Approaches to Dialogue Systems and Dialogue Management

David Traum
Institute for Creative Technologies
University of Southern California
traum@ict.usc.edu
http://www.ict.usc.edu/~traum

Course web page:
http://www.ict.usc.edu/~traum/ESSLLI08
Outline for Course

- Today: Simple structures: S-R, IR, finite State
- Tomorrow: Frame-based and Information State
- Thursday: Plan-based and Logic Based
- Friday: Advanced Topics
Outline for Today

• Dialogue Structure
• Simple Control structures
 - Scripts
 - Keyword-based
• Eliza & AIML Chat systems
• Information-Retrieval based systems
• Speech Acts
• Finite State systems
 - Example
 - Toolkits
 • CSLURP RAD
 • Voice-XML
Dialogue Manager Organizing Principles

- **Structure-based**
 - Script
 - Local
 - Exchange
 - Word-based
 - Keyword spotting
 - Advanced techniques
 - AIML recursion
 - Statistical Language model
 - Meaning-based
 - Speech acts
 - Grammar
 - Tree/FSM

- **Principle-based**
 - Frame
 - Logic
 - Plan
 - Information-State
Dialogue Structure

• Local
 - What binds utterances together?
 - How is one utterance (in)coherent when following another?

• Global
 - What is the structure of a conversation?
 - What is the structure of a task (that a conversation is “oriented” to)?

• How many levels of structure are there?
Local Dialogue Structure

- Utterances organized in turns
- Coherence between turns (or utterances)
 - Adjacency pairs
 - Exchange structure
 - IR(A) units
 - Games
Turn-taking (Sacks & Schegloff)

- Turns composed of one or more smaller utterance units (Turn Constructional Units = TCUs)
- Transition relevance places (TRPs)
- Signals of TRP (and pre-trp)
- Self and other selection
Adjacency Pairs (Schegloff & Sacks)

- Sequences with features
 - Two utterance length
 - Adjacent
 - Produced by different speakers
 - Typology in production
 - Pair type including First part & second part
 - E.g., Q&A, greeting-greeting, offer-acceptance

- Orientation towards Adjacency Pair
 - Conditional relevance
 - Preferred & dispreferred 2nd parts
 - Hesitations, apologies & qualifications
 - Repairs and apologies
Other Local organizations

- Exchange
- IR Unit
- Game
 - Can be more than two utterances in sequence
Global dialogue structure

- Conversation phases
 - Opening
 - Engagement
 - Greetings
 - Preambles/agendas
 - Body
 - Topics
 - Topic relations
 - Closing
 - Pre-closings
 - Termination bids
 - farewells
Task Structure (Grosz & Sidner ‘86)

- Hierarchical & sequential tasks
 - Linear precedence
 - Immediate dominance
- Topic stack
- Topic transitions
 - Push
 - Pop
 - Pop-push
Plan Tree for REA (Cassell et al)

Conversation

Greetings
- User Greeting
- Agent Greeting

Find House
- Determine Preferences
 - Parameters
 - Price
 - Location
 - etc
 - Show House
 - Describe Features

Farewells
- User Farewell
- Agent Farewell

Topic changes when focus stack changes.
Simple Organizational Structures

- Script
- Local
 - Exchange
 - Word-based
 - Keyword spotting
 - Advanced techniques
 » AIML recursion
 » Statistical Language model
 - Meaning-based
 - Speech acts
- Grammar
- Tree/FSM
Example Script: Scene 1
Monty Python & the Holy Grail

• ...
• **ARTHUR**: Well, it doesn't matter. Will you go and tell your master that Arthur from the Court of Camelot is here?
• **SOLDIER #1**: Listen. In order to maintain air-speed velocity, a swallow needs to beat its wings forty-three times every second, right?
• **ARTHUR**: Please!
• **SOLDIER #1**: Am I right?
• **ARTHUR**: I'm not interested!
• **SOLDIER #2**: It could be carried by an African swallow!
• **SOLDIER #1**: Oh, yeah, an African swallow maybe, but not a European swallow. That's my point.
• **SOLDIER #2**: Oh, yeah, I agree with that.
Eliza

- Local organization
- Produce response based on analysis of input
 - Keyword spotting
 - Pattern recognition
 - Pattern selection
 - Transformation rules
- Example: emacs Doctor program
- Example 2: CL simple-eliza rules
- http://hampshire.edu/lspector/courses/eliza-simple.lisp
Advanced Patterns: AIML

- XML Syntax
- Stimulus-response interaction
- Categories
 - Pattern
 - Template

EXAMPLES:

```xml
<category><pattern>BYE</pattern>
<template><random>
<li>See you later <get name="name"/>.\li>
<li>Goodbye <get name="name"/>.\li>
<li>Until next time <get name="name"/>.\li>
<li>Thanks for chatting, <get name="name"/>.\li>
<li>See you later <get name="name"/>.\li>
</random></template></category>

<category><pattern>AU REVOIR</pattern>
<template>
<srai>BYE</srai>
</template></category>

<category><pattern>FAREWELL *</pattern>
<template>
<srai>BYE</srai>
</template></category>
```
AIML: Advanced

• Srai operator
 - Synonyms
 - Splitting patterns
 - Conditionals
• Context
 - That
 - Topic
 - Set
• System calls
• Get & set variables
Statistical Retrieval-based Dialogue

• Basic idea: use IR-like techniques to find the correct response to an initiative

• Applications
 - Call routing (Chu-Carroll & Carpenter)
 - Question-answering character (Leuski et al 2006)
Some Word-based Classification Approaches

- Latent Semantic Analysis (LSA)
- Support-Vector Machines (SVM)
- Relevance Model Retrieval
- Cross-language Relevance Model
Example: Sgt Blackwell (Leuski et al 2006)

- Focus: technology demo
- Highlights:
 - Life-sized, mixed reality
 - Trans-screen
 - High-production quality
 - Rendering (> 60K polygons)
 - Voice
 - Authored Text
 - Robust responsiveness
 - Speech recognition and speech and non-verbal reply
 - Limited domain of interaction: responding to interview/Q&A
Sgt Blackwell Video
Sgt Blackwell “Dialogue Model”

- Set of pre-constructed answers
 - In domain
 - Off-topic
 - Prompt
- Local history
- IR-based classification
 - Given possibly unseen question, map to best answer
Text as vectors

Tell me about yourself?

• “Bag of words”
• Stopping
• Stemming
• N-grams

<table>
<thead>
<tr>
<th>Term</th>
<th>tf</th>
</tr>
</thead>
<tbody>
<tr>
<td>tell</td>
<td>1</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
</tr>
<tr>
<td>about</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tell me</th>
<th>Me about</th>
<th>About yourself</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tell me about</td>
<td>Me about</td>
<td>About yourself</td>
</tr>
</tbody>
</table>

Tell me about yourself?
Term Weights

\[
\begin{align*}
t_{i,j} & = \begin{cases}
1 & \text{word } i \text{ is present in string } j \\
0 & \text{otherwise}
\end{cases} \\
w_{i,j} & = t_{i,j} \\
w_{i,j} & = t_{i,j} / df_i \\
w_{i,j} & = t_{i,j} / \log df_i \\
w_{i,j} & = \frac{t_{i,j}}{t_{i,j} + 0.5 + 1.5 \frac{doclen}{avgdoclen}} \cdot \frac{\log\left(\frac{colsizex+0.5}{docf_i}\right)}{\log(colsizex+1)}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Term</th>
<th>tf</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>tell</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>me</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>about</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
SVM

- Text string tokenized
- unigram, bigrams, trigrams
- term vectors

\[w_{i,j} = \frac{tf_{i,j}}{tf_{i,j} + 0.5 + 1.5 \frac{doclen}{avgdoclen}} \cdot \frac{\log \left(\frac{colsize + 0.5}{docf_i} \right)}{\log (colsize + 1)} \]
Relevance Model

- Relevance Model: $P(w|R)$ - prob that a random word from appropriate answer is w. $P(w|R) \sim \text{apprx } P(w|Q)$
- Estimate $P(w|Q)$ - prob observing word w in an answer given question
- Estimate $P(w|A)$ - prob observing word w in an answer given answer
- Compare two probabilities
Compare $P(w|Q)$ and $P(w|A)$

- Compute cross-entropy
- Kullback-Leibler divergence
- Minimize $D(p_q || p_a)$

$$D(p_q || p_a) = \sum_{w \in V} P(w|Q) \log \frac{P(w|Q)}{P(w|A)}$$
Estimate $P(w|A)$

- Estimate from known data

$$P(w|A) = \pi_A(w)$$

Maximum likelihood estimator (MLE)

$$\pi_s(w) = \lambda_\pi \cdot \frac{\#(w, s)}{|s|} + (1 - \lambda_\pi) \cdot \frac{\sum_s \#(w, s)}{\sum_s |s|}$$
Estimate $P(w|Q)$ v. 1

• Approach 1: consider answers as class labels (ignore content of answer)
• combine together all questions for an answer into a pseudo-answer
• Compare a test question to each pseudo-answer and select the best match
Estimate $P(w|Q)$ v. 1

$$P(w|Q) = \frac{\sum_{s \in S} \pi_s(w) \prod_{i=1}^{m} \pi_s(q_i)}{\sum_{s} \prod_{i=1}^{m} \pi_s(q_i)}$$

$$P(w|A) = \pi_A(w)$$

- w is any word we ever see in questions
- q is a word in test question
- S is the set of all training questions
- A is all questions for an answer combined
- $P(w|Q)$ is an average for a w over all s and q
Estimate $P(w|Q)$ v. 2

- Approach 2:
 - Answer text matters!
 - Questions and answers are two different languages
Estimate $P(w|Q)$ v. 2

$$P(w|Q) = \frac{\sum_s \alpha_{A_s}(w) \prod_{i=1}^m \pi_{Q_s}(q_i)}{\sum_s \prod_{i=1}^m \pi_{Q_s}(q_i)}$$

$$P(w|A) = \alpha_A(w)$$

- s iterates over all $\{Q,A\}$ pairs of training data
- α is like π, but on the answer domain

$$\alpha_x(w) = \lambda_\alpha \frac{(w,x)}{|x|} + (1 - \lambda_\alpha) \frac{\sum_s (w,x)}{\sum_s |x|}$$

Sgt Blackwell Evaluation

Questions:
1. What are the best classification techniques?
2. How much do speech recognition errors affect performance?
Question 1: Which classification methods are best?

- **Method:**
 - Use off-line training set & test set paradigm
 - Set of appropriate answers labelled for each question in corpus
 - 1261 questions, 60 answer-classes
 - 10-fold cross-validation
 - Consider top answer: is it appropriate?
Sgt Blackwell: Answer retrieval results

- SVM: 53
- LM: 58
- CLM: 62

Accuracy: +8.8% to +16.7%
Sgt Blackwell Evaluation

• Questions
 - What are the best classification techniques?
 - How much do speech recognition errors affect performance?

• Metrics
 - Accuracy of Speech recognizer & classifier
 - Appropriateness of replies (including to unseen and out of domain questions)
 - Answers rated for relevance (scale from 1-6)

• Experiment: 20 users, asking 20 questions: 10 given, 10 user-defined (Leuski et al IUI 2006, to appear)
Gandhe et al 2004 Response coherence coding

Table 1: Dialogue Quality Scale

1. Response is not related in any way the question
2. Response contains some discussion of people or objects mentioned in the question, but does not really address the question itself
3. Response partially addresses the question, but little or no coherence between the question and response
4. Response does mostly address the question, but with major problems in the coherence between question and response; seems like the response is really addressing a different question than the one asked.
5. Response does address the question, but the transition is somewhat awkward
6. Response answers the question in a perfectly fluent manner
Sgt Blackwell Evaluation Results

(a) pre-designated
(b) user-designated
Speech Acts

• How to “Do things” with words
 - Look at actions & effects of utterances rather than truth-conditions
 - Types of acts
 • Locutionary
 • Illocutionary
 • Perlocutionary
Searle’s Types of Ilocutionary acts

- Representatives
- Directives
- Commissives
- Expressives
- Declarations
Issues for computational theory of speech acts

• When can an act be recognized (as sincere and successful)?
• What are the effects of performance of an act
 - On state of hearer and speaker
 - On state of dialogue
• When should act be performed?
• How should act be performed?
Speech-act related Adjacency Pairs

- Question-Answer
- Propose-Accept/reject/challenge,...
- Offer-accept/decline
- Compliment-refusal/thanks
- Greeting-greeting
Dialogue Grammar

- Specify set of legal moves to be a “legal” dialogue
- Specify set of moves at any given point
- Specify context update
FSM Dialogue model

• Set of states
• Set of moves from each state
• Transitions to new state
Dialogue Acts in FSM

- Inform - convey information
- Question - set context for inform
- Answer - inform after question
- Confirm - show understanding
- Directive - ask for an action to be done
- Action - do an action
Example: ‘Bridge of Death’
Scene from Monty Python & the Holy Grail
Example: ‘Bridge of Death’ Scene from Monty Python & the Holy Grail

GALAHAD: There it is!

ARTHUR: The Bridge of Death!

ROBIN: Oh, great.

ARTHUR: Look! There's the old man from scene twenty-four!

BEDEVERE: What is he doing here?

ARTHUR: He is the keeper of the Bridge of Death. He asks each traveller five questions--

GALAHAD: Three questions.

ARTHUR: Three questions. He who answers the five questions---

GALAHAD: Three questions.

ARTHUR: Three questions may cross in safety.

ROBIN: What if you get a question wrong?

ARTHUR: Then you are cast into the Gorge of Eternal Peril.

ROBIN: Oh, I won't go.

GALAHAD: Who's going to answer the questions?

ARTHUR: Sir Robin!

ROBIN: Yes?

ARTHUR: Brave Sir Robin, you go.

ROBIN: Hey! I've got a great idea. Why doesn't Launcelot go?

LAUNCELOT: Yes. Let me go, my liege. I will take him single-handed. I shall make a feint to the north-east that---

ARTHUR: No, no. No. Hang on! Hang on! Hang on! Just answer the five questions---

GALAHAD: Three questions.

ARTHUR: Three questions as best you can, and we shall watch... and pray.

LAUNCELOT: I understand, my liege.

ARTHUR: Good luck, brave Sir Launcelot. God be with you.

BRIDGEKEEPER: Stop! Who would cross the Bridge of Death must answer me these questions three, ere the other side he see.

LAUNCELOT: Ask me the questions, bridgekeeper. I am not afraid.

BRIDGEKEEPER: What... is your name?

LAUNCELOT: My name is 'Sir Launcelot of Camelot'.

BRIDGEKEEPER: What... is your quest?

LAUNCELOT: To seek the Holy Grail.

BRIDGEKEEPER: What... is your favourite colour?

LAUNCELOT: Blue.

BRIDGEKEEPER: Right. Off you go.

LAUNCELOT: Oh, thank you. Thank you very much.

BRIDGEKEEPER: Stop! Who approacheth the Bridge of Death must answer me these questions three, ere the other side he see.

ROBIN: Ask me the questions, bridgekeeper. I'm not afraid.

BRIDGEKEEPER: What... is your name?

ROBIN: 'Sir Robin of Camelot'.

BRIDGEKEEPER: What... is your quest?

ROBIN: To seek the Holy Grail.

BRIDGEKEEPER: What... is your name?

ROBIN: 'Sir Robin of Camelot'.

BRIDGEKEEPER: What... is your quest?

ROBIN: To seek the Holy Grail.

BRIDGEKEEPER: What... is the capital of Assyria?

ROBIN: I don't know that! Auuuuuuuugh!

BRIDGEKEEPER: Hee hee heh.

BRIDGEKEEPER: Stop! What... is your name?

GALAHAD: 'Sir Galahad of Camelot'.

BRIDGEKEEPER: What... is your quest?

GALAHAD: I seek the Grail.

BRIDGEKEEPER: What... is your favourite colour?

GALAHAD: Blue. No, ye--

BRIDGEKEEPER: Hee hee heh.

BRIDGEKEEPER: Stop! What... is your name?

ARTHUR: It is 'Arthur', King of the Britons.

BRIDGEKEEPER: What... is your quest?

ARTHUR: To seek the Holy Grail.

BRIDGEKEEPER: What... is the airspeed velocity of an unladen swallow?

ARTHUR: What do you mean? An African or European swallow?

BRIDGEKEEPER: Huh? I-- I don't know that. Auuuuuuuugh!

BEDEVERE: How do know so much about swallows?

ARTHUR: Well, you have to know these things when you're a king, you know.
Example: ‘Bridge of Death’
Scene from Monty Python & the Holy Grail
BoD: Preamble

- **GALAHAD**: There it is!
- **ARTHUR**: The Bridge of Death!
- **ROBIN**: Oh, great.
- **ARTHUR**: Look! There’s the old man from scene twenty-four!
- **BEDEVERE**: What is he doing here?
- **ARTHUR**: He is the keeper of the Bridge of Death. He asks each traveller five questions--
- **GALAHAD**: Three questions.
- **ARTHUR**: Three questions. He who answers the five questions--
- **GALAHAD**: Three questions.
- **ARTHUR**: Three questions may cross in safety.
- **ROBIN**: What if you get a question wrong?
- **ARTHUR**: Then you are cast into the Gorge of Eternal Peril.
• **ROBIN**: Oh, I won't go.
• **GALAHAD**: Who's going to answer the questions?
• **ARTHUR**: Sir Robin!
• **ROBIN**: Yes?
• **ARTHUR**: Brave Sir Robin, you go.
• **ROBIN**: Hey! I've got a great idea. Why doesn't Launcelot go?
• **LAUNCELOT**: Yes. Let me go, my liege. I will take him single-handed. I shall make a feint to the north-east that s--
• **ARTHUR**: No, no. No. Hang on! Hang on! Hang on! Just answer the five questions--
• **GALAHAD**: Three questions.
• **ARTHUR**: Three questions as best you can, and we shall watch... and pray.
• **LAUNCELOT**: I understand, my liege.
• **ARTHUR**: Good luck, brave Sir Launcelot. God be with you.
BoD: Dialogue 1: Lancelot

- **BRIDGEKEEPER**: Stop! Who would cross the Bridge of Death must answer me these questions three, ere the other side he see.
- **LAUNCELOT**: Ask me the questions, bridgekeeper. I am not afraid.
- **BRIDGEKEEPER**: What... is your name?
- **LAUNCELOT**: My name is 'Sir Launcelot of Camelot'.
- **BRIDGEKEEPER**: What... is your quest?
- **LAUNCELOT**: To seek the Holy Grail.
- **BRIDGEKEEPER**: What... is your favourite colour?
- **LAUNCELOT**: Blue.
- **BRIDGEKEEPER**: Right. Off you go.
- **LAUNCELOT**: Oh, thank you. Thank you very much.
BoD: Dialogue 2: Robin

- **BRIDGEKEEPER:** Stop! Who approacheth the Bridge of Death must answer me these questions three, ere the other side he see.
- **ROBIN:** Ask me the questions, bridgekeeper. I'm not afraid.
- **BRIDGEKEEPER:** What... is your name?
- **ROBIN:** 'Sir Robin of Camelot'.
- **BRIDGEKEEPER:** What... is your quest?
- **ROBIN:** To seek the Holy Grail.
- **BRIDGEKEEPER:** What... is the capital of Assyria? [pause]
- **ROBIN:** I don't know that! Auuuuuuuuugh!
BoD: Dialogue 3: Galahad

- **BRIDGEKEEPER**: Stop! What... is your name?
- **GALAHAD**: 'Sir Galahad of Camelot'.
- **BRIDGEKEEPER**: What... is your quest?
- **GALAHAD**: I seek the Grail.
- **BRIDGEKEEPER**: What... is your favourite colour?
- **GALAHAD**: Blue. No, yel-- auuuuuuuuugh! **BRIDGEKEEPER**: Hee hee heh.
BoD: Dialogue 4: Arthur

- **BRIDGEKEEPER:** Stop! What... is your name?
- **ARTHUR:** It is 'Arthur', King of the Britons.
- **BRIDGEKEEPER:** What... is your quest?
- **ARTHUR:** To seek the Holy Grail.
- **BRIDGEKEEPER:** What... is the air-speed velocity of an unladen swallow?
- **ARTHUR:** What do you mean? An African or European swallow?
- **BRIDGEKEEPER:** Huh? I-- I don't know that. Auuuuuuuugh!
- **BEDEVERE:** How do know so much about swallows?
- **ARTHUR:** Well, you have to know these things when you're a king, you know.
Bridgekeeper: Local structure

• (left as an exercise)
Bridgekeeper: FSM

- Draw on board
CSLUrп Interface
<?xml version="1.0"?><vxml version="2.0"><menu>
 <prompt>Say one of:</prompt>
 <enumerate/></menu>

</vxml>

Sample Dialogue:
• Computer: Say one of: Sports; Weather; News.
• Human: Astrology
• Computer: Please say one of: Sports; Weather; News.
• Human: Sports
• Computer: (proceeds to http://www.sports.example/start.vxml)
Outline for Course

• Yesterday: Introduction, Architecture of Dialogue Systems, Example Systems
• Today: Simple structures: S-R, IR, finite State
• Tomorrow: Frame-based and Information State
• Thursday: Plan-based and Logic Based
• Friday: Advanced Topics