAL STATE

The subnetwork representing the agent’s beliefs about the
world state must include random variables for all aspects
of the context that the agent can observe and that factor
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into its decision-making. There may be some agent beliefs
that are independent of any real-world variable. Unless we
can observe these (perhaps through communication with
the agent), there is no advantage in using additional random
variables. Instead, we can fold the uncertainty in these be-
liefs into the plan subnetwork. However, agent beliefs will
typically depend on the some aspect of the actual state of
the world, although we can model the agent as being arbi-
trarily uncertain or deluded. As mentioned in Section 3.1,
this dependency represents the imperfection and/or incom-
pleteness of sensors. If the agent’s sensors were perfect,
then we could eliminate the nodes for the agent’s belief
variables, as they would take on the same values as the con-
text variables.

The agent’s knowledge of its capabilities is usually inde-
pendent of the world state, as are its preferences in most
cases. Simple goals can be represented as separate Boolean
variables, though it may be useful to combine a set of mutu-
ally exclusive variables into a single variable with several
possible values. More complex preference structures will
require more complex subnetwork structures. The agent’s
capabilities can be represented in a similar fashion.

The model of agent formation is greatly simplified in our
traffic domain. Because of our assumption of perfect sen-
sors, the driver’s beliefs about the world correspond to the
actual values in our simplified model. In addition, the
agent’s beliefs about its capabilities are not represented ex-
plicitly in our traffic network. Instead, the driver is as-
sumed to know all of the possible plans (as described in
Section 3.3.1). The planning process also assumes that the
driver has complete knowledge of how the plans can best
satisfy its preferences in the current context. Thus the plan

selection mechanism implicitly represents the driver’s be-
liefs about its capabilities.

We model the driver preferences with two goals. First, a
driver has the explicit goal of getting from one exit to an-
other, though the intended exits are unknown to an external
observer. The random variable exit position in Figure 2
represents the driver’s desired exit. All of the possible exit
positions are farther along the highway than the values of y
position. If this were not the case, then the current position
would provide evidence that the desired exit is probably not
one that has been passed. Therefore, there would be a de-
pendency, but to simplify the network, we make the sets of
� and exit positions disjoint.

Second, there may be some constraint on the travel time
between these exits, or the driver might have some target
speed which is preferred for the duration of travel. How-
ever, we can usually translate the former into a desired
speed because of the fixed positions of the exits. There-
fore, our model uses only the random variable target y
speed in Figure 2, with its values clustered around the
speed limit. If the car has been on the highway for enough
time, then its current speed should provide some clue as to
the driver’s target speed. We could model this with a link
from y speed. On the other hand, if we have been ob-
serving the car and its maneuvers for some time, then these
past observations should provide more conclusive evidence
as to its target speed. Thus, we can make the target speed
independent of current speed and encode our past observa-
tions in the prior probabilities.

This network also contains the intermediate belief random
variables, at exit? and at target?, in the second column
of nodes in Figure 2. These reflect the driver’s belief about
the proximity of the desired exit and the desirability of the
current speed, respectively. The at exit? variable depends
only on the current position and the preferred exit, and is
true only when the former is immediately before the latter.
The at target? variable depends only on the current and
preferred speeds, and its value indicates whether the current
speed is too slow, too fast, or just right, with respect to the
driver’s desired cruising speed.

3.3 PLANNING PROCESS

3.3.1 Plan Variables

The plan subnetwork is comprised of random variables col-
lectively representing the current plan. For instance, in
Kautz’s event hierarchies, there is a taxonomy of plans and
actions. The children of a certain plan correspond to possi-
ble subplans or actions, while other links indicate necessary
components. If our planning model is based on such event
hierarchies, we may designate one Boolean variable corre-
sponding to each element in the taxonomy, indicating the
presence of the corresponding plan. Or we may combine



certain mutually exclusive subplans into a single random
variable, which takes on a different value depending on the
actual subplan present.

Such hierarchies are based on the subsumption relation, re-
quiring a dependency link from the more general node to
the more specific. The conditional probability table can
represent the distribution of the specific values, given the
general. In particular, because of the subsumption relation,
we can set the conditional probability of a child node given
that its parent node is false to zero.

In the traffic domain, we can classify driving maneuvers
according to the lane changes involved. The simplest plan
is to simply continue driving in the same lane. At the next
level of complexity, a driver can shift one lane to the left
or right. We consider entering and exiting the highway as
specific instances of these one-lane shifts. The driver could
also shift two lanes to the left or right, where this could
again involve entering or exiting the highway. As a final
option, the driver may choose a passing maneuver, which
we view as two successive lane shifts of opposite direc-
tion. In Figure 2, the variable gen maneuver represents
the general driving maneuver and takes on a value corre-
sponding to the chosen plan.

We can also classify driving plans according to the acceler-
ation. Depending on the current and desired speed, a driver
may decide to speed up, slow down, or maintain current
speed, indicated by the value of the variable acc maneu-
ver of Figure 2. The acceleration maneuver depends on
the lane maneuver if we do not consider the plan selection
mechanism. For instance, a deceleration is more likely as
a part of a right lane change plan than as a part of a plan to
pass. However, the two variables are independent given the
initial context, as indicated in the network.

The variable spec pass in Figure 2 indicates the direction
of the pass, if one is taking place. Since passing in a spe-
cific direction is a subplan of the general passing maneuver
which gen maneuver can represent, this is an example of
the subsumption relation found in event hierarchies. If the
driver decides to pass, there are the options of passing on
the left and passing on the right. And even if the driver
chooses to pass, there may be cars blocking both lanes,
forcing the driver to wait for another opportunity to pass.
This variable clearly depends on gen maneuver, since the
more general passing maneuver is its parent and the con-
ditional probability table represents a subsumption relation
as described above. In other words, if a passing maneuver
is not chosen, then spec pass will be neither pass on left
nor pass on right.

3.3.2 Plan Selection

Links from the agent’s mental state into the plan subnet-
work represent the agent’s planning process. For hierar-
chical planning, we start with the most general plan nodes

and proceeding to the most specific, determine which as-
pects of the mental state influence the agent’s choice. For
instance, suppose the agent’s decision-making procedure
consists of a set of condition-action rules. Then, any plan
choices in the action portion of a rule depend on all of the
context variables that appear in the conditions of the rule.
By connecting only parts of the mental state relevant to par-
ticular choices, we keep the dependency structure as simple
as possible.

We must then specify the conditional probabilities of the
plan variables given the relevant aspects of the agent’s men-
tal state. If the agent is a deterministic planner, then the
conditional probability given a particular mental state in-
stantiation will be 1 for a single instantiation of the plan
subnetwork and 0 for all others. For nondeterministic plan-
ners, we must determine the conditional probabilities from
whatever agent model we have.

If in fact we have no opportunity to observe anything about
the initial world state or the agent’s mental state, then we
may collapse the initial state and mental state subnetworks
into prior probabilities for the top-level plan variables. The
plan recognition networks (PRNs) of Charniak and Gold-
man (1993) use such priors to model the agent’s plan selec-
tion process. These prior probabilities represent the same
distribution as the explicit planning process subnetwork,
but since the initial nodes are unobservable, we can merge
the nodes into the plan subnetwork without losing informa-
tion.

We can now model a driver’s plan selection with some re-
liability. In our Bayesian network, the conditional proba-
bility table must specify the likelihood of certain maneu-
vers under every possible combination of world situation
and driver mental state. Under most situations, there will
be one maneuver that is clearly preferable, though there is
still uncertainty. For example, suppose that the driver is
currently traveling below the desired speed and that there
is another car directly in front while the lane to the left
is clear. Then it is likely that driver will pass the car on
the left. The complete plan selection subnetwork is shown
in Figure 2. This model of the driver’s decision process
is based in part on the driving model underlying the BAT-
mobile (Bayesian Automated Taxi) project, described by
Forbes, et al. (1995).

The acceleration maneuver depends only on the preferabil-
ity of the current speed. Thus the sole link to acc maneu-
ver is from at target?. If the driver is at the target speed,
then the current speed will be maintained. If the current
speed is too low, then the driver will choose an acceleration
maneuver. Likewise, if the current speed is too fast, then a
deceleration maneuver will be chosen.

The lane change maneuver also depends on the preferabil-
ity of the current speed. For instance, a car traveling at its
target speed is unlikely to change lanes. However, there are



other factors in the initial world state to consider. Obvi-
ously, the current lane is important, since a car in the left-
most lane cannot change lanes to the left. In addition, the
driver will consider any cars to the front or back. If there is
a car blocking the front and the driver’s current speed is too
low, then a simple acceleration could cause a collision. The
driver may instead choose to change lanes to the left. But
a decision to change lanes must also consider the presence
of cars to the driver’s left or right, or any cars coming up
from the back left or right. The links to the gen maneuver
node represent these dependencies.

If the driver decides to pass, a direction must be chosen.
Passing on the left is preferable to passing on the right, but
the current situation may not allow it. For instance, any cars
to the driver’s left or to the front left could block the pass-
ing attempt. The same is true on the right side. If enough
passing avenues are blocked, then the driver may decide
to delay the passing attempt or to perform the initial lane
change and wait to complete the pass.

3.3.3 Agent Communication

Modeling agent communication depends greatly on the
specific protocol adopted, and the relationship between the
observer and the observed. If a trusted agent directly an-
nounces particular aspects of its planning process, then
we could simply instantiate the corresponding variables.
Other types of communication would require nodes to rep-
resent beliefs we attribute to the agent, based on its com-
munication actions. Note that we are not modeling here
the planned character of communication acts; to do so we
would treat them as we do actions in general.

The only communication allowed in our traffic model is
through the driver’s turn indicator, which provides a sim-
ple mechanism for a driver to announce the intended lane
change. The variables signal m � ? in the fourth column
of Figure 2 represent the state of the driver’s turn signal
during stage � of the maneuver. Clearly, both the general
maneuver and the specific direction of any passing attempt
influence any signal. For instance, when performing a left
lane change, signal m0? is likely to take the value Left
and signal m1? the value Off. Of course, many drivers fail
to signal their maneuvers, and sometimes they signal erro-
neously. These possibilities are considered when determin-
ing the conditional probability tables. However, drivers are
usually consistent in their signaling habits. For instance,
when performing a pass on the left, someone who fails to
signal the initial left lane change is unlikely to signal the
subsequent right change. The link between the two signal
variables represents this consistency.

3.4 PLAN EXECUTION

The agent’s plan execution process is reflected in the model
by dependencies from its plan subnetwork to another sub-

spec pass?

gen maneuver? acc maneuver?

fwd act? m0

lat act? m0 lat act? m1

fwd act? m1

Figure 3: Plan execution subnetwork

network describing its activity. This is analogous to links in
event hierarchies connecting plans to their component ob-
servable actions. In PRS (Ingrand et al., 1992; Lee et al.,
1994), Knowledge Areas (KAs) specify a sequence of ac-
tions associated with a plan, corresponding to links from
the plan node to corresponding action nodes. Either of
these can be cast in Bayesian networks, representing the
likelihood of the component’s appearance given the plan in
the conditional probability table for that node.

All of these methods for modeling the dependency of the
agent’s activity on its plan are acceptable. We require only
that the agent’s activity be conditionally independent of the
initial world state and the agent’s mental state given the
plan. That is, we assume that the plan is a sufficient speci-
fication of activity.

The activity subnetwork in the traffic model includes the
individual transitions in lane and speed, which are com-
pletely unobservable. At each step, the driver can change
one lane to the left or right, or remain in the same lane. The
driver can also increase, decrease, or maintain speed. All of
the plans we consider produce a two-step action sequence.
For instance, a plan to shift one lane to the left produces a
left lane change followed by a “remain in lane” act. The
lat act m � variables in Figure 3 represent the lane changes
at step � , while fwd act m � represents the acceleration at
step � .

Our definition of the lane maneuvers completely deter-
mines the lane changes of the action sequences. The indi-
vidual shifts depend on the general lane maneuver, as well
as on the specific passing plan, but not on the acceleration
maneuver. Likewise, the individual accelerations are inde-
pendent of the general lane changes and the specific passing
maneuvers if given the overall acceleration plan.

3.5 WORLD DYNAMICS

The relationship between the observed and actual actions
of the agent is similar to that of the observed and actual
world states. If we have perfect sensors, we do not need a
separate observed activity subnetwork; otherwise, we have



to model sensor noise in the links from the actual nodes.

In some cases, the agent’s activity is completely inaccessi-
ble, though we might still be able to observe effects of this
activity. These effects are dictated by the dynamics of our
world, which specify how the agent’s actions alter the sit-
uation. Therefore, we must model how subsequent world
states depend on the initial world state and the agent’s ac-
tivity. It is possible that a world state depends on the entire
world history, but if the the plan is sufficiently structured
(e.g., sequential actions) then we may be able to simplify
this dependency. If we express the effects model in accord
with standard AI approaches, we can restrict the effects to
depend only on background and direct effects and, given
these, to be conditionally independent of the plan itself, as
well as further removed activity and indirect effects (Well-
man, 1990).

We can make effects conditionally independent of future
actions and effects simply by ensuring that links never point
backward in time, but this could make actions dependent
on past world states. So far, we have had links move from
plans to activity and from activity to effects, so adding links
in the opposite direction would go against the flow in Fig-
ure 1. If, as described above, the plan is sufficient for de-
termining activity, the current action is conditionally inde-
pendent of the previous world states given the current plan,
as well as the actions performed so far.

Depending on our domain, we may able to make a Markov
assumption with respect to activity and the effects. In such
cases, the current action would be conditionally indepen-
dent of actions more than one time step back in the action
sequence, given the current plan and the action immedi-
ately previous. If the effects have a similar property, they
should not depend on any world states or actions more than
one step previous. Although this would greatly localize the
dependencies, this may not always be possible, depending
on the types of observations available and the set of state
variables in the model.

Since there is no directly observable activity in the traf-
fic model, most of our inference will come from observed
effects. We must now model the dynamics of the traffic
world, beginning with the changes in the position and speed
of the car. We can view the actions of the driver to be tran-
sitions between world states. To simplify the model, we ig-
nore observations taking place while the driver is perform-
ing an action. Thus, evidence is available only at the com-
pletion of a component action, and there are three stages of
observable variables, including the context, as can be seen
in Figure 4.

Finally, we must define the dependencies of these effects.
Most of the observable variables depend on the driver’s pre-
vious action, as well as their own previous values. For
instance, the driver’s lane is completely determined if we
know what lane change just took place, as well as the lane
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Figure 4: Observation subnetwork

value just before the change. Likewise, the driver’s speed
depends on the previous speed and whatever acceleration
action took place, although this is clearly not a determinis-
tic relationship.

The presence of other cars is a bit more complex, due to
the driver’s movements. For instance, after a left change, a
car that was to the front and left is now probably directly
in front. But if the driver stays in the same lane, then we
must check whether there was a car blocking the front in
the previous world state. Therefore, each clearance vari-
able depends on the previous action, as well as all relevant
clearance variables from the previous state. To simplify the
network, we ignore the presence of other cars in the evi-
dence. We do consider them when modeling plan selection,
but since the driver’s actions do not directly affect the other
drivers’ positions, we ignore these effects. As with the con-
text, we assume perfect sensors, so there is no distinction
between the actual and observed effects.

3.6 PLAN RECOGNITION

Once we have created the belief network, we can per-
form recognition tasks by fixing any observed variables and
querying the network about the relevant variables. We re-
ceive evidence only about the variables in the bottom half
of Figure 1, though, as described before, these may corre-
spond exactly to actual variables in the planning model.

Once we fix the values of the known variables in the net-
work, we can propagate the information throughout the net-
work and observe the posterior probabilities at the nodes of
interest. For instance, we may be interested in determining
the plan chosen by the agent, in which case we would ex-
amine the nodes in the plan subnetwork. Alternatively, we
can predict future agent activity or effects by examining the
probabilities of those variables.

Once we have constructed the entire traffic maneuver net-
work, shown in Figure 5, we can handle plan recognition
in a wide range of useful driving situations. For instance,
suppose we are trying to predict the behavior of the car be-
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Figure 5: Complete Bayesian network for traffic monitoring

hind us as we are driving in the middle lane of a three-lane
highway. We observe the car move into the rightmost lane,
and we want to determine if it is passing us, or preparing
to exit, or perhaps simply moving into the slower-moving
lane.

Thus, in the context, we have observed front clr? t0 to be
false and x position t0 to be the middle lane. The only
observed effect is that x position t1 is the right lane. If
we want to infer the driver’s plan, we can examine the gen
maneuver? node to see that the posterior probability of a
one-lane right shift is 0.64, while that of a pass is 0.35. The
former is more plausible since we assume that drivers pre-
fer to pass on the left-hand side, so passing on the right has
a relatively low prior probability. The only remaining ma-
neuver with nonzero probability is an exit. All of the other
plans have zero probability, since the observed change in
lanes violates their definitions.

If we are not interested in the driver’s plan, but only in the
future lane position, then we can examine the x position t2
node. The posterior probability that the car will still be in
the right lane is 0.65, while the probability that it will move
to the middle lane is 0.34. The difference between these be-
liefs and that of the maneuvers arises from the nature of the
passing maneuver. Even if the car decides to pass, it may
not be able to do so immediately do to surrounding cars.
In such a case, it will remain in its current lane until it can
complete the maneuver. Thus, there is a slight probability
that the car will stay in the right lane even if the driver has
decided to pass.

Given no other contextual observations, it is reasonable to
predict that the car will remain in the right lane. However,
if we also observed that there was another car to our left,
thus blocking the car behind us from passing on the left,
we can instantiate the frontL clr? t0 variable to be false.
Repeating our observation of the nodes of interest, we find
that the posterior probability that the car is passing has in-
creased to 0.53, while that for the car simply shifting one
lane to the right has dropped to 0.46. The probabilities for
x position t2 have changed as well, to 0.51 and 0.48 re-
spectively. If we made our final decisions based simply
on maximum probabilities, we would predict that the car
was passing us. Notice that, without knowing about the car
to our left, our prediction would be that the car was not
passing, but the observation of that aspect of the context
changes our belief.

Thus, we are able to perform valuable inference with only
a limited subset of the possible observations. If we were
to also observe that there were no other cars nearby, other
than those already considered, then we could instantiate the
remaining clearance context variables to be true. Doing so
increases the posterior probability that the maneuver is a
pass to 0.61, while decreasing that for a one-lane right shift
to 0.39.

4 CONCLUSION

The traffic application presented above illustrates several
aspects of our plan-recognition framework, highlighting
the importance of accounting for context. Our assump-



tion of rationality on the part of the agent allowed us to
model the relationship between an agent’s plan and its men-
tal state. By modeling a driver’s decision process, observa-
tions of the initial state provided strong evidence about the
resulting plan. We were also able to model plan execu-
tion in a manner similar to other approaches to recognition.
The resulting network was able to perform useful inference,
even when given only partial observations.

Although the traffic example is a very specific domain, we
believe that the general structure of Figure 1 is applicable
to a broad class of plan-recognition tasks. Even with our
restrictive assumptions, the network captures an extensive
model of planning behavior. The driver observes the world,
generates a plan, performs a sequence of actions, and these
actions produce changes in the world state. To summarize,
we have augmented the common plan execution model em-
ployed in recognition to include plan formulation, and the
result is encouraging.

However, the generality and scalability of our framework
remains to be seen. The driver we considered had two
goals, an intended exit and a target driving speed. Other
drivers, and agents in other domains, will most likely have
more complex preferences and a more complex decision
process. The decision process may involve a more elabo-
rate planning theory, which may be difficult to capture in
our model. In addition, the major issue of communication
is as yet unexplored within our model. In future work, we
intend to push on these issues, by increasing the scale and
complexity of the underlying process we are modeling.
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