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A general purpose reasoning agent may come in contact with many types of
external forces which have differing types of effects on the world. Different
types of forces require different types of reasoning about them. We present a
classification scheme for planning domains, based on differentiating the types
of causative forces present along dimensions of the degree of interaction and
of how cognitive they are. We present some speculations on how best to rea-
son in these domains. Example problems are illustrated using the ARMTRAK
domain [7].

1 Introduction

In traditional domain-independent planning models (e.g. [3], [4], [8] [9] [1]) an important
assumption has been that the planner itself is the only cause of any changes in the world
(events). While this approach has simplified reasoning about actions, it is obviously
inadequate for modeling many realistic domains. In the real world, there are a variety of
forces, ranging from natural forces to other intelligent agents, which can cause changes.

For the purposes of this paper, we will assume that events are caused by one or more
causers. We use this term instead of the term agent, since the latter generally implies
some amount of volition. In this paper, a causer is a force which can change the state of
the world, or interact with another causer in changing the world, while the term agent is
used for a causer which has goals and intentions and acts according to them. Any change
in the world is called an event, and an action is an event caused by a causer. Example
causers include: people, natural forces (gravity, electricity, wind, waves), and machines.

Different types of forces can be most profitably reasoned about using different meth-
ods. There is little point in reasoning about the “goals” of the sun in figuring out if
is going to rise at 6:45ham tomorrow. Similarly, trying to figure out what a person is
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going to do without taking account of his or her goals is going to be unfruitful in many
circumstances.

2 Types of Planning Domains

2.1 Dimensions for categorizing causative forces

There are a number of different features which we could use to classify causers. Some
which seem useful are:

Interaction With Other Causers A causer can either influence or not influence the
results of the actions of other causers. Conversely, a causer can either be influenced
or not influenced by the actions of other causers. Generally, if a causer can neither
influence nor be influenced by us we need not consider it in reasoning to satisfy our
goals. Similarly, if it can not influence us, we can generally ignore a causer even
if we do affect it (though we must be careful here, in that causers which have no
short term effects on us may have long term effects).

Goals A causer may have goals and perform actions in an attempt to satisfy those goals,
or may be acting (or reacting) unpurposefully.

Awareness An agent may or may not be aware of other causers. Its awareness can
range from awareness of the physical capabilities of the other causers to awareness
of goal-directed behavior, to actual knowledge of the goal-directed reasoning of the
other agents.

Communication An agent may or may not communicate with other agents. Communi-
cation may be defined in a Gricean way as an attempt to change the beliefs, goals,
or intentions of another agent.

Social relationship This isreally a categorization of relationships between agents rather
than the capabilities of a single agent. Two Agents may be cooperative, compet-
itive, or neutral with respect to each other. Agents may also have non-equitable
relationships with respect to the priority of each others goals; one agent may be
subservient to the other to a varying degree.

2.2 Types of Causers a Planner Might Want to Model

Using the above dimensions, we can come up with several different types of causers with
which a planner may have to contend.

1. uninfluenced, no goals
This type of causer represents an inanimate force which can’t (within the scope
of the planning problem) be affected by actions of the planner. Example: the sun
rising — it doesn’t matter what the planner does, the sun will still rise and set at
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the same time. The sun might affect an agent’s plan, however (e.g. a plan to read
a newspaper outside at 7:00am).

. two-way interaction, no goals

Here there is interaction both ways, but the causer is more a force than an agent
with goals. Example: a falling ball — gravity pulls it but it can be stopped or
redirected by putting out your hand.

. goals, no awareness

This type of causer can be fruitfully seen as having goals which it tries to accomplish
by choosing to perform some subset of the possible actions, although it doesn’t
reason about other agents. Example: traditional planner — it has goals, but it
doesn’t reason about other agents, just executes plans based on observed state and
goal state. (Perhaps insects are like this?)

. awareness, no communication

This agent is aware of other agents and reasons about their goals and beliefs in
order to figure out what they are going to do so it can plan to achieve its own
goals. Still, there is no direct communication or attempt to change their beliefs
and goals. Example: game playing — you need to reason about other agents goals,
beliefs, and plans, but you don’t generally talk to them, you just make the moves
based on what you think they are going to do; in a purely competitive zero-sum
situation, there is no purpose in communicating, since you would only help your
enemy by giving information.

. communication

This is really a whole range of types, based on the social relationships between the
agents. On one end, the other agent is like a tool, having no goals but what the
agent gives it. This is like the distributed Al paradigm, where the primary agent
can insure that the subsidiary agents will do what it wants by giving them the
right information. On the other end, are independent negotiating agents, where
one can’t even necessarily trust what the other agent says.

With the above types of causers, we can think of several types of planning environ-

ments, classified by which types of other causers exist in the model.

3 A Test Domain: Armtrak

The domain we have chosen in which to try out these classifications and demonstrate

their usefulness is that of model railroads. This domain allows the conceptual simplicity

of the blocks world, yet allows for a complex range of purposeful behavior. [7] describes

the domain and associated research at the University of Rochester more completely.

The Armtrak domain has a number of types of forces, including changing the power
on a train, and setting the direction of a track switch. These forces can have different

91



effects based on conditions in the environment (e.g. a train moving or derailing, switches
changing states).

Aside from the actual toy trains, there is a simulator, written by Nat Martin and
augmented by Steven Feist, which allows rapid prototyping and testing of planners. The
Armtrak simulation allows multiple programs running on different machines to issue
commands, and thus allows one to have multiple autonomous agents operating in a given
domain problem. For this project we are using the simulator.

3.1 Armtrak Primitives
An Armtrak situation is composed of the following basic elements:

o tracks
There are track types conforming to pieces of rail of various shapes. Each track is
connected to other tracks at each end. Tracks include the following special types:

— buffer — the end of a line, no train may be on it

— switch — has a connection to one of two different tracks at one side depending
on the state of the switch (open or closed)

e trains
trains are physically on a track, one car per track. Trains are a sequence of one
or more connected cars. Trains can be coupled to other trains, both in front and
behind, by moving one train into another. As a result of error conditions, a train
can leave the track and become derailed, and then be unable to move until put
back on the track. An engine is a special type of car which can be given power and
can move, towing any other attached cars.

3.2 Armtrak Commands

The Armtrak simulator is given an initial set up consisting of the track layouts and
the trains and their locations. Commands can be sent to the simulator from Lisp or C
programs from any machines on the local network. Up to 16 independent programs may
send signals. The Lisp primitives include:

1. Effectors

e (set-power engine power) adds power to the current power of the engine. An
engine will move (if not blocked or derailed) with a speed proportional to the
power and inversely proportional to the weight of the train (including cars it
is pulling). The direction of travel depends on the sign of the power, positive
is forward and negative is backward (with respect to the orientation of the
train). If there is no next track to go to (end of the line, or a switch going the
wrong way) or if it collides at too high a speed, the train will derail.
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o (set-switch switch state) sets the switch to the desired state (open or closed)

e (rerail-train car) puts the train back on the rails

2. Perception Queries

o (get-time) look at the clock

(

e (get-power engine) returns the power of the train

e (get-switch switch) returns the state of the switch

e (get-location car) returns the name of the track the car is on

o (get-derailed car) returns true if the car is derailed

o (get-track-object track) returns the object on the track, or false if nothing is
there

3.3 An Armtrak Situation: Robin Hood Meets Little John

For demonstration purposes we have chosen a very simple Armtrak situation which is
still complex enough to require reasoning about the interactions of multiple causers. The
set-up is as shown in Figure 1. There are two engines, “Robin Hood” and “Little John”,
and two switches, allowing two paths through the center. The goal is that Robin Hood
must get from Nottingham to Sherwood. An obstacle in achieving this goal is that Little
John is in the way. The name comes from the story of Robin Hood’s first meeting with
Little John, in which they both tried to get over a bridge at the same time, going opposite
ways. Instead of making sure that only one of them was on it at a time, or one person
going back until the other was across, they ended up fighting until Robin Hood fell in
the river. The goal of the current situation is to improve Robin Hood’s “plan”, so that
he can get safely across.

Little John Left Switch 1§ 19 20 o Right Switch

Robin Hood
—" 17 n, —"

Sherwood 3 4 5 6 7 8 9 10 11 12 13 14 Nottingham

Figure 1: An Armtrak Situation

3.4 Scenarios of the Little John Problem

While keeping the ARMTRAK set up and the goal of Robin Hood constant, we can vary
the causers present in the situation to end up with different environments. The primitive
actions possible are: setting the states of the two switches and setting the powers of
the two trains. We can also have higher level abstractions and combinations of these
for plans to move from place to place. By changing the capabilities of the controllers of
these actions we can achieve the desired environments. Here is a set of planning problems
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corresponding to types of planning environments composed of allowing different causers
of the types outlined in section 2.2 above:

Level 0 Traditional Planning, No other causative forces
Both trains and the switches are under the planner’s control. The planner must
reason merely about plan operators, preconditions and effects.

Level 1 Only type 1 causers
The trains are both under the planner’s control, but the switches are flipped accord-
ing to a schedule, they are controlled by type 1 causers (the states of the switches
can affect the movement of the trains, but not vice versa). We must also extend
the reasoning to also cover events.

Level 2 Only types 1 and 2 causers
Robin is controlled by the planner, but John moves on a fixed schedule. John
is controlled by a type 2 causer; the Little John train’s movement affects and is
affected by the Robin train. Now we actually have to reason about actions and
their relationship to events.

Level 3 Type 3 causer
John has a goal to get to Nottingham. There is a simple agent (such as that
controlling Robin in Level 0) attempting to get him there. The planner must
reason about the beliefs, goals and intentions of the other agent.

Level 4 Type 4 causer
John’s controller has a capacity to reason about Robin’s plans. This requires rea-
soning about shared and nested beliefs (John’s beliefs about Robin’s beliefs about
John’s beliefs about ...).

Level 5 Type 5 causer
Robin and John talk to each other with a simple language to negotiate a joint plan
which will accomplish the goals of each. This will require some notion of speech
acts, shared plans, Gricean NN-meaning and M-intentions.

A planning logic and execution architecture is being designed for each of these prob-
lems. The rest of this paper will discuss these implementations in detail. At this writing,
only the first four scenarios (levels 0, 1, 2, and 3) have been fully implemented.

4 Solving the Little John Problem

4.1 Level 0

For this scenario we can make several simplifying assumptions. Since there are no exter-
nal causers, we don’t need to worry about simultaneous actions or explicit representations
of time. The planner is the only causer, so it can execute an action and just wait for it to
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finish before executing another action. A state based world representation is sufficient,
with a new state occurring after each action. We use a plan representation based on
STRIPS [3]. A sample plan operator is move-one-space, given below:

move-one-space (x:train from-loc:track to-loc:track)
Pre: (at x from-loc)

(adjoined to-loc from-loc)

(clear to-loc)

(= (derailed x))

Delete: (at x from-loc)
Add: (at x to-loc)
Decomposition:
(move-1 x (dir-fn x from-loc to-loc))

In the above operator, at, adjoined, and clear are predicates which can be tested
using programs built from armtrak primitives. They have the following meanings: at is
true if its first argument is at the location of the second argument. adjoined is true if
its two arguments are adjacent tracks and any switches which connect them are set the
proper way so that a train could move from one to the next. clear is true if there are
no trains on its argument. dir-fn is a function which returns the direction of the third
argument from the second argument, relative to the orientation of the first argument.
move-1 is a primitive program, below the level of planning here, which sets the power
of the train to the appropriate magnitude, waits until it has arrived at the next track or
has derailed, and then stops the train. Any of the standard Search or Theorem Proving
methods can do for a planner. For an executer, all that is necessary is to take the sequence
of plans generated by the planner and execute them sequentially.

A sample plan for solving the level 0 problem is given below, where move-along-
clear-path is a higher level plan operator which uses repeated calls to move-one-space
and align-switches (a plan operator to set switches the right ways for travel between
two adjacent tracks) to move a train along a path of successively adjacent empty tracks.

Level 0 Sample Solution Plan
(move-along-clear-path john ’(sherwood 3 4 5 6 17 18))
(move-along-clear-path robin ’(nottingham 14 13 12 11 10 9 8 7 6 5 4 3 sherwood))

4.2 Level 1

In this scenario we need to worry about when external events occur, and how they will
affect our plans. We must bring in a representation of time and time intervals (for
calculating durations of actions and how long particular conditions will hold). We must
also add events to our ontology. Events are not selected as operations by the planner, but
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need to be reasoned about in any plans. Since no actions by other causers can be affected
by our actions, we still do not need to reason explicitly about the relationship between
actions and events. We can figure out which events will be caused by any actions of other
causers and just add those events into the planning structure. As long as we know all
the events that will happen, and when, we can maintain an accurate world model. Plans
look pretty much the same as in level 0, except that some of the preconditions must be
altered to take account of possible events occurring during the action, and a duration field
is added to operators which tells how long the plan takes to execute. Many predicates
also have a temporal argument, which was unnecessary in level 0. Also, it no longer
makes sense to talk about add and delete lists, because of the temporal arguments. We
no longer delete a predicate, merely say that something else is true at the end of the
action, if the action is performed when the preconditions hold. The move-one-space
plan above, modified for the new environment is,

move-one-space (x:train from-loc:track to-loc:track)
Pre: (at x from-loc begin)

(adjoined to-loc from-loc [begin,end])

(clear to-loc begin)

(= (derailed x begin))

Effects: (at x to-loc end)
Duration: move-one-time
Decomposition:

(move-1 x (dir-fn x from-loc to-loc begin) begin)

begin and end are special temporal functions on actions and events which represent
the time of commencement and conclusion of the action. [begin,end] represents the
interval from begin to end (ie the entire duration of the action).

A planning system such as DEVISER [10] is adequate to handle this kind of planning
environment. We can use a chart based representation for planning, where we first add
the events which will be caused by the external causer, and then fill in the actions as they
are planned for, using standard techniques to reason about preconditions. For execution,
we use a priority-queue type scheduler, which has a sequence of actions to be performed,
as well as the times at which they should be performed.

If we started with a schedule of the switching events such as:
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time event

1000 (set-switch 6 open)
1250 (set-switch 10 open)
1500 (set-switch 6 closed)
1750 (set-switch 10 closed)
2000 (set-switch 6 open)
2250 (set-switch 10 open)
2500 (set-switch 6 closed)
(

2750 set-switch 10 closed)

Then our solution would be to hand the following plan to the scheduler, where
move-along-clear-simple-path is a compound plan which moves a train along a path
with no switches along it, space by space using repeated calls to move-one-space:

time action

950 (move-along-clear-simple-path john ’(sherwood 3 4 5 6))
1350 (move-one-space john :from 6 :to 17)
1500 (move-along-clear-simple-path robin ’(nottingham 14 13 12 11 10))
2050 (move-one-space robin :from 10 :to 9)
2350 (move-along-clear-simple-path robin (9 8 7))
2600 (move-one-space robin :from 7 :to 6)
(

2750

move-along-clear-simple-path robin (6 5 4 3 sherwood))

4.3 Level 2

This level adds more difficult interactions because both Little John and Robin Hood may
act simultaneously, creating a host of possible mutual interactions. We must explicitly
encode that we can’t be completely sure of what the effects of an action will be unless
we know about all the other actions which might affect it. We can no longer rely on the
STRIPS assumption to solve the frame problem and must use other techniques.

Implicit in the preconditions for the operators in the previous levels is a world property
that no more than one train can be on a particular track at a given time. In the previous
levels it could remain implicit, because no other causers could move the trains, and the
planner only would if the preconditions held. Here, we must explicitly encode that fact,
using a domain axiom like:

vac:trainvy:trainvloc:trackvt:time (at x loc t) A X 7£ y D) - (at y loc t)

Any kind of sound planning formalism becomes much more complicated. For instance,
if we tried to just import move-one-space we find that the precondition (clear to-loc
begin) is neither necessary nor sufficient for success of the action. It is not necessary,
since there may be a train initially on to-loc which is moving in the other direction at
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the same speed or faster than x. It is not sufficient because, even if to-loc is clear, there
may be another train moving onto to-loc from the other direction, so that the two trains
will crash, and maybe x might not get there. In level 1 we could ignore this problem,
since the planner had control of both of the trains and would only move one at a time.

Our solution is to add a predicate moving which takes a train, and a direction as
arguments. towards is a partial function over pairs of tracks which returns the direction
in which the second is adjacent to the first. Assuming we have a sequence of tracks:
from-loc, to-loc, next, next+1, we could write the preconditions for move-one-
space (x:train from-loc:track to-loc:track) as something like the following, which requires
either that to-loc is clear and that nothing can move onto it during the action, or that
it is not clear but the car there is moving away from train x.

(at x from-loc begin)
(adjoined to-loc from-loc [begin,end])
(= (derailed x begin))
(or (and (clear to-loc begin)
(or  (clear next begin)
Jy: (and (at y next begin) (= (moving y (towards next to-loc)))))))
(3 y: (and (at y to-loc begin)
moving y (towards to-loc next))
adjoined to-loc next [begin,end])
- (derailed y begin))
clear next begin))))

.

Even this precondition is slightly too strong. It is fine for a problem such as ours
where there are only two trains, but in the general case, we could have trains at next
AND next+1, each moving away from to-loc (and associated other conditions to make
sure they get there). In general we can have an unbounded number of trains in a row
all moving away, and as long as they can get there (nothing in the way at the end or
on a collision course) then x can move to to-loc. The preconditions get even harder to
write down (and understand and reason about) as we move to higher level abstractions,
such as moving several tracks along a path, where at the time at which we are moving
to a particular track that track must be uncontested, but we can say very little about
conditions on the whole sequence of tracks.

We need to be more explicit about the relationship between actions and events. For
this purpose, we add a type causer and a predicate perform which takes a causer,
an action (or plan operator), and a time as arguments. Now we can talk about events
happening if specific conditions hold, and these conditions may include agents performing
actions at specified times. We can also now describe motion at a lower level. If we think
of movement as an event which doesn’t take an action by the agent (once the power has
been set), we can model the actual nature of the move-1 program used above: starting
the train, waiting for it to get to its destination, and stopping it. We have an event move
which takes place whenever its conditions are met (train is moving, tracks are adjoined,
and nothing is in the way) and actions start and stop which will affect whether trains
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are moving. These are shown below, where next-track is a function which returns the
track or tracks which are next in its direction argument from its track argument:

start (x:train d:direction)
Pre: (- (derailed x begin))
(stopped x begin)
Effects:  (moving x d end)
Duration: start-time
Decomposition:  (set-power x (dir-fn d))

stop (x:train)

Pre: (moving x 7dir begin)

Effects:  (stopped x end)

Duration: start-time

Decomposition: (set-power x —(get-power x))

move (x:train from-loc:track to-loc:track)
Conditions: (moving x 7d:direction begin)

(at x from-loc)

(to-loc € (next-track from-loc 7d))
adjoined to-loc from-loc [begin,end])
(derailed x begin))

(perform 7c (stop x) [begin,end]))
clear to-loc begin)
Vloc:track (connected loc to-loc) D
(at x loc begin) V (clear loc begin)
Effects: (at x to-loc end)
Duration: move-one-time

(
(-
(-
(

This move event description says that whenever a train x is moving in direction d,
and is at from-loc and to-loc is adjoined to from-loc in direction d, and x is not derailed
and no causer performs a stop action on x, and to-loc is clear, and no other trains aside
from x are within one space of to-loc then at move-one-time later, x will be at to-loc. The
main formal distinction between the move event and actions such as start or move-
one-space are that for an event, the effects will happen whenever the conditions are
met, while for an action, the effects will happen only when the action is performed - thus
the difference in notation, labeling one Pre and the other just Conditions.

In previous levels, our plan could only be foiled by incorrect action or acting at an
improper time. Now, inaction can be just as dangerous. It is not enough to simply
specify the conditions for the event move under which a train will successfully move to
the next track, we need to know what happens if some of the conditions are not met. If
a train is moving then it will either go to the next track (if it can), or it will derail. It
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won’t just stay where it is until the conditions to move are fulfilled. If it happens that
some preconditions for move will not be met when the train is moving, it is important
that the planner stop the train and start it again when the conditions are met, or
the train will derail and the whole plan will fail. Our preliminary solution is to give
the following domain axiom, which states that when a train is moving throughout an
interval of move-one-time duration, it either moves to a track which is adjoined and in
the proper direction, or it derails:

(at x locl t) A (moving x d [t,t+move-one-time]) D

(or (and (at x loc2 t+move-one-time)
(loc2 € (next-track loc d))
(adjoined locl loc2 [t,t+move-one-time]))
(derailed x t+move-one-time))

With such an axiom, if we can’t prove that the train will move (say because of
another train nearby or a switch going the wrong way), we must stop the train and wait
for conditions to improve. This will generate an overly conservative world model, since
in fact some of the times when the conditions for a move event are not met it will move
anyway.

For an executer, we generalize the scheduler from Level 1. Instead of just waiting for
a particular time, it executes an action whenever a specified set of conditions holds. The
scheduler can now deal with more primitive (and quicker) actions, and thus deal with
near simultaneous actions. The waiting for a train to get to the new location that before
was done as part of the move-one-space action is now incorporated into the scheduler
by decomposing the action into a start action followed by a stop action to be executed
under the proper conditions (when the train has moved or derailed).

The solution plan for level 2 is given below. Intuitively, we have one high-level plan
to follow a path, and other reactive plans to set the switches under the proper conditions
to keep john out of his way. We start out with John’s controller performing the action
(start john (towards sherwood 3)) at time 1000. Then we construct the following Level
2 sample solution plan:

condition action
(> (get-time) 1000)  (follow-path robin
‘(nottingham 14 13 12 11 10 9 8 7 6 5 4 3 sherwood))
(at john 6) (set-switch 6 open)
(at john 22) (set-switch 10 open)

follow-path is a compound plan which waits for the train to be at the first track in the
path, and then puts at least two sub-plans on the schedule, one to move-one to the next
track, one to follow-path to subsequent tracks on the path, and plans to set-switch
any switches connecting the first two tracks, if there are any. move-one is in turn a plan
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to start the train in the right direction, and then stop it when it gets to the next track.
Thus we can monitor execution at multiple levels of abstraction, using the same general
scheduler mechanism. The adjoined preconditions are satisfied by the plans to set the
switches. The switch setting based on john’s position will guarantee that it is out of the
way, satisfying the track clear preconditions on robin’s movement.

4.4 Level 3

With Level 3, the causer controlling Little John is actually a full-blown (albeit naive)
agent, with it’s own goals, plans and beliefs. In principle, all of our planning and reasoning
could be carried out at level 2, although with cognitive agents the notion of a plan becomes
useful and allows good predictions which would otherwise be unavailable about which
actions a causer will perform. Even though a causer may be operating according to a plan,
a Level 3 analysis still may not be called for. If the entire plan is precomputed and known
ahead of time, a level 2 analysis can be given: no explicit reasoning about the plan need
be made, just calculate what it will do when. In cases of less than complete information,
plan reasoning can be useful. Maybe just the goal and the available operators are known,
but not the entire plan. Then, by simulating the planning process of the other agent, the
plan, and thus the actions, can be determined. Also, using plan recognition techniques
as in [5], observation of some actions can lead to inferences about the goals and what
other actions will be taken.

Furthermore, even though a causer may not be operating based on goals and plans
(as in level 2) one could still use a level 3 analysis and attribute a plan to it which would
describe its functioning. This kind of thing happens all the time in using anthropomor-
phic descriptions of inanimate activity. The acid-test will be whether such rationality
assumptions prove useful in predicting the actions of the causer.

Simulating the reasoning of Little John, we can come up with two possible minimal
(in the sense that no track is unnecessarily traveled over twice) abstract plans. Where
pathl = (Sherwood 3 45 6 17 18 19 20 21 22 10 11 12 13 14 Nottingham)
and path2 = (Sherwood 3456 78910 11 12 13 14 Nottingham),
he can perform either pl = (Follow-path john pathl) or p2 = (Follow-path john
path2). We can also see that the only possible minimal plans for Robin Hood are pl’
= (Follow-path robin pathl’) or p2’ = (Follow-path robin path2’) (where pathl’
and path2’ are the inverses of pathl and path2, respectively). A payoff matrix can be
calculated for each of the parties for each combination of plans, with success (John gets
to Nottingham, or Robin gets to Sherwood) represented by a 1 and failure (not getting
to the destination) represented by 0. For this problem, the payoff matrix is shown in
figure 2, where Robin Hood’s payoffs are in the lower left corner, and Little John’s are
in the upper right corner of each box.
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Little John’s Plan

pl  p2
0 1
pl’
Robin Hood’s 0 1
Plan 1 0
p2’
1 0
Figure 2

We can see that if Little John chooses pl, Robin Hood must choose p2’ while if Little
John chooses p2, Robin Hood must choose pl’. Unfortunately, there is no way for Robin
Hood to know ahead of time which one John will choose. To Robin Hood, Little John’s
choice will appear random. The solution is to monitor Little John’s actions, and so be
able to tell which choice he has made. Only certain actions will be consistent with any
particular plan. When an action has been observed which is inconsistent with a plan,
that plan can be removed from the list of possibilities.

Although there are no direct perception calls for actions, actions can be recognized
by making repeated queries about interesting information and noting when the value
changes. Thus we can recognize a move-one-space action by Little John, by monitoring
the position of the train and noting when it has moved one space from its previous
position. If we notice that Little John has moved from 6 to 17 we can be sure that his
plan is pl, since (move-one-space John from 6 to 17) is not a step in p2.

Robin Hood cannot simply wait until it discovers Little John’s plan, and then act,
because in that case, Little John will be past the middle section before Robin can get
to the Right Switch. Fortunately there is a middle ground between blindly guessing and
waiting for perfect knowledge. We have chosen the following algorithm: At any time that
Robin is not acting, try to choose an action subject to the following constraints:

1. It is the next action in some possible plan

2. For each possible combination of plans of the other agents, the action is part of a
plan which is successful given that combination

This strategy will preserve success while still allowing actions to be made before
complete information is known. In our example, we start out with Little John’s plan
being (or pl p2), while Robin Hood’s plan is (or pl’ p2’). Now, based on the payoff
matrix in Figure 2, we know that we must maintain both pl’ and p2’ until we have
discovered Little John’s plan. But we can still act, because the first few actions (e.g.
(move-one-space Robin from Nottingham to 3), (move-one-space Robin from
3 to 4)) are common to both plans. If Robin Hood gets to the Right Switch before Little
John commits to a plan, then there will be no safe actions, and Robin Hood will wait.
This is a safe strategy at Level 3, because Little John is unaware of Robin Hood, and
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therefore will not base its decision on any behavior of Robin Hood. Eventually Little
John will move either to 17 or to 7, allowing Robin Hood to recognize his plan as either
pl or p2, which will thus mandate a safe choice of action.

This strategy can be implemented straightforwardly in the level 2 style executer. We
can precompute the possible plans for both Robin Hood and Little John, and the payoft
matrix for Robin Hood. We then have two top level activities in our scheduler, the first
observes the salient portions of the world and recognizes actions and updates the possible
plans for Little John by eliminating any which do not include the observed actions, the
second waits until Robin is not performing an action and there is a safe next action to
take (based on the criteria above) and then adds the action to the schedule and updates
the possible plans for Robin, eliminating any which do not have this action as a part.

4.5 Level 4

In Level 4, we have increased the capabilities of the other agent, so that it can now reason
about the planner’s plans and beliefs. The planner now needs to reason about nested
and mutual belief and knowledge. This is no longer just straightforward simulation of
another agent’s planning process: the other agent will also be trying to figure out what
the planner is doing. For a very small game with a definite solution, (such as NIM),
a kind of exhaustive search can be used so that it doesn’t matter so much what the
other agent believes, but this is impractical for any but the smallest problems. There
is a danger of infinite recursion, with each agent reasoning about what the others are
reasoning about its own reasoning, and so on.

We cannot simply use the solution from level 3, because if both agents use this
strategy, a deadlock will occur: each will be waiting indefinitely for the other to commit
to a plan. The way out of this is to take a chance and, if the others agent’s plan has
not been discovered, just pick one at random. This is relatively safe, since the payoff
matrix indicates a cooperative situation. Each can reason confidantly that if the other
recognizes his plan, it will act so as to further it by taking the other path. This way, the
first one to come to the middle section will choose a path, and the other will take the
other path. A problem occurs if they both come to the middle path at the same time.
In this case there is a 50% chance that they will choose the same path and thus fail.

While it is easy enough to engineer the solution to this problem, it is not so easy to
see how to achieve it as a result of reasoning about nested beliefs. Unfortunately, if one
believes that the other agent will choose a path, it pays to wait for that choice, as in the
level 3 solution. But if one believes the other will wait, it pays to choose one, because
the other agent will then pick the other path. There is an infinite alternating series here
with deadlock if they both choose to wait, and a possibility of crashing if both choose to
go ahead.

Unfortunately, there is no way to do better in a totally unfamiliar situation without
dynamic replanning. If replanning were allowed, the trains could realize that they are
on a collision course, and back up and try again. Eventually, they will choose different
paths (if they are using truly random selection, this is guaranteed, but even if they are
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using psuedorandom numbers with the same seed, eventually they will get out of synch
due to realtime interactions, so that one will be on a path while the other isn’t). Such
replanning makes plan recognition much harder in the first place, however.

Another way out of the problem, if such situations occur frequently in a community
of agents, is to set up a convention. This could be something as general as “always take
the rightmost path” or as specific as, for this particular situation, “Robin Hood takes the
lower path while Little John takes the Upper Path”. As long as the convention is agreed
upon, each agent can easily pick the correct path. This amounts to mutual knowledge
about the expectations of individuals to take certain actions rather than others, which
combined with the payoff matrix will yield a preference to follow the convention. [6]
provides other examples of this type of phenomenon.

4.6 Level 5

At this level, full-scale communication between agents occurs. Agents can use language
to find out about the world (things that perhaps they can’t see) or intentions of the other
agents, etc. They can also inform other agents about their own goals and beliefs, and
perhaps make it easier to satisfy their goals by changing other agents plans, beliefs, and
goals. We can also have negotiating agents, where communication is used not just for
passing information but also to form mutual plans among the agents for cooperative ac-
tivity. This can range from a plan which both contribute towards fulfilling two individual
goals, to the two agents coming up with one compound goal which benefits both.

Specifically, in this example, we can use communication to arrive at the mutual ex-
pectations that will allow a way out of the level 4 problem. Communicated intentions
will allow each agent to choose a path confident that the other will be aware of this
choice and act accordingly, in the same way as if a convention already existed. How to
incorporate communication of intention into a theory of rational action is still an object
of much study [2].

5 Conclusion and Future Work

In a particular planning problem, an autonomous agent may be faced with several differ-
ent types of forces. The classifications described in this paper may help in doing the most
appropriate reasoning about such a problem. Type 1 causers are easy to plan around.
Type 2 causers require more care in checking the interactions between planned actions
and actions of other causers. A type 3 causer will be easier to deal with if its plan can be
figured out, also some sorts of minimal rationality assumptions may help here. A type 3
causer is not going to concern itself directly with other agents, whereas a type 4 causer
will. A type 5 causer can be communicated with to smooth over potential interactions.

An interesting follow-up would be to see how this classification scheme interacts with
uncertainty. It would be interesting to contrast how using higher level models of causers
may give better information, and at which point one model is preferable to another.
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The ARMTRAK simulator also provides a good platform for this study, since it can
introduce additional probabilities of failure of actions which are distinct from the failure
due to interactions of particular causers.
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