
Introduction to VoiceXML

- what it is, why use it
- how to get started
- sample code

What is VoiceXML?

Consider a Web site:
- HTML page on a web server

- web developers don't have to deal with setting up a web

server. They just make HTML.

The goal is to have the same with voice apps:
- VoiceXML pages on a VoiceXML platform

- developers don't have to deal with integrating speech

recognition, XML parsing, text-to-speech, and telephony.

Just focus on dialogue flow.

Why use VoiceXML?

Best for:
- Finite State-based dialogue apps

- FS methods can get you pretty far

- industry likes them

- IVR (interactive voice response) telephone-based applications

Not so Good for:
- non-Finite State dialogue management. i.e. most of the things

you're learning in this class!

- things that need custom SR and TTS

- performance of these can be improved dramatically with

custom language, acoustic, and voice models. (of course

you could develop your own VoiceXML platform for this.)

How to Get Started

Build your own platform:
- speech recognizer (e.g. Sphinx, Sonic)

- VoiceXML parser (e.g. OpenVXI)

- text-to-speech generator (e.g. Festival, FreeTTS)

- PSTN (telephone network) link - optional?

Or, find a service provider:
- start here: http://www.kenrehor.com/voicexml/#vsps

- find one with free developer accounts (I used VoiceGenie last year)

- typical set-up:

- you specify the URL of a web-served .vxml file

- you call a phone number, enter extension

- the provider accesses and runs the .vxml file

Sample .vxml

Hello World:
<?xml version="1.0"?>

<vxml version="2.0" xmlns="http://www.w3.org/2001/vxml">

 <form>

 <block>

 <prompt>

 Hello world!

 </prompt>

 </block>

 </form>

</vxml>

(from http://en.wikipedia.org/wiki/VoiceXML)

Sample .vxml
Simple Choice:

<?xml version="1.0"?>
<vxml version="2.0">
<menu>
 <prompt>
 Say one of: <enumerate/>
 </prompt>
 <choice next="http://www.sports.example/start.vxml">
 Sports
 </choice>
 <choice next="http://www.weather.example/intro.vxml">
 Weather
 </choice>
 <choice next="http://www.news.example/news.vxml">
 News
 </choice>
 <noinput>Please say one of <enumerate/></noinput>
</menu>
</vxml>

(from http://www.w3.org/Voice/Guide/)

Sample .vxml
Dynamically Generated:

#!/usr/bin/perl

open I, "<data.txt";
while (<I>) {
 chomp;
 $message .= $_;
}
close I;

print qq*
<?xml version="1.0"?>
<vxml version="2.0">
 <form>
 <block>
 The message of the day is: $message
 <goto next="http://yoursite.example/next.vxml"/>
 </block>
 </form>
</vxml>
*;
(from my homework last year)

Sample .vxml

Idea: send info as part of URL and use Perl CGI 'GET'

...
<if cond="choice=='cheese'">

<goto next="http://yoursite.example/pizza.pl?session=22&topping=cheese"/>
<elseif cond="choice=='mushrooms'"/>

<goto next="http://yoursite.example/pizza.pl?session=22&topping=mushrooms"/>
</if>
...

You could dynamically write session information as part of URL.

VoiceXML can interact with databases or server-side programs written in any
language, as long as they return .vxml

You could thus have sessions of arbitrary complexity. This is stretching the
idea of VoiceXML, though.

Summary

- Voice XML is meant to let you focus on dialogue flow

- It's most intuitive when used with Finite State methods

- You can either develop your own platform or find a provider

- It can be used to do quite a bit.

