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Abstract

Autonomous systems need to learn from their ex-
perience to improve their decisions. Machine-
learning methods, particularly reinforcement learn-
ing, have successfully applied quantitative proba-
bilities and utilities to a variety of real-world do-
mains, including allowing robots to improve from
their mistakes. The complexity of the domains that
robots operate in and the inherent complexity of
their decisions make understanding the inner work-
ings of robotics systems increasingly challenging
for their human teammates. While transparency
communications have shown to alleviate such prob-
lems, the additional capability of self-improving,
enabled by reinforcement learning, is likely to com-
plicate the robot’s effort to reason transparently
with human teammates. In this paper, we discuss
the design of both model-based and model-free re-
inforcement learning for the robots in a human-
robot simulation testbed and the design of trans-
parency communications that unpacks the compo-
nents of the robot’s decision-making and learning
process.

1 Introduction
Autonomous systems operating in complex domains must
reason under uncertainty, prioritize conflicting goals, and
adapt to unpredictable environments. While autonomous sys-
tems have increased their capabilities over the decades, their
potential is not often realized when teamed up with humans
[Parasuraman and Riley, 1997]. Due to the complexity of
the domains that autonomous systems now operate in and the
inherent complexity of the decisions they make, understand-
ing the inner workings of such systems becomes increasingly
challenging for the humans. Such “black box” phenomena
often result in disuse or over-reliance of the autonomous sys-
tems [Parasuraman and Riley, 1997]. In human-human teams,
communication targeting the gaps in understanding can help
improve shared situation awareness, foster trust relationships,
and enhance team performance. Inspired by the research in
human-human teams, researchers have designed both hand-
crafted and automatically generated explanations to achieve

similar outcomes in human-automation teams [Dzindolet et
al., 2003; Wang et al., 2016].

However, the autonomous systems used in transparency
communication research often lack the ability to learn from
their experience or from data to improve their decisions. The
very definition of autonomy, in the field of artificial intelli-
gence, means that a system should function beyond the ini-
tial knowledge encoded by the designers and must be able to
adapt in the face of the unforeseen and the unknown [Rus-
sell and Norvig, 2016]. Machine-learning methods have been
widely applied to the design of automation, including virtual
agents and robots. Reinforcement Learning (RL), in particu-
lar, is a powerful machine-learning method that has success-
fully applied quantitative probabilities and utilities to a va-
riety of real-world domains [Kaelbling et al., 1996]. RL is
based on the idea that an agent can autonomously discover an
optimal behavior through trial-and-error interactions with its
environment. The agent explores the space of possible strate-
gies and receives feedback on the outcomes of the choices
made. From this information, a “good”—or ideally optimal—
policy (i.e., strategy or controller) can be deduced [Sutton and
Barto, 1998; Kober et al., 2013]. RL’s algorithms for com-
puting long-term expected values can provide autonomous
agents with optimal sequential decision policies.

While RL is based on the simple idea of action-reward
mappings, elements of RL can be complex due to their quan-
titative values and the iterative process by which they are
computed. The rich representation and complex reasoning
from RL, which provide useful performance guarantees for
software agents, also present a significant obstacle to human
understanding of, for example, how the value functions are
constructed, how the algorithms update the value function,
and how such updates impact the action/policy chosen by
the agent. Without such understanding, a human operator
is likely to fall into the same pitfall of misuse or disuse of
the agents [Parasuraman and Riley, 1997]. Therefore, for au-
tonomous learning agents to play an effective role in human-
machine teams, they must make their RL-generated decisions
understood by their human operators and teammates.

Automatically generated explanations have provided such
understanding in other areas of artificial intelligence (AI)
[Swartout et al., 1991], suggesting the potential for sim-
ilar understanding of RL-based AI. Model-based RL first
learns a quantitative model in the form of Partially Observ-



able Markov Decision Processes (POMDPs), which contain
probabilistic action and sensor models, utility-based goal pri-
orities, etc. [Kaelbling et al., 1998] that could facilitate ex-
planations. For real-world domains, the size and complexity
of quantitative models like POMDPs are more likely to over-
whelm human operators, rather than inform them. In our pre-
vious work, we have developed algorithms to automatically
generate explanations for decisions made by POMDP-based
agents. These algorithms were among the first research ef-
forts to apply the methodology of explainable AI (XAI) to
make quantitative agent-based decision models explainable
and transparent to human users [Wang et al., 2016].

In this paper, we discuss the design of RL for the robots
in our human-robot reconnaissance task. We then discuss the
design of explanations that can potentially make RL compo-
nents transparent to human teammates.

2 Related Work
As AI systems become increasingly complex and bestowed
with the capability to learn and evolve, their decision-making
mechanisms become increasingly opaque to their human
users. With the maturation of many AI-powered technolo-
gies, they are transitioning from operating from behind-the-
scenes, to directly interfacing with humans. The “black box”
issue of many AI systems has hindered the growth of the ca-
pability of human-AI systems teams. This problem has gar-
nered much attention, and much research effort has been ex-
erted to create an interface to make the decision process of
AI algorithms more transparent. For example, in [Hendricks
et al., 2016], researchers used a combination of convolutional
neural networks (CNN) and recurrent neural networks (RNN)
to recognize objects in images and generate image captions
based on recognized objects. Other efforts have focused not
on unpacking the “black box” itself, but on generating ex-
planations of decisions (e.g., classifications) from the “black
box” based on the input (e.g., instances from dataset) and the
output [Ribeiro et al., 2016].

Our current work follows a long history of automated XAI
mechanisms, especially within the context of expert systems
[Swartout and Moore, 1993]. While most of this work op-
erated on rule- and logic-based systems, there has been more
recent work on generating explanations based on Markov De-
cision Problems (MDPs) [Elizalde et al., 2008] and Partially
Observable MDPs (POMDPs) [Wang et al., 2016]. The ex-
isting evidence is encouraging as to the potential success of
applying a general-purpose explanation on top of an agent’s
decision-making process. In addition to explaining POMDP-
based decisions in simulated robots, there has been recent
work on generating explanations and justifications for deci-
sions by simulated and physical robots using decision trees
[Sheh, 2017], answering human queries of the robot’s poli-
cies [Hayes and Shah, 2017], and making the robot’s planning
process easier for humans to understand and predict [Zhang
et al., 2017].

There is a rapidly growing body of work on applying re-
inforcement learning to enable robots to improve from their
mistakes, e.g., [Matarić, 1997; Smart and Kaelbling, 2002].
While such learning is likely to complicate the robot’s ef-

fort to reason transparently with human teammates, it does
provide an opportunity to repair trust that has been damaged
by robot errors. Our investigation into the interaction be-
tween explanations and trust repair is inspired by work on
methods for the latter within organizations [Lewicki, 2006;
Schweitzer et al., 2006]. Prior research has similarly exam-
ined the effectiveness of these trust-repair strategies within
HRI [Robinette et al., 2015]. This work found that the timing
and combination of trust-repair actions was critical to effec-
tively maintaining trust.

As RL has moved into more and more domains, there have
also been more and more investigations into XAI with RL
systems. For example, in [Iyer et al., 2018], researchers pro-
duced visualizations of the state and behavior from agents us-
ing deep reinforcement learning networks. Within a specifi-
cally human-robot domain, researchers proposed Instruction-
based Behavior Explanation (IBE) to allow human users to
interactively provide input into the RL process while receiv-
ing explanations of the estimated outcome of such input.
[Fukuchi et al., 2017]. In our previous work, we have ex-
perimented with robot transparency communications that ac-
knowledges errors and promises to improve [Wang et al.,
2018]. Such communication did not influence human trust
and team performance, possibly due to a lack of explana-
tion of how the robot plans to improve its decisions. In the
work presented here, we focus on applying model-based and
model-free reinforcement learning to update (and hopefully
improve) the robot’s decision-making and on designing ex-
planations that communicate such an updating process to the
human in an effort to build transparency and repair trust.

3 Human Robot Interaction Testbed
We conduct our investigation of explainable AI within an on-
line HRI testbed that we have used to gather human behavior
data when interacting with a simulated robot [Wang et al.,
2015].

3.1 POMDP Model of Testbed
The robot in this testbed bases its decisions on a
POMDP [Kaelbling et al., 1998] model, which is a tuple,
〈S,A, P,Ω,O,R〉, that we describe here in terms of the HRI
testbed scenario [Wang et al., 2015]. In it, a human team-
mate works with a robot in reconnaissance missions to gather
intelligence in a foreign town. Each mission involves the hu-
man teammate searching buildings in the town. The robot
serves as a scout, scans the buildings for potential danger,
and relays its observations to the teammate. Prior to entering
a building, the human teammate can choose between entering
with or without equipping protective gear. If there is danger
present inside the building, the human teammate will be in-
jured if not wearing the protective gear, causing the team to
incur a high time penalty. However, it also takes time to put
on and take off protective gear (although much less time than
the injury penalty). So the human teammate is incentivized
to consider the robot’s observations before deciding how to
enter the building. The simulated robot has an NBC (nuclear,
biological and chemical) weapon sensor, a camera that can
detect hostile gunmen, and a microphone that can listen to
discussions in foreign language.



The state, S, consists of objective facts about the world,
some of which may be hidden from the agent itself. We use
a factored representation [Boutilier et al., 2000] that decom-
poses these facts into individual feature-value pairs, such as
the robot’s current location, as well as the presence of danger-
ous people or chemicals in the buildings to be searched. The
state may also include feature-value pairs that represent the
health level of its human teammate, any current commands,
and the accumulated time cost so far.

The available actions, A, correspond to the possible deci-
sions the agent can make. Given the proposed mission, the
agent’s first decision is where to move to next. Upon com-
pleting a search of a building, an agent can make a decision
as to whether to declare a location as safe or unsafe for its
human teammate. For example, if a robot believes that armed
gunmen are at its current location, then it will want its team-
mate to take adequate preparations (e.g., put on body armor)
before entering. Because there is a time cost to such prepa-
rations, the robot may instead decide to declare the location
safe, so that its teammate can more quickly complete their
own reconnaissance tasks.

The transition probability function, P , represents the ef-
fects of the agent’s actions on the subsequent state. In the cur-
rent testbed, the robot’s movement actions always succeed.
Recommendation actions, on the other hand, can affect the
health and happiness of its human teammate, although only
stochastically, as a person may not follow the recommenda-
tion.

The “partial observability” of a POMDP is specified
through a set of possible observations, Ω, that are probabilis-
tically dependent (through the observation function, O) on
the true state of the world. Different observations may have
different levels of noise. For example, an agent may be able
to use GPS to get very accurate readings of its own location.
However, it may not be able to detect the presence of hos-
tile gunmen or dangerous chemicals with perfect reliability
or omniscience. Instead, the agent will receive local readings
about the presence (or absence) of threats in the immediate
vicinity. For example, if dangerous chemicals are present,
then the robot’s chemical sensor may detect them with a high
probability. There is also a lower, but nonzero, probability
that the sensor will not detect them. In addition to such a
false negative, we can also model a potential false positive
reading, where there is a low, but nonzero, probability that
it will detect chemicals even if there are none present. By
controlling the observations that the agents receive, we can
manipulate their ability level in our testbed.

Partial observability gives the robot only a subjective view
of the world, where it forms beliefs about what it thinks is
the state of the world, computed via standard POMDP state
estimation algorithms. For example, the robot’s beliefs may
include its subjective view on the presence of threats, in the
form of a likelihood (e.g., a 33% chance that there are toxic
chemicals in the farm supply store). Again, the robot would
derive these beliefs from prior beliefs about the presence of
such threats, updated by its more recent local sensor read-
ings. Due to the uncertainty in its prior knowledge and sen-
sor readings (not to mention its learning), the robot’s beliefs
are likely to diverge from the true state of the world. By de-

creasing the accuracy of the robot’s observation function, O,
we can decrease the accuracy of its beliefs, whether receiv-
ing correct or incorrect observations. In other words, we can
also manipulate the robot’s ability by allowing it to over- or
under-estimate its sensors’ accuracy.

The human-machine team’s mission objectives are cap-
tured by the reward function, R, which maps the state of the
world into a real-valued evaluation of benefit for the agents.
In our example domain, the robot receives the highest reward
when the surveillance is complete. It will also receive higher
reward values when its teammate is alive and unharmed. This
reward component punishes the agents if they fail to warn
their teammates of dangerous buildings. Finally, the agent
will receive a slight negative reward for the amount of time
that passes. This motivates the agents to complete the mis-
sion as quickly as possible.

By constructing such a POMDP model of the mission, the
agent can autonomously generate its behavior by determin-
ing the optimal action based on its current beliefs, b, about
the state of the world [Kaelbling et al., 1998]. The agent uses
a (bounded) lookahead procedure that seeks to maximize ex-
pected reward by simulating the dynamics of the world from
its current belief state across its possible action choices. It
will combine these outcome likelihoods with its reward func-
tion and choose the option that has the highest expected re-
ward.

3.2 Explanation Generation for POMDPs
The elements 〈S,A, P,Ω,O,R〉 of a POMDP model corre-
spond to concepts that people are likely to be familiar with.
By exposing different components of an agent’s model, we
can make different aspects of its decision-making transpar-
ent to human teammates. In prior work, we created static
templates to translate the contents of a POMDP model into
human-readable sentences [Wang et al., 2016]. We create
such templates around natural-language descriptions of each
state feature and action. We then instantiate the templates
at runtime with prespecified functions of the agent’s current
beliefs (e.g., probability of a state feature having a certain
value). The following list illustrates the templates we created
for each POMDP component, using specific runtime instan-
tiations to show the final natural-language text provided to a
human participant:

S: The agent can communicate its current beliefs about the
state of the world, e.g., “I believe that here are no threats
in the market square.” The agent could also use a stan-
dard POMDP probabilistic belief state to communicate
its uncertainty in that belief, e.g., “I am 67% confident
that the market square is safe.”

A: An agent can make a decision about what route to take
through its search area, e.g., “I am proceeding through
the back alley to the market square.”

P : An agent can also reveal the relative likelihood of possi-
ble outcomes based on its transition probability model,
e.g., “There is a 33% probability that you will be injured
if you follow this route without taking the proper pre-
cautions.”



Ω: Communicating its observation can reveal information
about an agent’s sensing abilities, e.g., “My NBC sen-
sors have detected traces of dangerous chemicals.”

O: Beyond the specific observation it received, an agent can
also reveal information about its observation model, e.g.,
“My image processing will fail to detect armed gunmen
30% of the time.”

R: By communicating the expected reward outcome of its
chosen action, an agent can reveal its alignment (or lack
thereof) with the mission objective, contained in its re-
ward function, e.g., “I think it will be dangerous for you
to enter the informant’s house without putting on pro-
tective gear. The protective gear will slow you down a
little.” The template here relies on factored rewards, al-
lowing the agent to compute separate expected rewards,
E[R], over the goals of keeping its teammate unharmed
and achieving the mission as quickly as possible.

3.3 Results from POMDP-Based Explanation
We have used this testbed to gather human behavior data
when interacting with the robot under combinations of these
POMDP-based explanation algorithms. We designed expla-
nations that selected different aspects of the robot’s decision-
making process at different level of details. Evaluations of
such explanations have indicated that when the robot provides
an explanation to justify its decisions (e.g., by providing a
numerical confidence level of its decisions or a summary of
findings from its sensors), the human-robot team performed
better on simulated missions, compared to when no explana-
tions were given [Wang et al., 2016].

More relevant to a learning robot, we augmented expla-
nations with a trust-repair strategy inspired by prior work
in organizational trust: an acknowledgement of a mistake,
paired with a promise to improve before the next mission
[Schweitzer et al., 2006]. This acknowledgment made the
human teammate trust the robot more when the robot did not
provide any explanation of its previous (and mistaken) deci-
sion. However, overall, such communication did not make
any impact on the team performance, across a variety of ex-
planation content [Wang et al., 2018]. This lack of impact
was most likely due to the fact that participants interacted
with each specific robot for only one mission, so they would
never be able to observe any improvement (so we never im-
plemented any either). The natural next step is to enrich our
agent to perform this self-improvement during the mission it-
self. This result highlighted the importance of unpacking the
machine learning process of the robot and making it transpar-
ent to a robot’s human teammate.

4 Reinforcement Learning in the HRI Testbed
4.1 Model-Based RL
Given the original POMDP model, it is a relatively easy step
for the agent to update that model using reinforcement learn-
ing. As in most RL domains, we assume that S, A, and Ω are
known a priori. That leaves P ,O, andR as the functions to be
learned. In this domain, R is a pre-defined mission objective,
so no learning occurs there.

The robot’s movement is deterministic, so the only part of
the transition probability, P , to be learned is the probability
that the teammate will follow the robot’s recommendation.
In the decision cycle after giving its recommendation, the
robot observes whether its human teammate followed it
or not. It can then use this signal to modify the probabil-
ity table within P corresponding to its recommendation
action and the subsequent effect on the teammate’s life.
For example, if the teammate ignored the robot’s recom-
mendation to wear protective gear and was injured as a
result, then the robot could decrease P (¬human injured,
recommend protective gear, ¬human injured) and in-
crease P (¬human injured, recommend protective gear,
human injured). We do not experiment with such learning,
as such a change would make the robot less likely to recom-
mend protective gear in the future, whereas it should instead
attempt an alternative explanation to convince the teammate
to follow its recommendation.

We instead focus our model-based RL on the observation
function, O. In many of our prior experiments, we have given
the robot a broken camera that fails to detect gunmen in a
building, even when present. Allowing such a robot to up-
date O based on experience would help it overcome such a
lack of reliability. When the human teammate enters a build-
ing, the true state of any threat within is revealed. At this
point, the robot will know which of its sensor readings were
correct and which not. For example, consider a false nega-
tive where the robot’s camera (and image-processing system)
fail to detect any hostile occupants, but where its microphone
(and natural-language processing system) does detect them.
The robot can increase O(gunmen, camera = no gunmen)
and O(gunmen,microphone = gunmen). As a result, the
robot will be more likely to recommend protective gear in
future buildings when its microphone is positive for gunmen
and its camera is negative.

Model-based RL can update the parameters of the robot’s
POMDP model in this way. It can then use this now-dynamic
POMDP model to feed the same explanation generation used
for the static POMDP models in our past work. In particular,
if the agent is updating its O function, then an O template (as
described in Section 3.2) could make the revision transpar-
ent by saying “My image processing will fail to detect armed
gunmen 45% of the time.”. The teammate will thus be in-
formed as to the changes inO resulting from the model-based
RL.

4.2 Model-Free RL
Alternatively, the agent can use the POMDP model to com-
pute an initial value function, but then use model-free RL to
update those values. In other words, the robot maintains only
a set of Q values, Q(b, a), throwing away the POMDP model
after initializing them. In our particular domain, the agent’s
belief state, b, is determined by its sensor readings in the cur-
rent building. We can thus represent b as a tuple 〈c, n,m〉 of
the robot’s camera, NBC sensor, and microphone readings,
respectively.

To initializeQ(〈c, n,m〉 , a), we first solve the robot’s prior
POMDP model to arrive at a value function, V , over belief
states, b, and actions, a. We can then iterate through each



combination of sensor readings, 〈c, n,m〉, compute the belief
state derived from those sensor readings, b, and then assign
the corresponding value to our Q values: Q(〈c, n,m〉 , a) ←
V (b, a).

We can then follow a standard model-free RL formulation
to update these Q values based on the robot’s experiences.
The robot will receive a reward signal after its recommen-
dation, based on whether the human teammate suffered any
injury and whether time was lost from putting on protective
gear. This reward signal will be used to update the Q val-
ues for the current sensor readings. Over time, these Q val-
ues should approach the optimal values for recommending
protective gear based on the sensor readings of threats in the
building.

It is important to note that these Q values will account for
the effect of broken sensors, disobedient teammates, etc., but
with no explicit representation of these factors. For exam-
ple, if the robot’s camera is broken so that it never detects
gunmen, the Q values will converge to a table whose values
are change based on only the NBC sensor on microphone.
However, there will be no explicit representation of the ob-
servation function, O, as there was for the model-free case.

5 Explanation Generation for RL
Enabling the agent to learn should enhance its domain-
level performance and potentially improve team performance.
However, the unpredictability introduced by allowing the
agent to change its model (and its decision-making) can lead
to distrust from human teammates. It therefore becomes im-
portant for the agent to be able to make its learning transpar-
ent, as well as its decision-making.

5.1 POMDP-Based Explanation
We first seek to leverage our existing POMDP-based explana-
tion templates. When our robot is using model-based RL, it is
trivial to apply the templates from Section 3.2. At each stage,
the robot has a POMDP model of the world, and it uses that
POMDP to make its decisions. Therefore, any learned com-
ponents (such as the O example, given in Section 4.1) can be
directly fed into the POMDP templates to reveal the agent’s
current model. Of course, the RL agent’s POMDP model will
change over time, causing these explanations to change over
time as well. However, the dynamics of these explanations
can potentially reveal enough information for the teammates’
to understand why the robot behavior has changed.

On the other hand, model-free RL (as described in Section
4.2) does not maintain a POMDP model, but rather just the
Q values that specify the values associated with all possible
actions in a given belief state. Therefore, we cannot directly
apply our POMDP explanation templates. However, unless
our POMDP modeling structure is erroneous, then there are
likely to be many POMDPs that are consistent with the pol-
icy arrived at by model-free RL. Therefore, if we can find a
POMDP that matches the learned policy, then we can poten-
tially use it as the input to our POMDP explanation templates,
just as we can for model-based RL.

To find such matching POMDPs, we first consider a set
of candidate matches. One such set is the set of possible

POMDPs that can be learned by our model-based RL alterna-
tive (as described in Section 4.1. In our HRI domain, model-
based RL can vary only O, so we need to consider only the
variations of our initial POMDP that differ in O. We can dis-
cretize the space of possible O functions to arrive at a finite
set of candidate POMDPs.

For each such candidate POMDP, we can compute the op-
timal policy for eventual comparison against the learned pol-
icy. We can potentially perform this computation using any
existing solver, but we exploit an assumption of piecewise-
linear models [Pynadath and Marsella, 2004] to arrive at a
decision-tree representation of the optimal policy for both our
candidate POMDPs and the learned Q values. We simply
look for a POMDP whose decision-tree policy matches the
decision-tree policy of the learned Q function. We then use
that POMDP as the input to Section 3.2’s templates, just as
we did for the model-based RL’s POMDP.

It is likely that there are multiple POMDPs consistent with
the learned Q values, because although parameter changes
will change the POMDP value function, most will not change
the optimal policy. In such cases, we could simply pick one
of the consistent POMDPs. It is an empirical question of how
best to make this choice so that the agent provides explanation
content that best calibrates trust with its human teammate.

Alternatively, we could focus on only the modeling compo-
nents that overlap among the matching POMDPs. For exam-
ple, if all the matching POMDPs have the same P function,
but different O functions, then we would ignore P explana-
tions and focus on O ones instead. Of course, it is possible
that the ambiguity among the matching POMDPs extends to
the individual components, in which case this method offers
no advantage.

5.2 Learning-Based Explanation
The POMDP-based explanation from Section 3.2 reveals in-
dividual components of the agent’s learned model. However,
it does not inform the human teammate as to the overall con-
tent learned, nor how the learning arrived at that content. For-
tunately, we can create additional templates for the compo-
nents introduced by enabling our agent to use RL to update
its model.

Q: The agent can explain its decisions by communicating the
Q values that led to them. For example, the robot could
say that “I currently estimate that not wearing protective
gear is over 3 times better than wearing it.”

Q(b, ·): Alternatively, it could include the belief state on
which theQ values are currently conditioned. For exam-
ple, “Not wearing protective gear is over 3 times better
than wearing it when there is a 90% chance that there is
no threat.”

Q(~ω, ·): As another alternative, the agent could describe its
belief state in terms of the observations from which its
current belief state is derived. For example, “Not wear-
ing protective gear is over 3 times better than wearing it
when none of my sensors detect any threats.”

π(b): While providing the Q values in the current belief
state certainly helps transparency, the teammate might



benefit even more from understanding the agent’s over-
all decision-making policy. For example, the robot could
communicate context about the above examples by say-
ing, “I recommend not wearing protective gear when
I believe that there is a less than 25% chance of a
threat.” We leverage our piecewise-linear assumption to
be able to generate such decision-tree representations of
the agent’s policy [Pynadath and Marsella, 2004].

π(~ω): We can again formulate an alternative policy-based
explanation using the sensor readings on which the rele-
vant policy entry is contingent. For example, “I recom-
mend not wearing protective gear whenever neither my
NBC sensor nor microphone detect a threat.”

Data: The Q values and policy certainly increase trans-
parency, but they do not inform human teammates as
how they were derived. It might therefore be useful to
use the data used in the RL to arrive at the agent’s current
Q values. For example, “I recommend not wearing pro-
tective gear, because only 3 times (out of 91) was there
actually a threat when none of my sensors did not detect
any.”

6 Discussion and Future Work
Just as with the POMDP-based explanation components of
Section 3.2, it is an empirical question as to the impact of
these different explanation forms on human-robot trust. The
necessary next step is to conduct human-subject studies with
our learning agent across different permutations of these ex-
planations. Such an evaluation of the RL-based explana-
tion can not only inform the efficacy of such explanations on
building transparency, calibrating trust, and repairing trust,
but also provide insight into what aspects of the RL should
be included in the explanations and how to present them.
For example, high-level explanations can provide at-a-glance
information to help make decisions quickly, while detailed
explanations can better help human teammates understand
the agent’s decision-making process. Human-interaction data
can help evaluate such trade-offs and enable future agents
to choose the right type of information to communicate at
the right level of detail. More importantly, such evaluations
can potentially reveal mechanisms to adapt to a human team-
mate’s changing information and decision needs.

Another extension of the current work is to design bi-
directional transparency communication that not only allows
an agent to communicate its decision and explanations to its
human teammate, but that also supports human input to the
agent’s decision-making, including interactive reinforcement
learning similar to [Fukuchi et al., 2017]. Such an investiga-
tion can also assist in more general classification of the indi-
vidual differences that are prevalent in HRI domains [Pyna-
dath et al., 2018].

This paper’s RL-based explanation mechanisms provide a
simple way to systematically explore the impact of different
XAI content on human trust perceptions and behavior in an
HRI domain. Although most RL domains are more complex
than our testbed domain, the POMDP and Q-learning compo-
nents are identical. Therefore, we are hopeful that our find-
ings about how different content affects human teammates

will generalize to more realistic domains as well. As such,
this paper outlines a potentially fruitful line of investigation
into how best to automatically generate explanations of RL to
benefit human-agent team performance.
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