NL Dialogue Overview

• Communication involving:
 - Multiple contributions,
 - Coherent Interaction
 - More than one participant

• Interaction modalities:
 - Input: Speech, typing, writing, menu, gesture
 - Output: Speech, text, graphical display/presentation, animated body

• Types of Dialogue Agents
 - Information provider
 - Service provider
 - Instruction-giver
 - Advisor/Critic
 - Tutor
 - Collaborative partner
 - Conversational partner
Types of Dialogue Agents

- Information provider
- Advisor
- Service provider
- Collaborative partner
- Tutor
- Instruction-giver
- Conversational Partner
A. C2 dialogue with head-mounted video camera
B. Dialogue with semi-autonomous robot or UAV
C. Translated dialogue with UN peacekeeper
D. Remote, low bandwidth database query dialogue with information software agent at command post
E. Monitored/recorded dialogue between soldiers
F. Dialogue with the CommandPost control agent “bouncer”
G. Dialogue between Cybersoldier and CP occupant
H. Dialogue between co-occupants of Command Post
I. User-Interface dialogue between commander and application
J. Simulation of human dialogue by lifelike computer

Y-a-t’il des gendarmes aujourd’hui?
Dialogue terms

- **Dialogue Modelling**
 - Formal characterization of dialogue, evolving context, and possible/likely continuations

- **Dialogue system**
 - System that engages in a dialogue (with a user)

- **Dialogue Manager**
 - Module of a system concerned with dialogue modelling and decisions of how to contribute to dialogue
 - Cf speech recognizer, domain reasoner, parser, generator, tts,...
Dialogue Management Tasks

- Maintaining & Updating Context
- Deciding what to do next
- Interface with back-end/task model
- Provide expectations for interpretation
Dialogue Systems: State of the Art

• Deployed Commercial Systems
 - Call routing/call center first contact
 - Simple information tasks
 - Voice menus

• Useful systems
 - Medium-sized tasks (communicator, in car navigation)
 - Command & control
 - Language tutoring

• Advanced Research Prototypes
 - Collaborative systems
 - Adaptive systems
 - Multi-modal systems
 - Immersive Training
Two Approaches to Dialogue Systems:

front-end

Back-end System -> Dialogue System -> User

System as "translator" between user and backend system

Examples: Sundial (European Train Info), MITRE systems, MIT Galaxy

Key design question: how to provide back-end with understandable messages (in a manner natural to the user)?

Key run-time question: what messages should be sent to back-end (or generated to user)?

agent

User -> Dialogue System

System as "homunculus", with access to task-specific functionality

Examples: TRAINS (Rochester), Circuit-Fixit (Duke), Artemis (France Telecom)

Key design question: how to coordinate with the user to accomplish a task?

Key run-time question: what should be done now (given context, inputs, goals)?
Example Systems

- United Airlines
- RAD
- Trains/TRIPS
- MRE & SASO
Verbmobil: Spoken Translation

German Speaker: “Verbmobil” (Voice Dialing)

Connect to the Verbmobil Speech-to-Speech Translation Server
+49 631 3111911

German Speaker: “Verbmobil neuer Teilnehmer hinzufügen”
(Speech command to initiate a conference call)
Verbmobil: “Bitte sprechen Sie jetzt die Telefonnummer Ihres Gesprächspartners.”
German Speaker: “0681/302 5253”

Foreign Participant is placed into the Conference Cell

Verbmobil: Verbmobil hat eine neue Verbindung aufgebaut. Bitte sprechen Sie jetzt.
Verbmobil: Welcome to the Verbmobil server. Please start your input after the beep.
Verbmobil Architecture
NASA Rialist System

Go to flight deck and measure temperature.

Okay.

Storage

Pilot's seat

Lower deck

Commander's seat

Flight deck access ladder

Storage lockers

The temperature at flight deck is 19 degrees Celsius.
Manager: We better ship a boxcar of oranges to Bath by eight a.m. (1.1)
System: OK (2.1)
Manager: So we need to get a boxcar to Corning, where there are oranges. (3.1)
 There are oranges at Corning. (3.2)
 Right? (3.3)
System: Right (4.1)
Manager: So we need an engine to move the boxcar. (5.1)
 Right? (5.2)
System: Right (6.1)
Manager: So there’s an engine at Avon. (7.1)
 Right? (7.2)
System: Right (8.1)
Manager: So we should move the engine at Avon, engine E1, to Dansville (9.1)
 to pick up the boxcar there
System: Okay (10.1)
Manager: and move it from Dansville to Corning (11.1)
 load up some oranges in the boxcar (11.2)
 and then move it on to Bath (11.3)
System: Okay (12.1)
Manager: How does that sound? (13.1)
System: That’s no problem (14.1)
Manager: Good (15.1)
The TRAINS Project
AN INTERACTIVE NATURAL LANGUAGE-BASED PLANNING ASSISTANT

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ROCHESTER
<table>
<thead>
<tr>
<th>Module</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech Recognition (SR)</td>
<td>Transforming speech input into a word stream or word lattice</td>
</tr>
<tr>
<td>Parser</td>
<td>Transforming the SR output into interpretations, each a set of conventional speech acts, using full and robust parsing techniques</td>
</tr>
<tr>
<td>Reference Manager (REF)</td>
<td>Identifying the most salient referents for referring expressions such as noun phrases</td>
</tr>
<tr>
<td>Discourse Context Manager</td>
<td>Maintaining the global (topic flow) and local (salience with a topic) discourse context</td>
</tr>
<tr>
<td>Discourse Manager (DM)</td>
<td>Identifying the intended speech act, current task, current step in the current task, and system obligations arising from the dialogue</td>
</tr>
<tr>
<td>Behavioral Agent (BA)</td>
<td>Determines system actions (e.g., answer a question, notify of a problem, request clarification); Manages the interface to the back-end systems.</td>
</tr>
<tr>
<td>Plan Manager</td>
<td>Constructing, modifying, evaluating, and executing plans (whether they are the subject of the conversation or the task being executed)</td>
</tr>
<tr>
<td>World KB</td>
<td>Maintains a description of the current state of the world under differing assumptions (e.g., based on different plans or hypotheses)</td>
</tr>
<tr>
<td>Response Planner</td>
<td>Determining the best communicative act(s) (and their content) to accomplish the system’s current goals and discourse obligations</td>
</tr>
</tbody>
</table>
SDS Components

- Architecture
- Input Interface (Audio, Keyboard, etc)
- Interpretation (internal representation)
- Dialogue Management
- Generation
- Output Interface
Dialogue Manager Architectures

- Integrated (tree-based)
- Finite-state
- Frame-based
- Plan-based
- Agent-based (BDI)
Interpretation: Speech Recognition

- Phases
 - Signal Processing
 - Acoustic Model
 - Language Model (N-grams)
- Issues
 - Small or large vocabulary
 - Integrated or pipelined understanding
 - Output (concepts, n-best word list, lattice)
 - Unified or State-specific recognizers
Interpretation: Parsing

• Styles
 - Key-word
 - Grammar-based
 - Concept-based (semantic parser)
 - Expectation-driven

• Spoken Dialogue vs. Written text
 - Utterance length, grammaticality, interactivity, repairability, transience,
Dialogue Management Tasks

- Updating Context
- Deciding what to do next
- Interface with back-end/task model
- Provide expectations for interpretation
Generation & Synthesis

- Template-based or Fixed
- Prosodic cues, multimodal generation
- Voice Clip, or TTS
- TTS or Concept to Speech
Using Data

- Corpus Collection
 - Human-human
 - Wizard of OZ
 - Human-System
- Annotation
 - Automatic
 - Tool-assisted
 - Inter-coder Reliability (Kappa)
Evaluation

- Black Box vs. Glass Box
- Objective Metrics
 - Task success
 - Resources used (time, turns, attention,..)
- Subjective Evaluation
- Class of User (Expert, Novice)
- Feedback into system design
Methodology

Acquire data → Discover gaps in data → Study → Build formal models → Test → Design evaluation → Build on the basis of model
Each Step is subject to Evaluation

• Was the data appropriate?
• Is the model of human behavior correct?
• Does the system implement the model correctly?
• → Evaluated by micro-analysis.
Each Step is subject to Evaluation

- Is the system well implemented?
- Does the interface succeed better than X:
 - Do (which) people prefer/trust/enjoy the interface?
 - Does it make work easier/more efficient/better?
 - What uses of embodiment are most powerful

→ Evaluated by macro-analysis
Hot Topics In Dialogue Research

- Mixed Initiative
- Grounding
- Discourse Structure
- User/Agent Modeling
 - Affective dialogue
- Adaptive dialogue management
- Social context
 - Social roles
 - Obligations & commitments
 - Politeness

- Multi-party (more than two) dialogue
 - Turn-Taking
 - Speaker and addressee id
 - Multiple conversations
Views on initiative (control)

• Any Contribution
 - MI Planning
 - Turn (Donaldson, Hagen)

• Type of Dialogue move
 - Initiative/Response (Dahlback et al, Carletta et al, Ishizaki)
 - Patterns: command, question, assertion, prompt
 • (Whittaker, Stenton & Walker, Smith and Hipp)
 - Amount/type of information

• Goal Interactions
 - Whose goals are being addressed
 - Game Playing: Sente or Tempo - forcing moves of other
 - Obligations vs. Goal (Traum & Allen)

• Multi-level concepts:
 - Choice of speaker, task, outcome (Novick & Sutton)
 - Discourse vs Task (Chu-Carroll & Brown), Local vs. Global (Rich and Sidner)
 - Hierarchical (Whittaker & Walker)
Example: Chu-Carroll & Brown

1. Customer:
 • I need some money. How much do I have in my 6-month CD?

2. T alternatives:
 A. T: no initiative
 • You have $5000 in that CD.
 B. T: Dialogue initiative
 • You have $5000 in that CD, but that CD will not mature for another 3 months.
 C. T: both dialogue and task initiative
 • You have $5000 in that CD, but that CD will not mature for another 3 months. However you have $3000 in another CD that will mature next week.
Views on Mixed-initiative

- Contributions by multiple parties
- Changing initiative-holder mid-interaction
 - Fixed phases, or variable shift
- User providing more input than asked for
 - Middle level between system and user
- Ability to handle set of complex behaviors
 - Answer, ignore, over-answer, barge-in (Hagen)
Example: Narayanan et al

• **System Initiative (SI)**
 - System: “VPQ. Please say the name of the person.”
 - Acceptable Response from User: “Larry Rabiner.”

• **Mixed Initiative (MI)**
 - System: “VPQ. Please say the name of the person.”
 - Acceptable Response from User: “Larry Rabiner’s fax number, please.”

• **User Initiative (UI)**
 - System: “VPQ. What can I do for you?”
 - Acceptable Response from User: “I’d like the fax number for Larry Rabiner.”
Styles of Response

1 Sys: Where do you want to go?
2 User: Boston.
3a Sys: When would you like to go?
3b Tell me more about your travel plans.
3c When would you like to go to Boston?
3d Do you want to go to Boston?
3e Did you say Boston?
3f Boston?
3g Boston or Austin?
3h Where?
3i Please Repeat.
<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiate</td>
<td>Begin new DU, content separate from previous uncompleted DUs</td>
</tr>
<tr>
<td>continue</td>
<td>Same agent adds related content to open DU</td>
</tr>
<tr>
<td>acknowledge</td>
<td>Demonstrate or claim understanding of previous material by other agent</td>
</tr>
<tr>
<td>repair</td>
<td>Correct (potential) misunderstanding of DU content</td>
</tr>
<tr>
<td>Request Repair</td>
<td>Signal lack of understanding</td>
</tr>
<tr>
<td>Request Ack</td>
<td>Signal for other to acknowledge</td>
</tr>
<tr>
<td>cancel</td>
<td>Stop work on DU, leaving it un-grounded and ungroundable</td>
</tr>
</tbody>
</table>
Grounding Automaton

<table>
<thead>
<tr>
<th>Next Act</th>
<th>In State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S 1</td>
</tr>
<tr>
<td>initiateI</td>
<td>1</td>
</tr>
<tr>
<td>continueI</td>
<td>2</td>
</tr>
<tr>
<td>continueR</td>
<td>3</td>
</tr>
<tr>
<td>repairI</td>
<td>1</td>
</tr>
<tr>
<td>repairR</td>
<td>4</td>
</tr>
<tr>
<td>ReqRepairI</td>
<td>2</td>
</tr>
<tr>
<td>ReqRepairR</td>
<td>2</td>
</tr>
<tr>
<td>ackI</td>
<td>3</td>
</tr>
<tr>
<td>ackR</td>
<td>3</td>
</tr>
<tr>
<td>ReqAckI</td>
<td>3</td>
</tr>
<tr>
<td>ReqAckR</td>
<td>3</td>
</tr>
<tr>
<td>cancelI</td>
<td>1</td>
</tr>
<tr>
<td>cancelR</td>
<td>1</td>
</tr>
</tbody>
</table>
Grounding Example

(1) 1: Move the boxcar to Corning
 2: I: and load it with oranges
 3: R: ok

(2) 1: Move the boxcar to Corning
 2: R: ok

(3)

<table>
<thead>
<tr>
<th>utt: Grounding Act</th>
<th>DU1</th>
<th>DU2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: init(I(1))</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2: cont(I(1))</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3: ack(R(1))</td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

(4)

<table>
<thead>
<tr>
<th>utt: Grounding Act</th>
<th>DU1</th>
<th>DU2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: init(I(1))</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2: ack(R(1))</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>3: init(I(2))</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4: ack(R(2))</td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>
Dialogue Toolkits

- Software Integration (OAA, Trains/Trips, Verbmobil)
- FSM Dialogue Kits (Nuance, OGI, ...)
- Slot-Filling (Phillips)
- Current Development Kits:
 - Utterance-based (DARPA Communicator)
 - Information-based (TrindiKit)
CSLUrp Interface
Trindi: Information State Theories of Dialogue

• Statics
 - Informational components (functional spec)
 • e.g., QUD, common ground, dialogue history, ...
 - formal representations (accessibility)
 • e.g., lists, records, DRSes, ...

• Dynamics
 - dialogue moves
 • abstractions of i/o (e.g., speech acts)
 - update rules - atomic updates
 - update strategy - coordinated application of rules
Sample Autoroute Dialogue

W WIZARD
W [1]: How can I help you? C CALLER
C [2]: A route please
W [3]: Where would you like to start? C [4]: Malvern
W [5]: Great Malvern? C [6]: Yes
W [7]: Where do you want to go? C [8]: Edwinstowe
W [9]: Edwinstowe in Nottingham? C [10]: Yes
W [11]: When do you want to leave? C [12]: Six pm
W [13]: Leaving at 6 p.m.? C [14]: Yes
W [15]: Do you want the quickest or the shortest route? C [16]: Quickest
W [17]: Please wait while your route is calculated.
C ...
Building a system

- domain knowledge (resources)
- dialogue theory (IS, rules, moves etc)
- software engineering (basic types, control flow)

→ domain-independent DME
→ domain-specific system
→ TRINDIKIT
TrindiKit Systems

• GoDiS (Larsson et al) – information state: Questions Under Discussion

• MIDAS – DRS information state, first-order reasoning (Bos & Gabsdil, 2000)

• EDIS – PTT Information State, (Matheson et al 2000)

• SRI Autoroute – information state based on Conversational Game Theory (Lewin 2000)

Robust Interpretation (Milward 1999)
Case Studies: Virtual Human Dialogue @ ICT

- MRE
- SASO-ST
Immersive Training Environment

- VR Theatre
 - 8’ 150° Curved Screen, Multiple Projectors
 - 10-2 3-d spatialized sound

- Mission Rehearsal Exercise (Swartout et al ‘01)
 - Human lieutenant (student) faces peacekeeping dilemmas
 - Appears in video offscreen
 - Artificial agents interact with user
 - Mentor (e.g., sergeant, front left)
 - Teammates (e.g., medic, front right)
 - Locals (e.g., mother, front center)
Dialogue Layers

● Information State components
 ➢ Capture coherent aspect of communicative interaction (e.g., turn, grounding, obligations)

● Dialogue Acts
 ➢ Recognition Rules
 • Observables + current context
 ➢ Updates: ISC X DA -> ISC
 ➢ Selection rules
 ➢ Realization rules
 • Verbal (NLG)
 • Non-verbal (gesture, other behavior)
Dialogue Processing

- **Utterance**: Recognition Rules
- **Dialogue Acts**: Update Rules, Selection Rules
- **Output Utterance (verbal and nonverbal)**
- **Information State**: Components
- **Dialogue Manager**

Components

USC UNIVERSITY OF SOUTHERN CALIFORNIA

agents@USC
MRE Dialogue Layers (Traum & Rickel AAMAS 2002)

- **Contact**
- **Attention**
- **Conversation**
 - Participants
 - Turn
 - Initiative
 - Grounding
 - Purpose
 - Rhetorical

Social
- Obligations-Commitments
- Negotiation-Collaboration
- Social Roles

Individual
- Perception
- Rational
 - belief, desire, intention, ...
- Emotional
 - Coping strategies
 (Marsella & Gratch, yesterday)
Sgt’s Negotiation Behavior

Focus=1
Lt: U9 “secure a landing zone”
Committed(lt,7,sgt), 7 authorized, Obl(sgt,U9)
Sgt: U10 “first we should secure the assembly area”
Disparaged(sgt, 7,lt), endorsed(sgt,2.lt), grounded(U9)
Lt: U11 “secure the area”
Committed(lt,2,sgt), 2 authorized, Obl(sgt,U11), grounded(U10)
Sgt: U12 “yes sir”
Committed(sgt,2,lt), grounded(U11), Push(2,focus)
Goal7: Announce(2, {1sldr, 2sldr, 3sldr, 4sldr}, 2)
Goal8: Start-conversation(sgt, , {1sldr, 2sldr, ...}, 2)
 Goal8 -> Sgt: U21 “Squad leaders listen up!”
 Goal7 -> Sgt: U22 “I want 360 degree security”
 Committed(sgt,2, {1sldr, 2sldr, 3sldr, 4sldr})
Push(3, focus)
 Goal9: authorize 3
 Goal9 -> Sgt: U23 “1st squad take 12-4”
 Committed(sgt,3, {1sldr, 2sldr, 3sldr, 4sldr}), 3 authorized
Pop(3), Push(4)
 Goal10: authorize 4
 Goal10 -> Sgt: U24 “2nd squad take 4-8”
 Committed(sgt,4, {1sldr, 2sldr, 3sldr, 4sldr}), 4 authorized
Pop(4)

A10: Squads move
Grounded(U21-U26)
ends conversation about 2, Happened(2)
Push(7, Focus)
SASO Dialogue Example

1. Doc: What do you want?
2. Captain: I have orders to assist you in moving this clinic to a safer location

Understand 2:
- Captain takes turn
- acknowledges question
- answers question
- asserts he has an obligation
- but how does it relate to doctor?
SASO Dialogue Example

1. Doc: What do you want?
2. Captain: I have orders to assist you in moving this clinic to a safer location
3. Doc: you want to move the clinic?

Produce 3:
- Doctor attempts to verify current understanding
- Don’t assume most likely understanding
- Don’t ask open question
- Subsequent action depends on reply
SASO Dialogue Example

1. Doc: What do you want?
2. Captain: I have orders to assist you in moving this clinic to a safer location
3. Doc: you want to move the clinic?
4. Captain: Yes

Understand 4:
• Captain takes turn, answers question, verifies hypothesis
• Captain’s goal at odds with Doctor
• Topic of Conversation: move clinic
SASO Dialogue Example

1. Doc: What do you want?
2. Captain: I have orders to assist you in moving this clinic to a safer location
3. Doc: you want to move the clinic?
4. Captain: Yes
5. ??

Produce 5:

- Use negotiation strategy to influence response type:
 - Avoid: talk about something else (e.g., casualties)
 - Attack: point out problems with move (e.g., no supplies)
- Negotiate: evaluate relative merits:
 - bargain (e.g trade supplies)