Attributing Minds to Triangles: Kinematics are Key for the Correct Attribution of Mental States in the Animations Task

Bianca Schuster1, Dagmar Fraser1, Sophie Sowden1, Jasper Van den Bosch1, Andrew Gordon2, Jennifer Cook1

1University of Birmingham, UK 2University of Southern California, USA

BACKGROUND

- Humans readily attribute animacy to, and infer mental states from, movements of 2D geometric shapes (1)
- Previous studies have found interindividual differences in performance in these Heider-Simmel style tasks: Control participants have difficulties interpreting animations created by autistic individuals (2)
- These difficulties may be due to atypical movement kinematics in autistic participants: animations created by individuals with ASD exhibited higher jerk (2)
- No studies to date have tested whether jerk is directly related to accuracy in the animations task, and which other factors contribute to performance
- We investigated whether jerk, the shape trajectories of the triangles’ movements and various other potential predictors are important for mental state attribution

METHOD

Stimulus Development

- 51 participants created 45 sec. long animations of 5 target words by moving 2 triangles on a touch-screen device
- Target words: mocking, seducing, surprising, following and fighting
- The final stimulus set contained 202 animations (~ 40 for each word)

Ratings collection

- 37 naïve observers viewed 8 animations of each target word
- The 8 animations were selected such that the triangles’ mean speed represented the speed frequency distribution of the stimulus pool (Fig. 1)
- After viewing each animation, participants rated the extent to which they perceived the video to display the target word

Analyses

- Accuracy was calculated as: rating target word – mean (ratings non-target words)
- Jerk (indexing change in acceleration), simultaneous movement, relative distance and mean rotation were entered in a mixed effects model predicting accuracy
- Following a method by Huh & Sejnowski (2015), Angular frequency energy was calculated as an additional predictor from the triangles’ speed oscillations, capturing speed as a function of curvature (Fig. 2).

RESULTS

1) A one-way ANOVA showed that mean accuracy was different across word categories (Fig. 3).

2) Bootstrapped F-tests comparing angular frequency energy across all 5 word categories revealed 8 clusters of difference (Fig. 4).

3) A mixed effects model revealed that Jerk and Angular Frequency Energy in 2 clusters predict accuracy but interact with word category:

CONCLUSION

- Mean jerk was the main predictor of accuracy in the animations task
- In addition, 2 clusters of angular frequency energy significantly predicted accuracy
- Angular frequency energy values can be interpreted as a measure of speed modulated as a function of curvature
- There was a significant interaction between each predictor and word category, indicating that relationships between predictors and accuracy depended on the animation type
- The results suggest that both jerk (overall change in acceleration) and angular frequency energy (change in speed as a function of curves drawn) are important for successful mental state attribution in the animations task

REFERENCES