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ABSTRACT 
 

We describe recent research to enhance a training 
system which interprets Call for Fire (CFF) radio artillery 
requests. The research explores the feasibility of extending 
the system to also understand calls for Close Air Support 
(CAS). This work includes automated analysis of complex 
language behavior in CAS missions, evaluation of speech 
recognition performance, and simulation of speech 
recognition errors. 
 

1. INTRODUCTION 
 

Virtual environments such as the Joint Fires and 
Effects Trainer System (JFETS) can help provide best-in-
class training in Call for Fire (CFF) radio artillery request 
skills. In the JFETS training environment, we have 
previously investigated using spoken dialogue systems to 
automate routine radio dialogues (Roque et al., 2006). In 
this paper, we describe more recent research on spoken 
natural language processing to enhance the training 
environment through increased automation and 
understanding of more complex dialogues. This work 
includes improved semi-automated dialogue systems, 
analysis of complex language in Close Air Support (CAS) 
missions, evaluation of speech recognition performance, 
and finally, simulation of speech recognition errors. 
 

Due to the complexity of the training tasks and the 
rich nature of the JFETS virtual environment, it is neither 
desirable nor feasible to eliminate human operators from 
the training system. However, many of the tasks an 
operator performs are routine and can be automated. The 
Intelligent Operator Training Assistant (IOTA) is 
designed to handle many of the routine tasks, freeing the 
operator to focus only on the “out of the ordinary” 
situations that occur, and the specific educational needs of 
the soldier. This has the potential to multiply the human 
operator’s efficiency by enabling a lone operator to singly 
manage several training sessions with multiple soldiers in 
parallel. In some cases, when the soldier performs the task 
within pre-defined parameters, the whole JFETS training 
session might be handled by the IOTA. In other cases, 
where the soldier departs from pre-defined parameters, the 
human operator is able to take over control of the session 
from the IOTA until the soldier is back within the 

established parameters. We enable this flexibility by 
tightly integrating the intelligent aspects of IOTA with the 
human-controlled aspects of JFETS.  
 

In section 2, we provide a brief description of the 
current IOTA capabilities, and in the remaining sections 
we discuss how these capabilities can be extended and 
improved by using additional technologies for processing 
natural language. In particular, we conducted research and 
analysis of dialogue used during CAS missions, towards 
extending the system’s capabilities beyond the CFF 
missions currently handled. We examined word 
differences between CAS and CFF missions, as described 
in section 3.   
 

Next, we noted that differences in vocabulary and 
dialogue moves are likely to affect IOTA’s Speech 
Recognition component, which translates soldier 
utterances into text. To study this, we evaluated the 
performance of several speech recognizers on a corpus of 
CFF+CAS missions. We also evaluated the same 
recognizers on a corpus of CFF missions only. This is 
described in section 4. 
 

We also noted that dialogues in CAS missions often 
contain less constrained verbal interactions that include 
conversational sentences with standard English structure, 
which require more sophisticated machinery for automatic 
extraction of information and analysis of dialogue acts 
(even if restricted to a particular domain).  CAS dialogues 
contain both structured utterances (like call-sign 
identification), which can be handled by existing IOTA 
technology, as well as more conversational language (such 
as free-form target descriptions), which is beyond the 
capability of the current deployed system. In section 5, we 
propose a Natural Language Processing (NLP) pipeline for 
analysis of CAS utterances. 
 

Very often, especially when designing a new 
application there is a shortage of data for training and 
evaluating the speech recognizer, which makes it very 
difficult to predict the Word Error Rate (WER) when the 
system is being used by real users. Ideally we would want 
to ensure that our system performs well for a variety of 
WERs. We performed a corpus study to see whether we 



can reliably simulate speech recognition errors. This is 
described in section 6. 
 

The results of these studies indicate that technology 
already exists that can enhance training of forward 
observers by automating some language understanding 
tasks, particularly for structured domains such as CFF, 
however more research is needed to be able to improve 
processing of more complex, less constrained language use 
in CAS missions. 
 

2. CURRENT IOTA CAPABILITIES 
 

IOTA has several features to assist the operator:  

• When enabled, IOTA automatically updates the 
CASTrainer interface with the relevant CFF 
information. For example, if the Soldier provides a 
grid coordinate, IOTA will extract the relevant digits 
and insert them into the ‘grid’ text-area where the 
operator would have inserted them, and IOTA will 
also print the Soldier’s utterance to the Mission Status 
text-area. In this way, IOTA keeps an up-to-date 
record that the operator can use to quickly recover the 
context of a given training session. 

• When enabled and managing a CFF, IOTA will track 
the information that has been given by the Soldier, 
and IOTA will fire the mission when it has enough 
information.  

• If it encounters problems while managing an 
interaction, IOTA will attempt to notify the operator 
through the text-area. 

• IOTA records logs and sound files, which can be 
analyzed for further information about student 
behavior. 

 
To achieve this functionality, IOTA consists of the 

following components. First, an Automated Speech 
Recognizer component takes the voice signal, and 
translates this into text (see sections 4 and 6). Next, an 
Interpreter component determines what the meaning of the 
text is: whether a warning order is given, or a target 

location, or some other dialogue move, and if so, what the 
parameters are (see section 5). A Dialogue Manager 
component determines whether a voice confirmation is 
needed, and if so, uses a Text-to-Speech engine to produce 
it. The Dialogue Manager also determines what kind of 
command is needed for sending to the JFETS CASTrainer, 
and produces that if so. 

 
As we will see in the following, IOTA technology 

shows promise to also handle CAS types of missions with 
further analysis and development.  
 
3. CORPORA AND VOCABULARY DIFFERENCES 
 

CAS missions have a different protocol and refer to 
different objects than CFF dialogues, so one would expect 
that the words used are also different.  This section 
considers the vocabulary differences between the two 
domains. The analysis is based on two corpora from the 
JFETS training environment in Ft. Sill, Oklahoma: 

• IOTA-2008 was collected from January to July 2008, 
and contains speech of both the trainee and the 
operator. The recordings have been manually 
transcribed, tokenized and tagged with dialogue acts 
by the system’s classifier, and then corrected by hand 
and separated manually into CAS dialogues (69369 
words) and CFF dialogues (24792 words). 

• OTM-2009 was collected from August to October 
2009, and contains the speech of the trainee only. The 
recordings have been manually transcribed and 
separated into CAS dialogues (24497 words) and CFF 
dialogues (27028 words). 

  
There are substantial differences between the 

vocabularies of CAS and CFF dialogues. Table 1 shows a 
few samples of words and bigrams (word pairs) which 
occur at least 10 times more frequently in one dialogue 
type. 
 

Protocol words. This is an obvious difference, as the 
radio protocols differ between the two types of dialogues.  

Table 1: Vocabulary differences 

 CAS CFF 
Protocol cleared, hot, egress, contact, reciprocal, standby, 

wheel, read back, nine line, tally target, JTAC 
qualified 

adjust, fire, effect, polar, distance, add, drop, message, 
observer, shot, splash, rounds, complete, target 
number, my command, immediate suppression 

Compass north, south, east, west etc.  
Munitions a_g_m (air ground missile), a_tens, bombs, 

f_sixteens 
h_e (high explosive), i_c_m (improved conventional 
munitions), illumination, w_p (white phosphorous) 

Enemies manpads, r_p_gs, trucks b_r_d_m, b_t_r, infantry 
Call signs hog, talon, tulsa thunder, cherry 



Points of the compass are very frequent in CAS 
dialogues and almost completely absent in CFF dialogues. 

Munitions and platforms are not strictly part of the 
protocol, but they tend to differ between the two domains. 

Scenario features. In principle, both CAS and CFF 
can be called for the same scenarios, and our corpora 
contain some joint exercises which mix calls from the two 
domains. For the most part, however, CAS and CFF 
exercises use distinct scenarios with different enemies. 

Call signs. There is no principled reason for having 
different call signs, but in our corpora they differ. 

 
The vocabulary differences make it very easy to 

identify whether a dialogue belongs to the CAS or CFF 
domain, though there may be some difficulty in precise 
segmentation of joint exercises. 
 

4. SPEECH RECOGNITION PERFORMANCE 
EVALUATION 

 
In this section we evaluate the performance of several 

speech recognizers on a corpus of CFF missions and a 
corpus of CFF+CAS missions. Since ASR systems are 
typically tuned to the environment they operate in, 
performance is affected by many factors, among them: the 
domain/vocabulary that the recognizer is expected to 
handle, the acoustic environment in which the recognizer 
operates, and the speech recognition engine. Additionally, 
there is often a trade-off between the quality of the speech 
recognition output and the time it takes to reach that 
output; real-time conversational systems may be willing to 
accept a somewhat degraded output in return for lower 
latencies. When comparing CFF missions with CFF+CAS 
missions, we attempted to consider as many of these issues 
as possible.  
 
4.1. Corpora Used 
 

We used two sets of data for this comparison: 

• Radiobots - This speech data was collected in 2006 in 
JFETS at Fort Sill, Oklahoma, with volunteer trainees 
who performed calls for specific missions (Robinson 
et al., 2006). This corpus contains only CFF missions. 

• IOTA - This speech data was collected in 2008-2009 
in JFETS at Fort Sill, and includes both CFF and CAS 
missions. 

 
All utterances were transcribed manually. We split 

each data set randomly into training, development, and 
test sets: development and test sets were each slightly over 
10% of the turns for each corpus, with the remainder used 
for training. The size of the data sets is shown in Table 2.  
 

Table 2: Training data sizes (Words/Turns) 

 TRAIN TEST DEV 

Radiobots 6841/1082 1163/167 1325/190 

IOTA 49633/4939 5441/650 6552/608 

 
4.2. Approach 
 

The following recognizers were used: 

• Cambridge HTK family: HVite (v3.4.1), HDecode, 
AVite (v1.6), Julius (v4.1.2)  

• CMU Sphinx family: Sphinx 4, Pocket Sphinx (v0.5)  
 

Acoustic models and language models were first 
trained on the training set (TRAIN). Then the recognizers 
were tuned on the development set (DEV) and the final 
result was calculated on the test set (TEST). More details 
about the training procedure are provided in (Yao et al., 
2010).  

 
Our evaluation metrics were word error rate (WER) 

and recognition speed. WER can be formulated as: 
 

%100×++=
N

IDS
WER  

 
where S, D and I are the number of substitutions, deletions 
and insertions respectively, and N is the length of the 
target string (i.e. the string of words that the Soldier 
uttered). Speed is measured by whether the recognition 
was real-time or not. A real-time recognizer can finish 
recognizing a segment of speech in a time interval no 
greater than the length of the speech. 
 
4.3. Results 
 

Tables 3 and 4 show the performance of the various 
recognizers on the different data sets. For each recognizer, 
the left column shows the best WER achieved on DEV 
after tuning the parameters; the right column shows the 
performance of the same parameter settings on TEST.  
 

Table 3: Non–real time speech recognition results 

 HVite HDecode Sphinx4 

 Dev Test Dev Test Dev Test 

Radiobots 10 15 11 12 - - 

IOTA 66 57 49 39 76 - 

 



Table 4: Real time speech recognition results 

 Julius AVite PktSphx 

 Dev Test Dev Test Dev Test 

Radiobots 17 14 12 - 7 10 

IOTA 61 42 - - 55 47 

 
4.4. Conclusion 
 

Two observations from the tables are notable. First, no 
one recognizer dominates on all data sets. Second, 
conversational speech recognition is still a challenging 
task with high WERs for IOTA, which used CAS as well 
as CFF dialogues. For more experiments and results see 
(Yao et al., 2010). 
 

5. SYNTACTIC AND SEMANTIC ANALYSIS OF 
CAS DIALOGUES 

 
While dialogues in CFF missions tend to follow a 

somewhat controlled structure, where information can be 
extracted successfully using an approach that identifies 
patterns based on the linear sequence of words (known as 
sequence labeling techniques), as shown by Roque et al. 
(2006) in the IOTA system, dialogues in CAS missions 
often contain less constrained verbal interactions that 
include conversational sentences with standard English 
structure. This results in a larger vocabulary and generally 
richer syntactic and semantic structure in the language 
used in CAS, which require more sophisticated machinery 
for automatic extraction of information and analysis of 
dialogue acts. While much of the IOTA technology is 
applicable to a portion of these utterances, further 
development that accounts for richer language usage 
would provide additional language understanding 
capabilities to the system, opening possibilities for 
extensions that allow IOTA to handle CAS missions. 
 

Consider, for example, the following two utterances, 
taken from manually transcribed CAS dialogues: 

1. target location two seven five degrees 

2. once you get to that village you see a uh almost looks 
like a martini glass at the south end of that lake 

The information contained in the first utterance can be 
identified with a simple template, or with a sequence 
labeling technique similar to the one used in IOTA for 
automatic interpretation of utterances in CFF dialogues 
(Roque et al., 2006). Utterances such as this, from which 
all or most useful information can be extracted without 
structural syntactic or semantic analysis, occur throughout 
the corpus used in our analysis (about 7,000 CAS 

utterances), but amount to less than 10% of all utterances 
in that corpus.  The current approach used in IOTA would 
also be suitable for other utterances that do contain 
meaningful, but simple, standard English syntactic 
structure (e.g. charlie four two this is goblin). 
 

The second utterance contains information about an 
event encoded in a more complex syntactic structure, 
which includes, for example, a temporal clause (the phrase 
once you get to that village refers to the time of the event), 
and words with meanings that cannot be determined in 
isolation (the word get in this utterance has a meaning 
similar to “reach a destination,” but this is only apparent 
when the rest of the utterance is taken into account). 
Utterances that contain this type of general conversational 
language amount to more than 70% of our corpus, and 
would require more than special-purpose pattern matching 
rules or a sequence labeling approach for accurate and 
comprehensive extraction of information or fine-grained 
classification of dialogue moves and parameters. The 
analysis in this section focuses on such utterances. 
 
5.1. An Illustrated Example 
 

To illustrate the type of information that can be 
identified using NLP approaches, we show the information 
we hope to obtain from a specific CAS utterance using a 
syntactic parser and a semantic-role analyzer in Figures 1 
and 2, respectively. Note that all aspects of analyses would 
be obtained completely automatically from utterance 2 
above. 
  

While the syntactic analysis of the utterance (Figure 
1) does not reflect directly the meaning intended by the 
speaker, it does provide useful information that can be 
used in the identification of dialogue moves and 
parameters associated with this utterance. For example, 
knowing that this utterance was produced by the operator, 
it can be trivially inferred that you refers to the soldier, 
who is the subject of an action (see).  Syntactic analysis 
can also provide information about spans of words that 
may form meaningful units. This type of analysis is also 
used as the input for the semantic role analyzer, which 
produces the output shown in Figure 2. In this semantic 
role analysis, which contains more of the meaning in the 
utterance, we see that a proper meaning was assigned to 
the predicates see, get, and look. This is not a trivial task, 
as these words may have very different meanings in 
different contexts. This analysis shows, among other 
things, that the utterance is about a viewing event, where 
the viewer is the soldier (you), that occurs when the soldier 
reaches the village. This type of analysis is more 
challenging to perform accurately than the purely syntactic 
analysis. 



 
5.2. A Natural Language Processing Pipeline for 
Analysis 
 

The first step towards the application of NLP 
techniques to CAS utterances is identification of the 
specific utterances for which these techniques are expected 
to be effective. Then a sequence of NLP modules perform 
different levels of analysis at the word-level (part-of-
speech tagging), structural phrase level (syntactic 
analysis), utterance level (utterance segmentation), and 
finally semantic level (semantic role analysis). We outline 
the challenges and techniques involved in each of these 
steps below. We generally base our NLP methodology on 
data-driven methods, which learn desired behavior from a 
set of manually annotated examples. Data-driven NLP 
approaches have been shown to offer high levels of 
accuracy and robustness to noisy input. It is important to 
keep in mind that the work discussed here relies heavily on 
the accuracy of the transcriptions used as input for our 
NLP pipeline. At the current level of speech recognition 
accuracy for CAS utterances in IOTA (described in the 
previous section), performance of NLP technology would 
be severely degraded. Therefore, successful application of 
the work discussed below (based on manual transcriptions) 
in a run-time system depends on improved speech 
recognition for CAS utterances. Alternatively, NLP could 
be used for off-line analysis of manually transcribed data. 
 

Identification of candidate utterances to be analyzed 
using NLP techniques is a fairly straightforward task that 
can be accomplished using existing utterance classification 
approaches (e.g. Sagae et al., 2009), where machine 
learning techniques are used to determine utterance types.  
Even a simple filter that checks whether more than one 
third of the words in each utterance is composed of digits, 

month names or spoken alphabet words has over 90% 
accuracy (based on a random sample of 300 utterances 
from our corpus of CAS dialogues) in selecting utterances 
from which NLP modules can recover useful information. 
 

Once utterances are selected for syntactic and 
semantic analysis, the next step is to identify word classes, 
such as nouns, verbs, adjectives, and adverbs. This task is 
commonly referred to as part-of-speech (POS) tagging.  
Current approaches for POS tagging use statistical models 
based on hundreds of thousands of words that have been 
manually tagged with correct categories, and can achieve 
accuracy levels above 97% on news articles in English 
(Tsuruoka and Tsujii, 2005). To process the more 
spontaneous and conversational utterances in CAS 
dialogues, we trained the POS tagger described by 
Tsuruoka and Tsujii (2005) using the manually annotated 
Switchboard section of the Penn Treebank (Marcus et al., 
1993; Bies et al., 2005), which contains part-of-speech and 
syntactic structure annotation for roughly one million 
words of transcribed telephone conversations. As should be 
expected, the resulting tagger makes incorrect POS tag 
assignments when faced with language usage missing 
from its training data, such as in call signs and other 
domain-specific words and phrases, such as “roger” and 
“good burn.” These problems would be solved with CAS-
specific training data.  

 
To determine the syntactic structure of CAS 

utterances (Figure 1), we use dependency parsing, which is 
a syntactic analysis approach well-suited for 
conversational language. Application of commonly used 
off-the-shelf parsers built for analyzing written text 
produced syntactic structures that contained a large 
number of crucial errors in the analysis of CAS utterances.  

Utterance: Once you get to that village you see a uh 
almost looks like a martini glass at the south end of 
the lake. 
 
Syntactic information: 
 

 
 
Figure 1: Syntactic information obtained from a CAS 
utterance using a syntactic parser 
 

Semantic roles: 
 

 
 
Figure 2: Semantic roles corresponding to the 
utterance and syntactic information of Figure 1 
 



These errors were caused in large part by disfluencies and 
domain-specific vocabulary and structure. As with POS 
tagging, we adapted an existing dependency parser (Sagae 
and Tsujii, 2007) for conversational language using the 
Switchboard portion of the Penn Treebank. The accuracy 
of the resulting parser, measured as the percentage of 
correct word-to-word relationships in the parser’s output 
(the standard measure for dependency parsing accuracy in 
the NLP literature), in a small pilot evaluation using a set 
of 100 utterances was 86%, suggesting that this is a 
promising approach, and that accurate analysis of CAS 
utterances is feasible. This result also indicates that the 
accuracy of the POS tagging approach based on 
Switchboard data is sufficient to support syntactic analysis.   

 
The output of the syntactic parser can be used in other 

modules that could perform dialogue act prediction or 
utterance segmentation, but it does not include a direct 
representation of the meaning of the utterance. In cases 
where a more semantically-oriented analysis is needed, 
another layer of processing called Semantic Role Labeling 
(SRL) can be applied. SRL can determine the intended 
usage of verbs (Figure 2), as well as label the participants 
in events with their appropriate roles. However, SRL 
technology is not as well developed as syntactic parsing, 
and the level of performance that can be expected in 
language that differs from news text is largely unknown. It 
is possible that an SRL system that uses existing resources 
(training material and dictionaries) with minor 
modifications could achieve high levels of accuracy, given 
that the language domain is sufficiently narrow, and that 
the accuracy of the adapted parsing module is relatively 
high, which is an important factor for SRL accuracy. We 
have integrated such an SRL module in our NLP pipeline, 
and although an evaluation is necessary to determine the 
suitability of this technology to IOTA, initial results do not 
rule it out. For example, the sample syntactic and 
semantic-role analyses presented in our illustrated 
examples were in fact generated fully automatically with 
the pipeline we have described. 
 
5.3. Conclusion 
 

We have found that current data-driven NLP 
technology can be successfully adapted and applied to 
IOTA for the analysis of CAS utterances. Use of these 
techniques in a run-time system would also require 
improvements in speech recognition accuracy for these 
utterances. Even in the absence of improved speech 
recognition, NLP could still be useful in off-line analysis 
of manually transcribed dialogues. 
 

6. SPEECH RECOGNITION ERROR SIMULATION 
 

As we saw above, speech recognition is a very hard 
problem for the IOTA data set (CFF+CAS missions). Very 
often, especially when designing a new application, there 
is a shortage of data for training and evaluating the speech 
recognizer, which makes it very difficult to predict the 
WER that the system will have interacting with real users. 
Ideally we would want to ensure that our system (in 
particular, the Interpreter component and the Dialogue 
Manager) performs as well as possible for a variety of 
WERs. 

 
We performed a study using the IOTA data set to see 

whether we can reliably simulate speech recognition 
errors. Our goal is to test two hypotheses. Our first 
hypothesis is that it is possible to train models for 
simulating speech recognition errors, and by adjusting 
some parameters generate different WERs. Our second 
hypothesis is that it is possible to generate simulated errors 
with a distribution similar to the distribution of errors 
observed with a real speech recognizer. 

 
Given a source utterance, our goal is to generate a 

“scrambled” target utterance so that, when comparing the 
source and the target utterances, the resulting WER is 
similar to the WERs we observe with a real speech 
recognizer. Consider the example below where the word 
“direction” is scrambled and becomes “direction six” 
resulting in a WER of 20%. 
 

Source 
utterance: 

direction two zero four five 

Target 
utterance: 

direction six two zero four five 

 
6.1. Approach 
 

The problem of simulating speech recognition errors 
has attracted much attention in the literature, especially as 
an integral part of a simulated user (Georgila et al., 2006). 
The idea of using phonetic confusions for speech 
recognition error simulation has been explored by many 
groups including (Fosler-Lussier et al., 2002; Pietquin, 
2004). The above approaches produce promising results 
but often require a large amount of training data. A 
computationally less expensive approach is to measure the 
confusability of each word in the corpus by counting how 
many other words it is confused with. However, this 
approach does not take into account the context of each 
word. 

 
Here we use an approach that is computationally 

inexpensive and at the same time avoids the disadvantages 
of considering words in isolation. Our approach is similar 



to the one presented in (Schatzmann et al., 2007) with a 
few modifications, mainly implementation issues. 
Following (Schatzmann et al., 2007), at the word level, 
speech recognition error simulations can be viewed as 
translations of a source utterance w to a scrambled 
utterance u. The source utterance can be described as a 
sequence of S words, w1,S, or a sequence of N fragments, 
f1,N, where each fragment is a group of contiguous words 
in w. In the same way, the target utterance u can be viewed 
as a sequence of T words, u1,T, or a sequence of N confused 
fragments, f1,N. Note that while S and T may be different 
we can assume that the number of N “clean” source 
fragments can match the number of “scrambled” target 
fragments. This is because each fragment can have 0 or 
more words. An example is given in Figure 3. 

 

 

Figure 3: A sample source and target alignment 
 

During training we use pairs of reference 
transcriptions and speech recognition outputs and align 
them using a Levenshtein distance matrix such that the 
transformation of the reference transcription into the 
speech recognition output is done with the minimal 
number of insertions, deletions, and substitutions. The 
result is a lookup table of all fragments occurring in the 
training transcriptions, together with the possible 
scrambled fragments and the frequency of each mapping. 
Example mappings for the fragment “back to” can be seen 
below. “Back to” can be scrambled as “back” with a 
probability 80% and as “to” with a probability 20%. 

 
back to back → 8 
back to to → 2 

 
We build two language models (back-off 3-grams), 

one based on the speech recognition outputs (language 
model L1) and one on the fragment scramblings and in 
particular only the source fragments (in the example above 
“back to”), which we call language model L2.  

 
During testing the algorithm has two tasks. First to 

split the source utterance into fragments and then apply 
the most appropriate scramblings of these fragments so 
that the desired WERs are accomplished (first hypothesis), 
and the distribution of WERs observed with real speech 
recognition is preserved (second hypothesis). 

 

The algorithm works as follows: Consider the source 
word sequence w1,w2,...,wM. The word w1 is necessarily 
assigned to fragment f1. Let p1 be the probability of seeing 
wi-1 alone in a fragment (based on the language model L2) 
and p2 be the probability of seeing wi follow wi-1 in the 
fragment (again based on the language model L2). If p2 > 
p1 then wi-1 and wi will be part of the same fragment and 
we can continue in the same way to see whether wi+1 will 
be part of the same fragment or start a new fragment. If, 
on the other hand, p1 > p2 then wi will start a new 
fragment. For more details see (Schatzmann et al., 2007).  

 
In the following, our approach deviates from the 

method of Schatzmann et al. (2007). Now that we have 
decided on the fragments, for each fragment we apply all 
possible scramblings above a threshold P. The next step is 
to use the Viterbi algorithm and select the combination of 
scramblings along the whole sentence that will lead to the 
highest overall probability. Here we use the language 
model L1.  
 
6.2. Evaluation 
 

To test our hypotheses we used the IOTA data set (the 
same as used for the speech recognition evaluation 
experiments in section 4). The data set used for the 
reference transcriptions in training (TRAINsim) is the 
same as the one used for testing in the speech recognition 
evaluation section (TEST) since it is the most appropriate 
set for giving us correct distributions of real WERs. For 
speech recognition outputs we used the output of Julius on 
TEST, which produced the best result we got on IOTA 
with real-time speech recognizers. For testing on unseen 
data we used the data set TESTsim (equivalent to TRAIN).  
 

In the following table we can see the simulated WERs 
generated by applying the algorithm on TESTsim for 
different thresholds P. As we can see low thresholds P lead 
to high WERs. Having a low P means that we allow for 
scramblings that did not appear frequently in the training 
data. With a high P, the less frequent confusions will be 
ignored, which of course will contribute to a lower WER. 
Note that with a threshold P=0.001 we can simulate the 
WER of Julius quite accurately. The results below satisfy 
our first hypothesis. It is therefore possible to generate 
different WERs by adjusting some parameters.  
 

Table 5: Simulated WERs for various thresholds 

Threshold P 0.001 0.050 0.100 0.200 0.400 

WER(%) 44.6 29.0 17.0 9.7 3.8 

 
In Table 6,  we can see the mean Word Error Rate 

(mWER) and its standard deviation (sdWER) observed 

direction two zero four five 

direction    six two zero four five 

1 2 3 4 5 

1 1 2 3 4 5 



with a real recognizer (Julius) on TRAINsim (the same as 
TEST for the speech recognition evaluation in section 4), 
and the mWER and sdWER observed on the sentences 
generated by the error simulation algorithm on both 
TRAINsim and TESTsim. mWER differs from WER, as 
presented in Table 5 in that WER is calculated over the 
whole corpus, while mWER is the average of WERs for 
each utterance, and thus mWER gives greater weight to 
words in short utterances than words in long utterances, 
while WER gives the same weight to all words in the 
corpus.  
 

Table 6: Mean and standard deviation for real and 
simulated WERs 

 TRAINsim TESTsim 

 mWER sdWER mWER sdWER 

 Julius 34 29 - - 

Simulator 33 22 32 21 

 
Our result shows that it is possible using unseen data 

(TESTsim) to generate errors with a distribution very 
similar to the distribution of errors observed with a real 
speech recognizer. Julius produced a distribution of WERs 
with mean 34 and standard deviation 29. Our algorithm 
produced a distribution of WERs with mean 32 and 
standard deviation 21. 

 
6.3. Conclusion 
 

Using the IOTA data set, we found that it is possible 
to train models for simulating speech recognition errors, 
and by adjusting some parameters generate a variety of 
WERs. We also showed that it is possible to generate 
simulated errors with a distribution similar to the 
distribution of errors observed with a real speech 
recognizer. 
 

7. OVERALL CONCLUSIONS 
 

We have examined CAS dialogues in a number of 
ways, focusing on differences from CFF missions in terms 
of vocabulary, dialogue act, and speech recognition 
performance. Although there are recognizable differences 
between CFF and CAS missions, IOTA technology shows 
promise to handle CAS types of missions with further 
analysis and development.  
 

In our future work, we hope to do more annotations in 
order to develop and test domain-specific versions of the 
components presented in section 5. Furthermore, our 
speech recognition error simulator will enable us to 
experiment with different WERs, and thus see which range 

of WERs the techniques of section 5 and generally the full 
IOTA system will work for, so we will be ready as 
improvements to speech recognition are made to leverage 
the most appropriate technologies. 
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