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Abstract

We present an approach toward design of a
rational agent, integrating aspects of theo-
retical reasoning, practical reasoning, and
reasoning about and executing plans. The
approach uses Active Logic, which com-
bines reactivity and logical inference, tak-
ing resource bounds into account, and pro-
viding mechanisms for handling contradic-
tion. We augment this logic with a for-
malization of practical reasoning and plan
execution, which also makes uses of contra-
diction handling abilities to cope with plan
failure. We conclude with a description of a
preliminary implementation and plans for
embedding that within a dialogue system.

1 Introduction

In this paper, we present an approach toward design
of a rational agent, integrating aspects of theoretical
reasoning, practical reasoning, and reasoning about
and executing plans. The approach, based on Ac-
tive Logic [Elgot-Drapkin and Perlis, 1990], couples
a view of belief as resulting explicitly from inference
(or observation), with a resource-bounded approach
to inference. Thus not all consequences of an agent’s
beliefs will be believed (currently), and doing the in-
ference necessary to establish these consequences as
beliefs will take time, during which other changes to
the world may happen. Also key to this approach 1s
an ability to handle contradictory beliefs in a robust
manner. The inference procedure is set up so that
contradictions in beliefs will have only limited (and
recoverable) effects on the inferability of other be-
liefs. Noticing contradictions drives much of the fur-
ther inference, including both theoretical and prac-
tical reasoning.

We model the components of practical reasoning
in a fairly intuitive, commonsense way rather than
attempting a comprehensive account of the tricky
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issues involved in such notions as knowledge, inten-
tions and obligations. Beliefs are represented di-
rectly as a sequence of sets of propositions (one set
per time point), and also using an introspection op-
erator. Part of the beliefs includes a theory of action,
including plan recipes with pre- and post-conditions
and linear decompositions including sub-actions and
subgoal states. Practical reasoning 1s accomplished
using modalities Goal (an end state), Adopt (mark-
ing the current state of execution of a plan), and Fz-
pect (marking the anticipated results of an adopted
plan). A key feature of the approach is a natural in-
tegration of inference, (normal) plan execution, de-
tection of plan failure, and re-planning and acting.

In the next section we highlight some of the main
features of active logic. We then describe, in Section
3, an initial formalization for reasoning about action
and practical reasoning within active logic. In sec-
tion 4, we present initial efforts at implementing an
agent using an architecture that gives active logic
sensors and effectors to interact with the world (the
electronic world). We conclude with some future di-
rections, using this agent as the basis for a natural
language dialogue system.

2 Active Logic

Active logics were developed as a means of combin-
ing the best of two worlds — inference and reactivity
— without giving up much of either. This requires a
special evolving-during-inference model of time.

A key example is deadline-coupled reasoning. An
approaching deadline must be factored into one’s
reasoning, even seen as an evolving part of that
reasoning, rather than as a separate concern out-
side the reasoning process. Thus the remaining time
(deadline — current_time) shrinks steadily as one at-
tempts to find a solution to the problem.

The formal changes required for such a logic are, in
some respects, quite modest. The language can be
that of a first-order logic, perhaps augmented with
names for expressions to facilitate meta-reasoning.
The principal change is that inference rules become
time-sensitive. The most obvious case is that of rea-
soning about time itself, as in the rule



i: Wow (i)

i+1: Now(i+1)

The above indicates that from the belief (at time i)
that the current time is in fact 4, one concludes that
it now is the later time ¢ + 1. That is, time does not
stand still as one reasons.

For instance, suppose you are driving en route to
the airport and planning details of your route as you
go. You wonder whether to take the more direct but
more heavily traveled road, or another. There are
many facts to consider (time of day, day of week,
radio traffic and weather reports) and many impli-
cations to ferret out (the radio is not broadcasting
any traffic news, but it may be due to lack of such
news or to their obsession with announcing a base-
ball game, etc). You quickly realize that your flight
will be gone before you can figure out ramifications
to all these subtleties. So you decide to stop worry-
ing about the best of all possible routes, and instead
content yourself with any one that seems likely to
work.

Using active-logic inference rules such as that
above, deadline-coupled reasoning has been formal-
ized and applied to planning problems (see [Nirkhe
et al., 1997) where time of plan-enactment is crucial.

Technically, an active logic consists of a first-order
language, a set of time-sensitive inference rules, and
an observation-function that specifies an environ-
ment in which the logic “runs”. Thus an active
logic is not pure formalism but is a hybrid of for-
mal system and embedded inference engine, where
the formal behavior is tied to the environment via
the observations and the internal monitoring of time-
passage (see [Elgot-Drapkin and Perlis, 1990] for a
detailed description).

In the above example, the reactivity is not to ex-
ternal events but rather to the universal event of
time-passage vis-a-vis one’s own reasoning. One can
conceptualize this externally in terms of looking at a
clock but this is not necessary or particularly help-
ful. On the other hand, external events are often
quite important, as we discuss later.

Active logics are able to react to incoming infor-
mation (including dialogue utterances by a collabo-
rative partner) while reasoning is ongoing, blending
new inputs into its inferences without having to start
up a new theorem-proving effort. Thus, any helpful
communications of a partner (or user) — whether as
new initiatives, or in response to system requests —
can be fully integrated with the system’s evolving
reasoning. Similarly, external observations of ac-
tions or events can be made during the reasoning
process and also factored into that process.

Thus the notion of theorem for active logics is a
bit different from that of more traditional logics, in
several respects:

1. Time sensitivity. Theorems come and go;

that is, a wiff once proved remains proved but
only in the sense of its being a historical fact
that was once proved. That historical fact is
recorded for potential use, but the wif itself
need not continue to be available for use in fu-
ture inferences; it might not even be reprov-
able, if the “axioms” (belief) set has changed
sufficiently.  As a trivial example, suppose
Now(noon) — Lunchiime is an axiom. At
time t=noon, Now(noon) will be inferred from
the rule given earlier, and Lunchtime will be in-
ferred a step later. But then Now(noon+1) is
inferred, and Lunchtime is no longer inferable
since its premise Now(noon) is no longer in the
belief set. Lunchtime will remain in the belief
set until it is no longer “inherited”; the rules for
inheritance are themselves inference rules. One
such involves contradiction; see next item.

. Contradictions. If a direct contradiction (P

and = P) occurs in the belief set at time t, that
fact 1s noted at time t+1 by means of the infer-
ence rule

t: P, “P

t+1: Contra(i+1,P, “P)

Also, as a consequence of the contradiction hav-
ing been noted, neither of these instances of P
or =P will be used in future inferences. Thus
the logic is partially shielded from using par-
ticularly blatant contradictands. P and - P
remain theorems in the sense of having been
proved, but are not available for further infer-
ence. For instance, if Lunchtime is contradicted
by = Lunchtime, neither of these is inherited to
the next time step; but = Lunchtime may well
be reproven and thus in a sense “wins”. This
can occur as a result of a further axiom, such
as " Now(noon) — —Lunchtime. We can also
provide contradiction-handling axioms that are
domain independent or domain dependent for
specific domains. These can use information
about the domain but also information about
the knowledge base and proofs to arbitrate be-
tween the contradictands.

Much more subtle effects can occur from this
feature. To return to the airport example: you
are driving en route to the airport and planning
details of your route as you go. Then your car
gets a flat tire. Rather than complete your orig-
inal plans, it is time to make major revisions,
in fact even to change your goals for the time
being.

Truth maintenance systems [Doyle, 1979] also
tolerate contradictions and resolve them typi-
cally using justification information. This hap-
pens in a separate process which runs while the
reasoning engine is waiting. We do not think



that this will not work in general since the rea-
soning needed to resolve the contradiction will
depend on the very information that generated
it. Reasoning and the resolution of contradic-
tions have to take place in the same reasoning
process.

. Defaults. Defaults can be given a straightfor-
ward representation in an evolving-time frame-
work:

t: “Known(~“P), Q

t+1: P

Here from the facts that Q, and that =P is not
a belief at time t, P is inferred. This avoids the
decidability issues of traditional default mech-
anisms, since only a linear lookup in the belief
set for time t is needed to tell that =P 1s not
there (and that Q is there). This does not in it-
self deal with problems arising from interacting
defaults. However, since such cases tend to in-
volve contradictory conclusions, these then can
be treated as any other contradictands.

. Observations. In active logic the flat tire
in the previous example can be represented in
terms of observations. And the reasoning sim-
ply goes on with this new information. There is
no executive subsystem that turns off the route
planner midstream and starts up a new plan-
ning action. Rather there is a single stream of
reasoning, which can monitor itself by looking
backwards at one moment to see what it has
been doing in the past, including the very re-
cent past. If the previous few steps in some way
conflict with new information, then the next few
steps can be devoted to sorting out enough of
the apparent mismatch to allow a decision as
to how to proceed. All of this is carried out
in the same inferential process as the original
planning, without the need for level upon level
of meta-reasoners. This is not to say that there
is no metareasoning here, but rather that it is
“in-line” metareasoning, all at one level. The
advantages of this are (i) simplicity of design,
(ii) no infinite regress, and (iii) no reasoning
time at higher levels unaccounted for at lower
levels.

A potential disadvantage is the possibility of vi-
cious self-reference. This matter is a topic of
current investigation. However, another major
advantage of such time-sensitive in-line metar-
easoning 1s that inconsistency in one’s beliefs
need not cause serious problems in general. The
reason is largely that given above: a conflict in
the reasoner’s beliefs can be noted by the rea-
soner as a new belief, and the latter can lead
to a decision to encapsulate the conflicting be-
liefs so that they do no harm. Now this cannot

be a fully general process, since identifying con-
tradictions 1s at best semi-decidable. However,
deeply hidden contradictions usually do little
harm; and so we have concentrated on infer-
ence rules for “direct” contradictions, that is,
belief pairs that surface in the form P and —P;
see [Miller, 1993] for details including a theo-
rem providing a rather general case in which
such in-line metareasoning can cope with direct
contradictions.

5. Evolving state representation. Another
feature that comes directly out of the time-
coupled nature of active logics is their ability to
represent the evolving status of reasoning and
actions. The representation of actions can avail
itself of up-to-date time information. Thus an
action A can be marked as Planned, Underway,
and Done; and the logic can pass from one to
another of these as actions are put into execu-
tion. Thus active logics not only reason about
plans, but can make and execute them while
keeping track of this changing state.

It is easy to write an inference rule that updates
at each time step whether a particular plan is
currently being started, is already underway, or
is completed. More detail than this, such as
how long the plan execution has been going on,
is also readily inferred. This is important for
various purposes, such as:

(i) avoiding re-initiation of a plan already un-
derway

(ii) assessing whether one is spending too much
time on a goal

(iii) distinguishing between various instances of
a plan, one underway, another finished, perhaps
a third and fourth on the to-do list. This 1s use-
ful for repetitive activities, such as transport-
ing objects one by one, or keeping track of how
many times one is performing a certain action
(for instance in dialogue, where one may repeat
a request a few times for emphasis or as a re-
minder, but not indefinitely, without a kind of
breakdown of coherence [Suchman, 1987]).

Active logics can be seen either as formalisms
per se, or as inference engines that implement for-
malisms. This double-role aspect is not accidental:
it is inherent to the conception of an active logic
that it have a behavior, ie, the notion of theorem-
hood depends directly on two things that are not
part of traditional logics: (i) what is in the current
evolving belief set, and (ii) what the current evolving
time is.

The traditional markers of a logic are its syntax
and its semantics. Active logics have both of these:
the syntax is (usually) that of FOL; and the seman-
tics can also be that of FOL with a few addenda
such as that Now(x) has the meaning that the cur-
rent evolving time is x. (There are also alternative



semantics available.) What is missing is a soundness
and completeness theorem, and for good reason: ac-
tive logics are not intended to be sound or complete
but rather to reflect the step-by-step process of rea-
soning of a real agent. Thus many true assertions
will not be proven, and many things proven are not
true. In fact, active logics are designed with incon-
sistent belief sets in mind; and these of course can
never be true.

It is best to avoid a mere terminological squabble
over the word “logic”. However, in many impor-
tant senses, active logics are formal specifications
of notions of theoremhood appropriate to the study
of real agents. If we are concerned about agents
and their reasoning, rather than about an agent-
independent notion of truth, then we should not ex-
pect or want a tight coupling between what is proven
(or provable) and what is true. Agents can only do
what they have the resources to do, and whatever
logic an agent uses must therefore also have that
property. Thus to the extent that logic is the study
of reasoning, active logics are the study of reasoning
as an active process.

Active Logic provides the theoretical reasoning
component of our framework. However it also has
many convenient features for practical reasoning,
particularly the time-situatedness and contradiction
handling facilities. This provides a natural mecha-
nism for plan reasoning and acting, as well as fail-
ure detection and re-planning. In the next section,
we describe a preliminary formalization of reasoning
about action and plan execution, using Active Logic.

3 Practical Reasoning and Plan
Execution

Plan execution architectures (for instance CIRCA
[Goldman et al., 1997], ESL [Gat, 1996], PRS [My—
ers, 1997], RAPS [Firby, 1995]) are generally not
based primarily on logic. However, we think that
active logics are well suited to serve as plan execu-
tion architectures: failures of plans or of actions can
be handled naturally as contradictions; the chang-
ing state of the world can be represented as time-
situated changing beliefs of the agent; the reasoner
can use logic to perform arbitrary reasoning. Active
logics can therefore provide a uniform platform for
reasoning and plan execution.

Using active logics as a plan execution architecture
requires one to define representations for plans, goals
and actions, to add axioms to describe the plan ex-
ecution process, and to augment the contradiction
handler to take care of the special cases of contra-
dictions caused by plan execution.

We have begun developing a plan execution archi-
tecture in active logic. In this section we sketch our
preliminary system and present some examples that
illustrate it. We are still at the early stages of devel-
opment, so we do not take complex plans (beyond a

sequence of sub-actions) or situations into account
yet.

3.1 Representations

The notation we use is as follows: predicates and
functions are capitalized, variables are not, Greek
letters are used for expression variables; Know 1s
a positive introspection predicate; the formulas we
present are assumed to be universally quantified
unless otherwise noted. We allow quantification
over formulas that may be seen as being implicitly
quoted. Lists are represented prolog style with [ ],
and we use | to denote concatenation of lists. Now
is a unary predicate true of the current time step.

Plan recipes are represented as
Plan(name, pre, post, steps) where name is the
name of the plan, pre is a formula describing the
preconditions for the execution of the plan, post
is a formula describing the formulas that hold at
the successful execution of the plan, steps is a
temporally ordered list of steps that constitute the
plan. These steps can be either primitive actions
that can be executed, or sub-goals, requiring a
new plan to be adopted and executed. The plans
we currently consider are simple plans with only
sequencing of plans or actions allowed.

Actions are represented in a similar way as
Action(name, pre, post, act) where name is the
name of the action, pre is a formula describing the
preconditions for the execution of the action, post 1s
a formula describing the formulas that hold at the
successful execution of the action, act is the proce-
dure that is to be executed to implement the action.

Exogenous  actions  are  represented by
Action(name, pre, post, Nul). For instance,
if the agent is in a train and it depends on
the train getting to X, this 1is represented
as Action(GetTo, InTrain(Trainl, Timel),
At(X, Time2), Nul)

Goals are represented as Goal(¢) where ¢ is a for-
mula that is to be made to hold. Goal(¢) holds
only when ¢ has not been accomplished and no plan
has been adopted to achieve ¢.This goal can be a
maintenance goal if ¢ quantifies over time. For ex-
ample, we would represent keeping the cat fed as
Goal(¥t Fed(Cat,t)).

Plans  that have  been
are  being  executed are represented by
Adopt(name, done, rest, goal)  where name is
the name of the plan, done 1s a list of those steps
executed, rest is the list of the remaining steps, and
goal is the goal.

adopted and

3.2 Plan execution axioms

We adopt a plan for execution if its postcondition(s))
implies the goal(¢), the preconditions(#), are met
and the goal is not already true:

Goal(¢) NG A Plan(n,0,¢,s) A (¢ — ¢) A
—“Know(¢) — —Goal(¢) A Adopt(n,[], s, $)



Note the assertion of =Goal(¢) here. This represents
that ¢ 1s no longer a goal that needs to be processed—
Adopt(N,[ ], 5, ¢) indicates that ¢ is being worked
on. The assertion of =Goal(¢) will give rise to a
contradiction. This will be resolved by preferring the
later formula, in this case =Goal(¢) (see below for
more on contradiction resolution). We also require
that all adopted plans for the same goal be the same:

Adopt(n, i, f,¢) A Adopt(m, 7', f',¢) —n=m

If there are two different adopted plans for the same
goal, a contradiction will be generated since -n = m.
At this point, one can choose which plan to pursue.

If the precondition of the plan is not known to hold,
we make it a goal:

Goal(¢) A ~Known(¢) A = Known()A
Plan(n,0,¢, steps) A (¢ — ¢) — Goal(h)

Here, ¢ 1s still a goal so that whenever the precondi-
tions are made true, the main plan will be started.
We now consider executing the plan. If the next
step of the plan is an action, we wait until the previ-
ous step of the plan is completed and verify that the
preconditions of that step hold before executing the
action. Done(act) is asserted in the knowledge base
once action act is completed by the procedure execu-
tion module. Do(act) causes act to be performed by
the agent. H returns the head of a list, Last returns
the last element of the list and T' returns the tail.

(Now(t) A Adopt(n,i,r,0) A Done(Last(i))A
H(r) = Action(a, ¢, v, act) A ¢) —

(Do(act) A Adopt(n,i|H(r), T(r))A
FEepect(Fty t <ty Ap(ty)) A~ Adopt(n,i,r, 0))

We assert that we expect that the postconditions
will hold sometime in the future. When the action
is actually done, we will have confirmation of that by
the postconditions being asserted in the knowledge
base. If something happens that makes this impos-
sible (for example, if the action fails), the agent will
know that it has a problem.

If the next thing on the plan is a goal, we try to
plan for 1t:

(Now(t) A Adopt(n,i,r,0) A Done(Last(i))A
H(r) = Goal(¢)) —
(Goal(¢) A Adopt(n,i|H(r), T(r), 0)A
—Adopt(n,i,r,6) A Expect(3t, t < t1 A ¢(t1)))
If the preconditions do not hold, we make them a
goal.
(Adopt(n,i,r,0) A Done(Last(i)) A 7 Known(¢p)A
Hd(r) = Action(a, ¢,v,act)) — Goal(¢)

If there 1s nothing left in the plan, we stop.
Adopt(n,i,r,0) Ar =[] — —Adopt(n,i,r,0)

This causes a direct contradiction that is resolved by
retracting both contradictands.

In the case that we are at the very beginning of a
plan, we know that the empty action is always done:

Done(Nul)

Goal and Fzpect have some properties of modalities,
and the usual rules apply, including Ezpect(pAip) —
(FExpect(¢) A Expect(v)), and the Barcan formula
(see for instance [Hughes and Creswell, 1996]), so
that we get Expect(Va ¢(x)) — Vo Expect(p(x)). !

3.3 Contradictions

Some events in the execution of plans depend on the
agent noticing contradictions and reacting appropri-
ately. As mentioned above, contradictions in active
logic are automatically flagged when both P and =P
are derived. For plan execution, we also flag contra-
dictions for Ezpect(¢) and —¢: if the agent expects
something to become true and the negation of it is
found to be true, there is something wrong with the
plan.

The contradictions are processed by a set of axioms
that constitute the contradiction handler. These ax-
ioms depend on domain information as well as meta-
information such as the derivation of the contradic-
tands, their source and the time at which they were
first asserted. This information is not explicitly rep-
resented in the knowledge base as formulas in the
current implementation of active logic, but is in-
stead represented in data structures associated with
the formulas. Access functions allow the axioms to
reason with these.

Some of the strategies for resolving contradictions
between ¢ and =¢ are: 1. if ¢ is of the form Goal(v),
then we reinstate the later one; 2. if ¢ is of the form
FErpect(¢) and —¢ is =) and results from an obser-
vation, then reinstate the goal that led to the expec-
tation and remove the expectation. The rationale
behind these will be made clearer below.

3.4 The domain

The domain we use to illustrate this system is part
of the Washington area metro system. We assume
that our agent is at College Park (CP) and wants
to get to Union Station (US). The only train line
that passes through CP is the green line. Since part
of the green line is still under construction, there
is no direct train from CP to US: one has to take
the green train from CP to Fort Totten (FT) and
there change to a red train that goes from FT to US.
However, during rush hour, the green train bypasses
FT altogether and goes to US. Therefore we have
two plans to get to US from CP: one for rush hour,
and one for non rush hour.

The examples we present are first a simple case of
the agent getting on the train at CP during rush

1We intend to explore the relation between our use
of modality in these cases and the uses of modality for
agency as in [Belnap and Perloff, 1988; Horty and Bel-
nap, 1995], for example.



hour and getting off at US. The second example we
consider is the case of the agent thinking it is rush
hour (by default), getting on the train at CP and
expecting the train to go up to US. However, it is
not rush hour and the train gets to FT and stops
there. The agent observes this and that leads to a
contradiction. This causes the agent to abandon the
original plan and to form a new plan to get from FT

to US.

Plans

If the agent is at p at time ¢, At(p,t), and
there is a direct train m that goes from p to ¢,
DirectTrain(p, ¢, m), and that train is at p at time
t, TrainAt(m, p,t), then the following plan will re-
sult in the agent not being at p but at ¢ at some
later time.

Plan(P1 | (At(p,t) A DirectTrain(p, q, m)A
TrainAt(m,p,t)),
(E'tl 1 >1tA _'At(p,tl) A At(q,tl)),

[Ar, Az, A3])

Here, A1, Ay and Az stand for actions Al, A2, and
A3 that we present below. We use A; and so on for
the convenience of not having to write the actions
here. These are not part of the language.
Another plan is for the case that there 1s no direct
train between the source and the destination:
Plan(P2,
A-DirectTrain(z, y, mg)A
DirectTrain(z,y, ma)),
(E'tl 1 >1tA _'At(l‘, tl) A At(y, tl)),
[Goal(EItz to > 1A At(Z, tz)),
GOal(E'tg t3 > 1A At(y, tg))])

Primitive Actions
The primitive actions used in the plans are as fol-
lows.

If we are at the station at the same time as the
train 1s, we can get on the train and we will no longer
be considered to be at the station.

Action(Al, (At(z,to) A TrainAt(m, z,1g)),

(InTrain(m,to + 1) A 2At (2,10 + 1)),
GetOnTrain(m, z,1g))

A2 is an exogenous event: if the agent is in the train
at station X and there is a direct connection to sta-
tion Y, then, at some later time, the train and the
agent will end up in Y.
Action(A2, (InTrain(m,to) A TrainAt(m, z,to)A
DirectTrain(z,y, m)),
(Fta, ta > 1o ATrainAt(m,y,ta)A
InTrain(m,ts)),
Nul)

The third action is to get off the train: if we are in
the train and it 1s at a station, we can get off the
train and we will be at the station.
Action(A3, (InTrain(to) A TrainAt(m, y,to)),
(=InTrain(to + 1) A At(y,to + 1),
GetOf fTrain(m, y,tg))

(Imimae At(z,t) A DirectTrain(z, z,my)

Domain Information
During rush hour, there is a direct train from College
Park to Union Station:

Now(t) A RushHour(t) —
DirectTrain(CP,US, Green)

It is usually not rush hour:
Now(t) A = Know(—RushHour(t)) — ~RushHour(t)

When it is not rush hour, there is a green train from
CP to FT and a red train from FT to US:
Now(t) A ~RushHour(t) —
DirectTrain(C P, FT, Green)

Now(t) A ~RushHour(t) — DirectTrain(FT,US, Red)

If the train reaches a terminal station, we have to
get off:

InTrain(m,t) A TrainTerminus(m, z,t) —

Do(GetOf fTrain(m, z,t))

This is an instance of an action being done depend-
ing directly on the state of the agent and not be-
ing part of a plan. When getting off the train suc-
ceeds, the following: At(z,t) and —~InTrain(m,t)
are added to the knowledge base.

When a train reaches the terminus, it goes nowhere
else:

TrainTerminus(m, z,t0) N—x =y Aty >tg —
—TrainAt(m,y,11)

3.5 Example 1

We present axioms for the first example: The goal
is to get to Union Station, the agent is at College
Park at time 0, and it is rush-hour and the train is
at College Park.

Goal(At(US,T)) A Now(0) A At(C'P,0)A
RushHour(0) A TrainAt(Green, C'P,0)

We do not show the details of the plan execution,
but highlight some of the aspects. At time 1, plan
P1 is adopted and at the next step, the action
GetOnTrain(Green, CP,0) is executed. This
succeeds and adds to the knowledge base the fol-

lowing: Done(GetOnTrain(Green, C'P,0),3) A
InTrain(Green,3), 7 At(C'P, 3). Since
Done(GetOnTrain(Green, CP,0),3) is a pre-

condition for the next action, we can now execute
it.  However, the next action is a Nul action,
so we can only wait until the preconditions for
the action after are satisfied and we assert the
expectations at this point:  FEapect(3ty ¢ >
3 A TrainAt(Green,US 1) AN InTrain(m,ty)).
Later, say at time 10, the train does get to US, and
these expectations are observed to be true. The
agent then executes the last step of the plan, which
is to get off the train, and that results in asserting

At(US,11) in the knowledge base.



3.6 Example 2

In this case too, the agent is at College Park and
thinks it is rush hour and gets on the train just
as before. Once it does get on the train, we ex-
pect Fapect(Ity t1 > 3 A TrainAt(Green,US,t1) A
InTrain(m,t;)). TFrom this we can derive that
Expect(3t1Train At(Green, US, 11)).

However when the agent gets to action A2,
the train reaches the terminus at FT. The agent
observes TrainTerminus(Green, FT,10) (assume
the time is 10). This leads to the agent get-
ting off the train Do(GetO f fTrain(Green, FT,10))
which results in At(FT,10). The agent also con-
cludes that this train is not getting anywhere:
Vi, p -FT = p — —TrainAt(Green,p,t). In

particular, this train is not getting to Union
Station:  Vt —TrainAt(Green,US,t). This
however contradicts the expectation that the

green train will indeed get to Union Station:
FExpect(Ity TrainAt(Green,US,t2)).

The plan has failed and since the agent is execut-
ing the plan, it cannot back up to a preceding state—
it has to try to accomplish its goal from its current
state. A contradiction is generated and the handling
of the contradiction results in reinstating the original
goal Goal(At(US,t)) and the removal of the expec-
tations. Now the agent is at FT and has the goal
of getting to US and knows there is a red train that
goes there directly, so it can get to Union Station
using the same procedure as in the previous exam-
ple.

4 Alma/Carne: An Active Logic
Agent

Our concern is not just with “theoretical” practical
reasoning, but with using this reasoning about ra-
tionality in a “practical” way, as a specification of
an artificial agent. We have thus been constructing
a test-bed system both for testing the ideas above
and for attempting to apply the general approach for
practical problems such as human-computer natural
language dialogue. Alma/Carne is an implementa-
tion of active logic that includes a facility for repre-
senting and using procedural knowledge. This gives
the active logic the ability to interact in arbitrary
ways with the environment and to execute proce-
dures the details of which are of no interest inferen-
tially. Alma and Carne are separate processes with
Alma the reasoner and Carne the action execution
module. This gives us a clear separation between the
procedural and the declarative parts of the model
of the agent while requiring declarative knowledge
about the procedures to be explicitly stated.

4.1 Alma

Alma implements active logic and is the repository
for declarative knowledge in the agent. All infer-
ences and all decisions to act are done in Alma, con-

trolled by domain axioms and active logic rules of
inference. Alma has a few features that enhance the
efficiency of the logic including: 1. applying the in-
ference rules to new formulas only; 2. allowing the
programmer to specify in what sorts of proofs each
formulais to be used (forward or backward or both);
3. allowing the programmer to specify policies that
determine which inferences to actually do at each
step.

The problem of controlling the logic is a crucial
one, which will get worse as the agent 1s used in more
realistic settings and these features are just the start
of our attempt to address this problem.

Alma also has the capability to interact with
Carne, in particular, using Carne to “execute” basic
actions. We describe that following a description of
Carne.

4.2 Carne

Carne contains the procedural knowledge of the rea-
soner. It allows the programmer to specify programs
in Prolog that fall into the following main categories:

e Programs triggered by Alma to effect a change
in the environment.

e Programs that are responsive to events in the
environment and that automatically update
Alma’s knowledge base with observations.

e Programs that do computations on behalf of

Alma.

These give Alma the ability to effectively interact
with the world and to offload resource intensive com-
putations to a separate process. A simple interface
is used to link Alma and Carne.

4.3 The Alma/Carne interface

On the Alma side, there are special purpose rules of
inference and predicates. These predicates can be
used 1n axioms to initiate programs in Carne, and
to reason about the status of the programs.

call(¢, Id)Tf a formula of the form call(¢, Id) is de-
rived in Alma, an inference rule comes into play
that sends a message to the Carne process for it
to execute program ¢ (which, of course, has to
be known to Carne). The rule also results in the
assertion doing(¢,Id) in the knowledge base.
The Id is a unique identifier used to distinguish
between multiple invocations of the same pro-
gram with the same arguments. An alma rule
to perform an action of a plan would be to call
a program whenever a Do(Act) proposition of
the appropriate type is inferred.

doing(¢, Id) This asserts that Carne is in the pro-
cess of executing ¢.

done(¢, Id) Once the program has completed suc-
cessfully in Carne, a message i1s sent to Alma
that results in the assertion of done(, I'd) in the



knowledge base and the deletion of doing(¢, Id)
(although that remains in the Alma history).

error(¢, Id) Tn case the program fails to exe-
cute in Carne, error(¢,Id) is added to and
doing(¢, Id) is deleted from the Alma database.

These predicates track the status of the programs
in Alma and enables decisions to be made about
actions as described in the previous section.

On the Carne side, a Prolog predicate af (add for-
mula) is provided to the Carne programs that al-
lows them to assert formulas to the Alma knowledge
base. This facility is independent of the above status
predicates and is used to assert the results of compu-
tations and to include input from the environment,
into Alma in the appropriate form. Similarly, df
(delete formula) can be used by Carne programs to
remove formulas from the Alma knowledge base.

5 Current and Future Work: A
Conversationally Adequate Dialog
Agent

Using the Alma/Carne implementation, we are
designing and implementing a natural-language-
dialogue and commonsense-reasoning engine that
has a heavy emphasis on metareasoning [Traum and
Andersen, 1999]. The hypothesis we wish to test
is that metareasoning is essential to flexible dis-
course and cognition, in which (miscommunication
and other) errors must be detected and repaired dur-
ing the same episode of reasoning (see [Perlis et al.,
1998]). An agent capable of doing this will have
to reason with and represent: (1) ongoing time; (2)
history; (3) linguistic objects; (4) meanings; (5) con-
tradictions.

The architecture we have designed involves tradi-
tional modules (e.g., speech-processor, parser, dia-
logue manager, problem solver, output/action man-
ager), but organized in terms of logical and non-
logical behaviors. Thus our logic engine, Alma, re-
ceives and sends communications from the rest of
the system (via Carne — whose only job is to facil-
itate such internal messages, see Figure 1). As has
been suggested often before (e.g., [Rieger, 1974]) we
view dialogue as simply one special kind of problem-
solving.

One major ongoing application of active logics
is that of building a “conversationally adequate”
dialogue agent. Conversationally adequate agents
should be able to engage in “free-ranging” conversa-
tion: successfully exchanging information with an-
other agent over the course of a conversation cover-
ing any arbitrary topic. Such an agent will have the
ability to learn in McCarthy’s sense of advice-taking,
via conversation [McCarthy, 1958]. We hypothesize
that the ability to use meta-reasoning (coupled with
other crucial skills like learning) to correct errors is
an ability that, once sufficiently sophisticated, allows
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Figure 1: The conversational agent architecture

Solvers

agents to engage in free-ranging conversation.

Preliminary work on applying active logics to prob-
lems in language processing has been done [Gurney
et al., 1997; Perlis et al., 1996], and we have pro-
posed an abstract view of how we would build such a
conversationally adequate agent [Perlis et al., 1998].
We view metareasoning to be a crucial part of that
type of agent and believe that active logics are well
suited for that. We are currently investigation use
of the plan execution framework presented above in
addressing dialog performance.
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