Representations of Dialogue State for Domain and Task Independent
Meta-Dialogue

David R. Traum and Carl F. Andersen
University of Maryland
A.V. Williams Building, College Park, MD 20742 USA

{traum,cfa}@cs.umd.edu

Abstract

We propose a representation of local dialogue
context motivated by the need to react ap-
propriately to meta-dialogue, such as various
sorts of corrections to the sequence of an in-
struction and response action. Such context in-
cludes at least the following aspects: the words
and linguistic structures uttered, the domain
correlates of those linguistics structures, and
plans and actions in response. Each of these is
needed as part of the context in order to be able
to correctly interpret the range of corrections.
Partitioning knowledge of dialogue structure in
this way may lead to an ability to represent
generic dialogue structure (e.g., in the form of
axioms), which can be particularized to the do-
main, topic and content of the dialogue.

1 Introduction

Many simple dialogue systems are constructed in a more
or less holistic fashion, not making clear differentiations
between linguistic, dialogue, and domain components or
reasoning, treating everything other than speech input
and output as the “dialogue component”. Such archi-
tectures allow shortcuts in the design process and fine-
tuning to the particular anticipated task and dialogue in-
teraction, which can speed up both system implementa-
tion time and run-time. However, the resulting systems
are not particularly portable to other domains, tasks
within the same domain, or even very robust t in the
face of different styles of interaction in accomplishing the
task. Often, where the dialogue component is concerned,
all that can be carried over into the next system is the
experience gained by building such a system. Toolkits
for constructing scripted dialogues, such as [Sutton et
al., 1996] make the construction process faster, but do
not address the underlying problem of partitioning dia-
logue knowledge from linguistic and domain knowledge
in order to reuse the same dialogue strategies.

Simply partitioning the knowledge sources is also not
sufficient to achieve domain-independent reusable dia-
logue modules. A dialogue component (in the narrow
sense) must have appropriate access to both linguistic

113

and domain knowledge sources in order to act appropri-
ately in dialogue, in a manner similar to a more holistic
system. While there will always be a certain amount
of work involved in adapting a generic dialogue mod-
ule to particular linguistic processing components and
domain knowledge sources and manipulators, there is
still some room for generic dialogue function, abstract-
ing away from the specific representations provided by
other modules. The key is being able to represent as-
pects of the dialogue in a suitably abstract fashion, to
allow reasoning about generalities without relying on pe-
culiarities of interfaces to linguistic and domain modules.
We maintain, agreeing with [McRoy et al., 1997], that
it 18 important to keep several different kinds of repre-
sentations of an utterance available as context, in order
to act appropriately in the face of meta-dialogue, such
as corrections, as well as to be able to give the right
kind of feedback about problems in the system’s ability
to interpret and act appropriately.

As an example of a simple dialogue episode which can
motivate the kinds of representation we propose, con-
sider the exchange schema in (1). In order to understand
and respond to [3] properly, B must at least keep some
context around of [1] and [2]. The question arises, how-
ever, as to how to represent this context in a compact
and useful form.

m [
[2]
[3]

In the next section, we quickly review various struc-
tural proposals for representation of local exchanges like
(1). Then in Section 3, we consider these proposals in
the light of a suite of examples of different kinds of neg-
ative feedback. This leads us, in Section 4, to propose
a representation based on considering not just the ut-
terances themselves, but other intensional information
associated with the utterances. These include, for a re-
quest produced by the user of a system, the literal re-
quest, an interpreted version, still at the level of natural
language description, and a domain-specific version. For
the reply, this also includes both the plan leading to its
performance, as well as observed feedback. These vari-
ous levels provide both a source for detecting potential

A:do X.
B: [does something)]
A:no, do...

or actual incoherence in dialogue, as well as serving as
a source of potential repair requests. In Section 5, we
illustrate these levels in action in a dialogue manager for
the TRAINS-96 system [Allen et al., 1996]. Finally, we
conclude with some observations of more general appli-
cability of these levels.

2 Representations of Local Dialogue
Structure

There have been several proposals for the kind of dia-
logue unit represented in (1), using structural terms like
adjacency pair [Schegloff and Sacks, 1973], exzchange [Sin-
clair and Coulthard, 1975], game [Severinson Eklundh,
1983, Carletta et al., 1997], IR-unit [Ahrenberg et al.,
1990] and argumentation act [Traum and Hinkelman,
1992]. At an abstract level, we need a unit which can
contain three moves or acts, as indicated in (2).

(2)
[1]
[2]
[3]

There are several ways in which this unit can be struc-
tured. In Figure 1 we show several proposed structures
for this or similar units for questions. (A) shows a flat
structure containing all three acts, as proposed by [Sin-
clair and Coulthard, 1975]. Some authors prefer to al-
low only binary branching units, which leads to struc-
tures (B) through (D). (B) was proposed by [Wells et al.,
1981] (though with the unit names Solicit-Give and Give-
Acknowledge), and is also used by [McRoy et al., 1997].
(C) and (D) were both proposed in [Severinson Eklundh,
1983], the former for information-seeking questions, and
the latter for exam-questions. (E) shows a finite au-
tomaton which could be induced from these structures,
allowing multiple rejections and counter-requests before
a final acceptance.

There may be different motivations for these different
types of structures, but for the present purposes, we will
consider them strictly in terms of what kind of context
is provided for the antecedent of the utterance [3]. In
particular, what is the utterance of “no” referring to?
A’s initial utterance [1], B’s reaction in [2], or some other
construct? Structure (A) would predict a choice of [1]
or [2], equally. Structures (B) and (C) would have a
preference for [2] as the antecedent (with (C) allowing [1]
as a dispreferred option, and (B) disallowing it), while
(D) would see the unit of [1] and [2] combined as the
most likely antecedent, i.e., not necessarily a rejection
of [2] in and of itself, but of [1] and [2], together as the
realization of the goal that inspired production of [1] (for
reasons that might be due to problems with either of the
utterances/actions themselves, or the coherence of the
two).

Initiative: Request(Act) [Instruct]
Response: Do(Act)
Feedback: Eval [+ Counter-Request(Act’)]

3 Examples

In order to decide on which structure is most appropri-
ate, as well as what kinds of representations are needed

114

for the task, it will be helpful to examine a suite of in-
stantiations of the exchange schema in (1). We draw
our examples from the TRAINS-96 domain [Allen et al.,
1996), in which a user interacts with a dialogue system to
provide routes for trains. Figure 2 illustrates an episode
from this task, in which there are two trains of interest,
Northstar, which is currently at Boston, and Metroliner,
which started the task at Boston, but is now at Albany.
Given this same context, consider the dialogues in (3)
through (8).

() Req+-Do
/1N
/ I \
[1] [2] [3]
(B) Req-Do Do-Eval
/ N/ N\
/ \ / \
[1] [2]1 [3]
(c) Quest—ANSW
/ \
/ \
Quest answer/ASS
/ / \
/ / N\
[1] [2] [3]
(D) Do-Eval
/ N\
/ \
Req-Do \
/ \ \
/ \ \
[1] [2] [3]
(E)
B:Act Ac:accept

Acreject

A:counter Acreject

Figure 1: Proposed Structures for IRF unit

Metroliner} I Northstar |
e
\ e
Albany 7 Boston
\ '
7
\ -,
'
\ s
New York

Figure 2: Trains Scenario

[1] A: “send Northstar to New York.”
[2] B: [sends Northstar to NY]
[3] A: “no, send Metroliner.”
(4)
[1] A: “send Metroliner to New York.”
[2] B: [sends Northstar to NY]
[3] A: “no, send Metroliner.”
(5) A
[1] A: “send the Boston train to New York.”
[2] B: [sends Northstar to NY]
[3] A: “no, send Metroliner.”
(6)
[1] A: “send the Boston train to New York.”
[2] B: [sends Northstar to NY]
[3] A: “no, send the Boston train.”
(7)
[1] A: “send the Boston train to New York.”
[2] B: [sends Metroliner to NY]
[3] A: “no, send Metroliner.”
(8) .
[1] A: “send Metroliner to New York.”
[2] B: [sends Metroliner to NY]
[3] A: “no, send Metroliner.”
(9)
[1] A: “send Northstar to New York.”
[2] B: [sends Metroliner to NY]
[3] A: “no, send Metroliner.”

In each of these, the semantic structure of utterance
[3] is something like (10). Context is used to determine
what “X” refers to, and also to construe “Y” to be ap-
propriately coherent, if possible.

(10) Don’tDo(X) & Do(Y)

The coherence of Dialogue (3) but lack of coherence
of (9) indicates a problem with (A): it seems that after

115

[2], [1] is no longer a possible antecedent in the same
way. The contrast between (3) and (4) shows that the
problem with [2] can be either a lack of coherence with
[1], or a change in intention. This would seem to be a
problem for (B), which does not preserve [1] as part of
the context for [3]. Likewise, in (5) and (6), the source
of the problem is likely the interpretation of the refer-
ring expression, “the Boston train”. This is important
for interpreting [3] coherently in (6), and recognizing (7)
as incoherent. It is less easy to see how this informa-
tion can be retrieved from (C) as opposed to (D). In
general, for these examples, the source of the correction
in [3] can be anywhere in the space including what A
actually said in [1] (true 3rd turn repair), B’s interpre-
tation of that, or B’s response in [2] (2nd turn repair).
(D) seems to be the most useful candidate representa-
tion, since it provides the complex of act of [1] and [2]
together as a likely antecedent for [3]. (E) captures the
move sequences correctly, but does not help much with
the referential dependencies.

The interesting issue for these examples is how to re-
spond to [3] in each case. For examples (3), (4) and
(5), B can just undo the action performed in [2] and
proceed to do the one mentioned in (3). In fact, this
is just what the Rochester TRAINS-96 system [Allen et
al., 1996] will do. For (6), the situation is a bit more
complex. B must recognize that the previous choice of
anchor for the referring expression “the Boston train”
was likely to be wrong, and choose a different candidate,
given A’s response. For (7), (8) and (9), there is no obvi-
ous strategy to make [3] coherent, so some sort of repair
would be warranted, to overcome the incoherence. In or-
der to be able to engage in fruitful dialogue rather than
just respond to a sequence of commands, the important
thing to realize, is that [3] is a complex command with
structure like (10), rather than unrelated cancel and
request acts. Likewise, realizing a coherent interpre-
tation when possible, and noting the incoherence, when
not, is important for engaging in natural dialogues.

4 Our Approach: Internal
Representations

Our approach to this problem is to represent not just
the moves [1], [2], and [3], themselves, as part of the IRF
unit, but also, like [McRoy et al., 1997], some associated
internal structures, which can help provide likely candi-
dates for resolving any seeming incoherence. Thus, our
counterpart of the Req-Do sub+structure in (D) would
include not just the two acts, but each of the following
components:

1. L-req (for “literal”, or “locutionary”) the actual

words said.

. Irreq (for “interpreted”, “intentional” or “illocu-
tionary”) the direct logical interpretation. This
level maintains all ambiguity present in the origi-
nal, such as which train is the “Boston train”.

3. D-req (for “disambiguated” or “domain”) a pre-
cisification of the I-req that actually represents a
specific request for an action that can be performed
by the domain module. For simple, unambiguous
requests, in which the representation output by the
language module and used by the domain module
are the same, D-req can be just about identical with
I-req, for cases with ambiguity or divergences in rep-
resentation, it may involve several operations to get
from I-req to D-req. D-Req represents what should
be done in a manner that the domain reasoner can
understand.

. P-act (for Plan) a specification of how to do the re-
quested act in D-req. A plan suitable for execution,
which, if carried out will satisfy the original request

E-Act (for execution) the action the system actu-
ally takes in fulfilling the request.

O-Act (for Observation) concerns monitoring or
observation of the system’s act. Even if the sys-
tem performed the act correctly, it might not have
evidence of this fact. For linguistic actions, this
is related to grounding [Clark and Schaefer, 1989,
Traum, 1994].

As said above, the interpretation of D-req from I-req
could involve several intermediate actions. In the case
of dialogues (5), (6), and (7), it would involve construc-
tion of a new query (corresponding to “which engine is
the Boston engine”), acting on the basis of this calcu-
lating the answer (perhaps using messages to a domain
reasoner), and then fitting this answer into the D-req for
the main request (replacing the more indirect informa-
tion present in the I-req) e, in (7), in I-req we have
“train assoclated with Boston”, but in D-req we have
“Metroliner”).

In the example dialogues, utterance [1] has the same
L-req and I-req in (5), (6), and (7) (though different from
(3) and (8)). For (5) and (6), the D-req is the same as in
(3), while in (7), the D-req is the same as (8), depending
on the interpretation of “the Boston train” as Northstar
or Metroliner, respectively.

Using this more fine-grained notion of the Req-Do
unit, we can re-examine the likely sources for the cor-
rection in [3] in each of the cases. For (3), the obvious
interpretation is that there was a problem with I-req,
(either A mis-spoke in [1], or changed his mind, or B
misheard). For (4), B must have misheard (or somehow
made a mistake in execution). For (5), the most nat-
ural interpretation is that there was a problem at the
D-req level, and A meant Metroliner rather than North-
star. For (6), things are a bit more subtle. Probably the
problem is the same as for (5), but less information is
provided by A about the correction — B must use the
information that Metroliner is probably not the correct
choice when interpreting the repair. For (7), (8), or (9),
the problem is most likely with P-act or E-act, or L-req
(i.e., in the speech recognizer, but then with L-req for [1]
or [3]?) or some unresolvable contradiction. With luck,
the confusion can be cleared up using a subdialogue with

116

the user. While it is not always crucial to identify the
exact source of the problem, it is important to recognize
these situations of incoherence when they occur, and not
just undo the previous act and redo the very same thing.

4.1

In addition to being able to repair when faced with an
unresolvable contradiction, as in dialogues (7), (8) and
(9), repair is also an option whenever there is difficulty
computing any of these components of the representa-
tion, or when the system is insufficiently confident of its
computation. For example,

Repair at various levels

L-req: “what was the third word?”
I-req: “is Metroliner an engine?”

D-req: “which train did you mean when you said
‘Boston train’?”

P-act: “is going through Albany an appropriate way to
send Metroliner to NY?”

E-Act: “should I do that now or after I send Bullet
through?”
O-Act: “is it there now?”

5 Implementation

We have begun to implement this approach to dialogue
representation within a new dialogue manager, using
Active Logic [Gurney et al., 1997, Elgot-Drapkin and
Perlis, 1990]. The dialogue manager and reasoner are
relatively domain and system independent, relying how-
ever on translation actions to convert between the format
used by external language and domain modules and the
internal logic. The new implementation of active logic
(described briefly in [Purang et al., 1999]) combines log-
ical reasoning in time with an ability to perform and
monitor the progress of external actions. The goal of
the project is to achieve a better degree of conversational
adequacy [Perlis et al., 1998] than current dialogue sys-
tems.

5.1 Maryland version of TRAINS-96

As our initial testbed, we are using components from the
TRAINS-96 system from University of Rochester [Allen
et al., 1996). The TRAINS-96 system consists of a set of
heterogeneous modules communicating through a cen-
tral hub using messages in KQML[Group, 1993]. This
architecture is thus well suited for swapping in different
components to do the same or a similar job and assess-
ing the results. As well as the architecture itself, we
have been using the parser, domain problem solver, and
display modules, replacing the discourse manager com-
ponent with our own dialogue manager and multi-modal
generator. The functions of the modules in the Maryland
version of the system are summarized in (11).

(11) Parser: produces interpretation of sentence input,
as shown in Figure 3(A) (source for I-req).

Problem Solver: answers queries for problem
state, also does planning requests (helps pro-
duce P-act from D-req).

Display Manager: shows objects on screen.

Dialogue manager: uses Active Logic to main-
tain a logical representation of dialog state and
act appropriately to fulfill dialog obligations
[Traum and Allen, 1994].

Output Manager: provides multimodal presen-
tations of system output, including calls to dis-
play manager, printed text, and speech.

Figures 3 and 4 show some examples of the kinds of
representations used in the system.

Figure 3(A) shows the input KQML message the
parser will send the dialogue manager for a user input
(typed or spoken) of “Send the Boston Engine to New
York.” From this, the L-req (1) and I-req (2) are com-
puted directly, interpreting the information provided as
a set of propositions about a Davidsonian event [David-
son, 1967] (in this case kqml15) and associated objects.
Note the proposition assoc-with, indicating underspec-
ification at the I-level about the identity of this engine
or the exact relation with Boston.

Conversion to D-req involves reinterpreting the use-
ful information of the I-req in the ontology of whatever
domain reasoner is used for computing plans of action
to satisfy the request. This may involve disambigua-
tion techniques for underspecified information that the
domain reasoner needs to have in order to compute a
correct plan. In this example, it means resolving the
desired meaning of assoc-with, and computing which
engine is “the Boston engine”.

In converting from I-req (2) to D-req (3), the system
needs to resolve :assoc-with to find an actual engine
for the bindings in the D-REQ. While this is a general
contextual resolution process, involving at least the pre-
vious dialogue history, the visual map, and plans and ex-
pectations [Poesio, 1994], currently, reference resolution
is performed solely by queries to the domain problem
solver. In this case, the DM constructs a query conform-
ing to “which engine is at Boston”, sending a KQML
message, with reply of “answer is Northstar”. These
two messages are added to the assoc_msgs for kqmll5.

Once a complete D-req is built, this is used to con-
struct a query to the problem solver to find a way to
send the engine to its destination. The resulting reply
message is used (along with the D-req) to construct the
P-act level. A decision to execute the plan along with
messages to Problem solver and output manager com-
pletes the E-act level. The O-act level is completed with
responses from these modules indicating successful per-
formance. Not shown in this level is an O-act correlate of
“act4”, which would come as a result of seeing this com-
munication successfully grounded by positive feedback
from the user.

117

(A) Input: Parser Message
(TELL
:CONTENT
(SA-REQUEST
:FOCUS V11621
:OBJECTS
(CDESCRIPTION (:STATUS :NAME) (:VAR :V11573)
(:CLASS :CITY) (:LEX :BOSTON) (:SORT :INDIVIDUAL))
(:DESCRIPTION (:STATUS :DEFINITE) (:VAR :V11584)
(:CLASS :ENGINE) (:SORT :INDIVIDUAL)
(:CONSTRAINT (:ASSOC-WITH :V11584 :V11573)))
(:DESCRIPTION (:STATUS :NAME) (:VAR :V11621)
(:CLASS :CITY) (:.LEX :NEW YORK) (:SORT :INDIVIDUAL)))
‘PATHS ((:PATH (:VAR :V11613)
(:CONSTRAINT (:TO :V11613 :V11621))))
:DEFS NIL
:SEMANTICS
(:PROP (:VAR :V11560) (:CLASS :MOVE)
(:CONSTRAINT
(:AND (:LSUBJ :V11560 :¥*YOU*) (:LOBJ :V11560:V11584)
(:LCOMP :V11560 :V11613))))
:NOISE NIL
:SOCIAL-CONTEXT NIL
:RELIABILITY 100
:MODE KEYBOARD
:SYNTAX ((:SUBJECT . :*YOU*) (:OBJECT . :V11584))
:SETTING NIL
INPUT (SEND THE BOSTON ENGINE TO NEW YORK
PUNC-PERIOD))
RE 1)

(1) I-REQ

% the literal utterance

utterance(kqmll15)
Ireq(kqml15 [send, the, boston, engine, to, new, york, punc-period])

(2) LREQ

% the basic logical representation of the initial
%(possibly ambiguous) utterance

ireq(kqmll5, type(kqmll5, sa-request))
ireq(kqmll5, obj(kqmll5, v11621)),
ireq(kqmll5, class(v11621, city)),

ireq(kgqmll5, status(v11621, name)),
ireq(kqmll5, lex(v11621, new york)),
ireq(kqmll5, sort-of(v11621, individual))
ireq(kgqmll5, obj(kqmlls, v11573)),
ireq(kgmll5, sort-of(v11573, individual)),
ireq(kqmll5, lex(v11573, boston)),
ireq(kqmll5, class(v11573, city)),

ireq(kqml15, status(v11573, name)),
ireq(kgml15, obj(kqmll5, v11584)),
ireq(kqml15, sort-of(v11584, individual)),
ireq(kqml15, class(v11584, engine)),
ireq(kqml15, status(v11584, definite)),
ireq(kqml15, assoc-with(v11584, v11573))
ireq(kqml15, path(kqmll5, v11613), to(v11613, v11621))

ireq(kqmll5, focus(kqmll5, v11621))

ireq(kqmll5,

(contexts(kqmll5, [plani]))
ireq(kqmll5,
(

assoc ' msgs(kqmll5, [kqml15]))

ireq(kqmll5,
ireq(kqmll5,
ireq(kqml15,
ireq(kqml15,
ireq(kqml15,
ireq(kqml15,

sem(kqmll5s, v11560))

If(v11560, [move, v11584, v11621]))
class(v11560, move))

Isubj(v11560, *you*))

lobj(v11560, v11584))
lcomp(v11560, v11613))

Figure 3: Examples of levels: L-req, I-req

5.2 Dialogue Management

The current dialogue management algorithm is very sim-
ple, consisting of a sequence of forward chaining infer-
ences to compute the levels, one from the next, executing
actions when necessary to manipulate and convert exter-
nal representations and communicate with other mod-
ules. The basic outline is shown in (12).

(12) 1.
2.

input — compute L-req, I-req

I-rteq — Compute D-req (using additional
queries for disambiguation, if necessary).
D-req — Compute P-act (usually call to prob-
lem solver for domain acts, but could be DM-
internal for meta-requests)

. P-act — Execute (E-act), (calls to problem
solver and output manager)

Done(E-act)— Expect feedback on O-act

(3) D-REQ
dreq(kqmll5, at-loc(v11584, v11573))
dreq(kqmll5, assoc'msgs(kqmll5, [kqmll5 kqmll6 kqml17]))

dreq(kqml15,
psConstraint(kqmll5, [class, v11621, city], [type, new york, city]))
dreq(kqml15, psConstraint(kqmll5, [class, v11584, engine],
[type, v11584, engine]))
dreq(kqmlls,
psConstraint(kqmll5, [class, v11573, city], [type, boston, city]))
dreq(kqmll5, psConstraint(kqmll5, [at-loc, v11584, v11573],
[at-loc, v11584, boston]))
dreq(kqmlls,
bindings(kqml15, [[v11573, [boston]], [v11584, [northstar]],
[v11621, [new york]]]))
dreq(kqmll5, goal(kqmll5,gol))
dreq(kqmll5, agent(gol,northstar))
dreq(kqmll5, to(gol,new york)))

(4) P-ACT

pact(kqmll5, psstate(kqmllb pss567))
pact(kqmll5, plan(kqmll5,plan566))
pact(kqmll5, goal(plan566,gol))
pact(kqmll5, type(gol,go))

pact(kqmll5, from(gol,boston))
pact(kqmll5, to(gol,new york))
pact(kqmll5, agent(plan566, northstar))
pact(kqmll5, actions(plan566,[go564]))
pact(kqmll5, from(go564,boston))
pact(kqmll5, to(go564,new york))
pact(kqmll5, track(go564, boston-new york))
pact(kqmll5, status(plan566,unimplemented))

(5) E-ACT

eact(kqmll5, status(plan566,implemented))
eact(kqmll5, type(act4,sendmsg))

eact(kqmll5, receiver(act4, outmgr))

eact(kqmll5, content(act4, kqml31))

eact(kqmll5, type(kqml31,move-engine-along-path))
eact(kqmll5, path(kqml31,g0564))

eact(kqmll5, status(act4, implemented))

(6) O-ACT
oact(kqmll5, status(plan566,pss-update-success))

Figure 4: Examples of levels: D-req, P-act, E-act, O-act

In the event of missing but necessary information, the
system can construct an embedded exchange structure,

118

in a manner similar to [Smith et al, 1995]. This ex-
change structure can be for communication with other
modules or with the user (starting from the P-level and
working around to the D-level). In addition, similar ac-
tions can be undertaken when faced with contradictions,
using Active Logic’s capabilities for detecting and re-
solving contradictions [Elgot-Drapkin and Perlis, 1990].
(14) shows the rule used to trigger disambiguation of
any objects not given a proper name in the I-req when
converting to D-req.

(13) fif(and(compute_dreq(ID),ireq(ID,obj(ID,0bj)),
ireq(ID,lex(Obj,null))),
conclusion(dreq(ID,disambiguate(ID,Obj)))).

Although the algorithm presented here is very simple,
the representation levels are compatible with more com-
plex agent-oriented approaches to dialogue management,
e.g., [Traum, 1996, Bretier and Sadek, 1996]). Embedding
this representation in such an agent will allow choices,
e.g., of whether or not to adopt an intention to execute
a computed P-act.

5.3 Solving the problem

In this section we present a sketch of the resources
needed to react appropriately to utterance [3] in the ex-
amples. Figure 5 shows a slightly abbreviated version of
the parser message for the utterance, “No, send Metro-
liner to New York.” The I-level for the main message
will contain the predicates shown in (14), with kqml18
representing the compound act.

(14) ireq(kqml18, type(kqmll8,compound-c-act))
ireq(kqml18, subact(kqml18, kqml19))
ireq(kqml18, subact(kqml18, kqml20))
ireq(kqml18, type(kqmll9, sa-reject))
ireq(kqml18, type(kqml20, sa-request))

Computation of D-level for kqmll9 needs to find an
action to reject (identified as kqmll5, using context).
For kqml18 to be coherent, its sub-actions must be mu-
tually consistent. For a request to be consistent with a
rejection, (at least) E-levels must differ between the new
request (kqml20) and object of rejection (kqmll5). Rea-
soning about determinism of the plan executor, given the
same situation, leads to the conclusion that P-act must
be different between these two acts, as well. In this case,
there is no problem, since Metroliner differs from North-
star. For the other examples, reasoning about determin-
ism of the problem solver (or actually calling the prob-
lem solver) pushes the problem back to D-req level. This
leads to recomputation of D-req (if possible/necessary),
or query to user, when not (or when unable to find a
sufficiently satisfactory candidate).

6 Discussion

Many systems compute something like the six levels pre-
sented here, as part of their process of engaging in dia-
logue. Where we are different from most researchers is
in claiming the utility of keeping these levels as distinct

(A’) Input: Parser Message
(TELL
:CONTENT
(COMPOUND-COMMUNICATIONS-ACT
:ACTS
((SA-REJECT
:SEMANTICS :NO

:MODE KEYBOARD
SYNTAX ((:SUBJECT) (:0BJECT))
INPUT (NO))
(SA-REQUEST
:OBJECTS
((:DESCRIPTION (:STATUS :NAME) (:VAR :V11683)
(:CLASS :ENGINE) (:LEX :METROLINER)
(:SORT :INDIVIDUAL))
(:DESCRIPTION (:STATUS :NAME) (:VAR :V11704)
(:CLASS :CITY) (:LEX :NEW YORK)
(:SORT :INDIVIDUALY)))
PATHS ((:PATH (:VAR :V11696)
(:CONSTRAINT (-TO :V11696 :V11704))))
:SEMANTICS
(:PROP (VAR :V11676) (:CLASS ‘MOVE)
(:CONSTRAINT
(:AND (:LSUBJ :V11676 +¥YOU*)
(:LOBJ :V11676 :V11683)
(:LCOMP :V11676 :V11696))))
SYNTAX ((:SUBJECT . *YOU*) (:OBJECT . :V11683))
SETTING NIL
AINPUT (SEND METROLINER TO NEW YORK
PUNC-PERIOD))))
‘RE 2)

Figure 5: Parser message for Utt. 3: “No, send Metro-
liner to New York”

representations for use as context in processing further
utterances. Something like this is clearly necessary to
deal appropriately with the examples we presented in
Section 3. The Rochester system would do the same
thing in each case: undo the previous action and inter-
pret the second request in the restored context before the
original request was fulfilled, with whatever train it de-
cided upon for “the Boston Train” in (6). The ability to
use the incoherence as a resource for recomputing a ref-
erential anchor or repairing is not available, nor is there
an option of complaining about the seeming incoherence
itself.

Keeping the I-level and D-level distinct is also impor-
tant for sending appropriate messages back to the user.
The I-level should be close to the linguistic structure of
the user interaction, while the D-level should be close
to what domain reasoners actually use. Conflating the
two can lead to an inability to provide comprehensible
feedback to the user. For example, the MIT Galaxy sys-
tem [Seneff et al., 1996] has several domain specialists,
each used for a different kind of task. These domain
reasoners use different ontologies, and thus, in their dis-
course representation (essentially the D-level), “Boston”
is ambiguous between a TOWN in the CityGuide domain
and a CITY in the AirTravel domain. The system may
not be able to resolve which ontology object is being re-
ferred to, but surely a user not intimately familiar with
the system internals would be very confused by a disam-
biguating query such as, “Do you mean Boston the city,
or Boston the town”. Fleshing this out with descriptions

119

of the ontology types, such as “Boston the geographical
area or Boston the point location” is not likely to help.
Here, at the ontology of natural conversation (I-level),
“Boston” is unambiguously the kind of entity that one
could fly to or from, and which can contain restaurants,
so any query would have to attack a different avenue for
disambiguation, relating to the activities such as restau-
rant finding or flight booking, rather than to the kind of
entity.

The approach that we are closest to, is perhaps
[McRoy et al, 1997], who also exploit the utility of
maintaining multiple levels of representation as context.
While there are some differences in the particular lev-
els and type of structure assumed, a larger difference
in approach is the uniformity of the representation lan-
guage. McRoy, Haller, and Ali use a uniform approach,
representing all aspects of processing in the same rep-
resentation language, SNePS [Shapiro, 1979]. This does
allow uniform reasoning and very powerful access to all
parts of the representation, but also places limits on the
kinds of language and domain subsystems that can be
easily added to the system. Our approach is rather to
treat the internals of the other subsystems more or less as
black-boxes, interpreting only the final products within
the logic.

Acknowledgments

This work was supported in part by NSF grant IIS-
9724937. This work is part of the dialogue effort by the
University of Maryland Active Logic Group, other mem-
bers of this group who have contributed to the work pre-
sented here include Don Perlis, K. Purang, and Darsana
Purushothaman. We would also like to thank James
Allen and George Ferguson from University of Rochester
for allowing the use of the TRAINS-96 system as a plat-
form in which to embed these ideas. Also, we would
like to thank members of the TRINDI project and the
Linguistics department of University of Gothenburg for
helpful comments on previous versions of this material.

References

[Ahrenberg et al., 1990] Lars Ahrenberg, Nils Dahlbick,
and Arne Jonsson. Discourse representation and dis-
course management for a natural language dialogue
system. In Proceedings of the Second Nordic Confer-

ence on Text Comprehension in Man and Machine,
1990.

[Allen et al., 1996] James F. Allen, Bradford W. Miller,
Eric K. Ringger, and Teresa Sikorski. A robust system
for natural spoken dialogue. In Proceedings ACL-96,
pages 62-70, 1996.

[Bretier and Sadek, 1996] P. Bretier and M. D. Sadek.
A rational agent as the kernel of a cooperative spoken
dialogue system: Implementing a logical theory of in-
teraction. In J. P. Muller, M. J. Wooldridge, and N. R.
Jennings, editors, Intelligent Agents I1I — Proceedings

of the Third International Workshop on Agent Theo-
ries, Architectures, and Languages (ATAL-96), Lec-
ture Notes in Artificial Intelligence. Springer-Verlag,
Heidelberg, 1996.

[Carletta et al., 1997] Jean Carletta, Amy Is-
ard, Stephen Isard, Jacqueline C. Kowtko, Gwynewth
Doherty-Sneddon, and Anne H. Anderson. The relia-
bility of a dialogue structure coding scheme. Compu-
tational Linguistics, 23(1):13-31, 1997.

[Clark and Schaefer, 1989] Herbert H. Clark and Ed-
ward F. Schaefer. Contributing to discourse. Cognitive
Science, 13:259-294, 1989.

[Davidson, 1967] Donald Davidson. The logical form of
action sentences. In N. Rescher, editor, The Logic of
Decision and Action. University of Pittsburgh Press,
Pittsburgh, PA, 1967.

[Elgot-Drapkin and Perlis, 1990] J. Elgot-Drapkin and
D. Perlis. Reasoning situated in time I: Basic con-
cepts. Journal of Frperimental and Theoretical Arti-
ficial Intelligence, 2(1):75-98, 1990.

[Group, 1993] External Inter-
faces Working Group. Draft specification of the kqml
agent-communication language. available through the
WWW at: http://www.cs.umbe.edu/kqml/papers/,
1993.

[Gurney et al., 1997] John Gurney, Donald Perlis, and
Khemdut Purang. Interpreting presuppositions using
active logic: from contexts to utterances. Computa-

tional Intelligence, 13:391-413, 1997.
[McRoy et al., 1997] Susan W. McRoy, Susan Haller,

and Syed Ali. Uniform knowledge representation for
language processing in the b2 system. Journal of Nat-
ural Language Engineering, 3(2/3):123-145, 1997.

[Perlis et al., 1998] D. Perlis, K. Purang, and C. An-

dersen. Convesational adequacy: mistakes are the
essence. Int. J. Human-Computer Studies, 48:553—
575, 1998.

[Poesio, 1994] Massimo Poesio. Discourse Interpretation
and the Scope of Operators. PhD thesis, University of
Rochester, 1994. Also available as TR 518, Depart-

ment of Computer Science, University of Rochester.

[Purang et al., 1999] K. Purang, D Purushothaman,
D. Traum, C. Andersen, and D. Perlis. Practical rea-
soning and plan execution with active logic. In IJCAI-
99 Workshop on Practical Reasoning and Rationality,

1999.

[Schegloff and Sacks, 1973] Emmanuel A. Schegloff and
H. Sacks. Opening up closings. Semiotica, 7:289-327,
1973.

[Seneff et al., 1996] S. Seneff, D. Goddeau, C. Pao, and
J. Polifroni. Multimodal discourse modelling in a
multi-user multi-domain environment. In Proceed-
ings 4th International Conference on Spoken Lan-

guage Processing (ICSLP-96), 1996.

120

[Severinson Eklundh, 1983] Kerstin
Severinson Eklundh. The notion of language game
— a natural unit of dialogue and discourse. Techni-
cal Report SIC 5, University of Linkoping, Studies in
Communication, 1983.

[Shapiro, 1979] Stuart C. Shapiro. The SNePS seman-
tics network processing system. In Nicholas V. Find-
ler, editor, Associative Networks: Representation and
Use of Knowledge by Computers, pages 179-203. Aca-
demic Press, 1979.

[Sinclair and Coulthard, 1975] J. M. Sinclair and R. M.
Coulthard. Towards an analysis of Discourse: The
English used by teachers and pupils. Oxford University
Press, 1975.

[Smith et al., 1995] Ronnie W. Smith, D. Richard Hipp,
and Alan W. Biermann. An architecture for voice dia-
logue systems based on prolog-style theorem proving.
Computational Linguistics, 21(3):281-320, 1995.

[Sutton et al., 1996] S. Sutton, D. G. Novick, R. A.
Cole, and M. Fanty. Building 10,000 spoken-dialogue
systems. In Proceedings 4th International Conference
on Spoken Language Processing (ICSLP-96), 1996.

[Traum and Allen, 1994] David R. Traum and James F.
Allen. Discourse obligations in dialogue processing. In
Proceedings of the 32" Annual Meeting of the Associ-
ation for Computational Linguistics, pages 1-8, 1994.

[Traum and Hinkelman, 1992] David R. Traum and
Elizabeth A. Hinkelman. Conversation acts in task-
oriented spoken dialogue. Computational Intelligence,
8(3):575-599, 1992. Special Issue on Non-literal lan-
guage.

[Traum, 1994] David R. Traum. A Computational The-
ory of Grounding in Natural Language Conversation.
PhD thesis, Department of Computer Science, Uni-
versity of Rochester, 1994. Also available as TR
545, Department of Computer Science, University of
Rochester.

[Traum, 1996] David R. Traum. Conversational agency:
The trains-93 dialogue manager. In Proceedings of the
Twente Workshop on Langauge Technology: Dialogue
Management in Natural Language Systems (TWLT
11), pages 1-11, 1996.

[Wells et al., 1981] Gordon Wells, Margaret MacLure,
and Martin Montgomery. Some strategies for sustain-
ing conversation. In Paul Werth, editor, Conversation
and Discourse. Croon Helm, 1981.

