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Abstract
A multi-floor dialogue consists of multiple sets
of dialogue participants, each conversing within
their own floor, but also at least one multi-
communicating member who is a participant of
multiple floors and coordinating each to achieve a
shared dialogue goal. The structure of such dia-
logues can be complex, involving intentional struc-
ture and relations that are within or across floors.
In this study, we propose a neural dialogue structure
parser based on multi-task learning and an attention
mechanism on multi-floor dialogues in a collabo-
rative robot navigation domain. Our experimental
results show that our proposed model improved the
dialogue structure parsing performance more than
those of single models, which are trained on each
dialogue structure parsing task in multi-floor dia-
logues.

1 Introduction
In single-floor dialogues, each participant can access any of
the dialogue contents. For example, two people talking face
to face, or an online conference involving participants from
different places is a single-floor dialogue because each par-
ticipant can access all of the dialogue contents. By contrast, a
multi-floor dialogue consists of multiple sets of dialogue par-
ticipants, each conversing within their own floor, but also at
least one multi-communicating member who is a participant
of multiple floors and coordinating each to achieve a shared
dialogue goal. For example, in a restaurant, a server com-
municates with customers to take their orders in the dining
room (one floor) and talks with other workers in the kitchen
(another floor) who prepare the customer’s food. All the par-
ticipants work toward the joint goal of providing the customer
with their desired meals, however in this case, only the server
participates in both floors, conveying orders from customer
to kitchen and perhaps information about item availability or
speed from kitchen back to customers. Another example is in
military units, where soldiers follow their commander’s or-
ders, which are decided at headquarters. Such situations are
quite common in the real world, where we have different di-
alogue floors for decision-making and actions based on deci-
sions.

Identifying aspects of multi-floor dialogue structure can be
critical for building cooperative applications that have to par-
ticipate in multi-floor dialogues, for example collaborative
navigation robots [Lukin et al., 2018; Bonial et al., 2018].
However, most existing studies on dialogue structure pars-
ing addressed only single-floor dialogues. There are standard
annotation schemes for both dialogue acts [Bunt et al., 2012]
and discourse relations [Prasad and Bunt, 2015] in single-
floor dialogues. Some proposed models have parsed the dia-
logue structure. However, these schemes do not fully address
the issues of dialogue structure in multi-floor dialogues. A
previous work proposed an annotation scheme of dialogue
structure on multi-floor dialogues [Traum et al., 2018]. This
scheme is based on two important aspects of dialogue struc-
ture: transaction units and the relations between utterances.
A transaction unit clusters utterances from multiple partici-
pants and floors that contribute to achieving the initiating par-
ticipant’s intention. Relations link utterances to antecedents
within the unit. However, there is no previous work on auto-
matic dialogue structure parsing for multi-floor dialogue.

In this paper, we propose a first neural dialogue structure
parser for multi-floor dialogue structure. Our proposed parser
has an attention mechanism to predict structure across differ-
ent floors. In the following sections, we describe the dialogue
structure parsing task on multi-floor dialogue, an annotation
scheme, and our target domain (Section 2). We describe our
proposed system based on the end-to-end approach, which
automatically identifies the dialogue structure of multi-floor
dialogues by recurrent neural networks. The definitions of
transaction units, antecedents, and relation-types are closely
related to each other. We applied the attention mechanism
and multi-task learning to improve the overall performance
of the dialogue structure parser considering their charac-
teristics (Section 3). We experimentally evaluated the dia-
logue structure parsing performance of our model using auto-
matic metrics that focus on micro- and meso-level structures
[Traum and Nakatani, 1999] in dialogues (Section 4). Our
proposed model using multi-task learning improved the over-
all performance compared to models trained on single-task
settings (Section 5). Finally, we conclude by describing the
performance of our proposed model and discussing possible
future directions (Section 6).



Table 1: Dialogue example of multi-floor dialogue

Left Floor Right Floor Annotations
# Commander DM→ Commander DM→ RN RN TU Ant Rel
1 move to where you

see the first cone
1

2 I ’m not sure which
object you are refer-
ring to. Can you de-
scribe it in another
way, using color or
its location?

1 1 request-
clarification

3 move to the cone on
the right a red cone
on the right

1 2 clarification-
repair

4 move to face the
cone on the right

1 3 translation-r

5 executing... 1 3 ack-doing
6 take another picture 2
7 done 1 4 ack-done
8 done 1 7 translation-l
9 image 2 6 translation-r
10 image sent 2 9 ack-done
11 sent 2 10 translation-l

2 Dialogue Structure in Multi-floor Dialogue

For our initial investigations, we use a dataset of multi-
floor dialogue structure, created as part of a long-term
project to develop an autonomous robot [Marge et al., 2016;
Lukin et al., 2018; Gervits et al., 2019], which is com-
manded by remote human participants. The robot is in an
unfamiliar physical environment, where it performs object
searches through natural language interaction. The dataset
consists of “Wizard of Oz” dialogues where two wizards con-
trol the robot and communicate with the human commander.
The dialogue manager wizard (DM) communicates directly
with the commander in natural language and handles clarifi-
cations or misconceptions that might not be applicable given
the environment and robot capabilities. A robot navigator
wizard (RN) controls the robot with a joystick controller, but
communicates only with the DM. There are thus two sepa-
rate floors - one between commander and “robot” (actually
the DM), and one between the two wizards. These floors are
called “left” and “right”, for convenience. Table 1 shows an
example of an actual dialogue excerpt, including two floors
and four distinct message streams. The commander gives its
intention to the DM on their dialogue floor (left floor). The
DM talks with the commander (when necessary) to clarify
the commander’s intention. After completely understanding
the commander’s intention, the DM moves to another dia-
logue floor (right floor) to transfer the commander’s intention
to the RN, which operates the robot based on the given inten-
tion and reports the result to the DM. The DM returns to the
first floor to feedback the result to the commander. Note that
the DM can communicate with any participants by moving
among several dialogue floors to transfer the information as
a multi-communicator [Reinsch Jr et al., 2008]; but the RN

and the commander cannot directly communicate.
Previous work defined an annotation scheme for such

multi-floor dialogues to specify their characteristics
[Traum et al., 2018]. To capture the information update
process of the dialogue participants, this scheme focused
on the intentional structure [Grosz and Sidner, 1986], which
consists of units of multiple consecutive utterances, and the
relations between pairs of utterances within the unit. They
defined an annotation scheme for (1) transaction units, (2)
antecedents, and (3) relation-types, and the dataset includes
human-annotated data. In this study, we explore a model that
automatically identifies these structures. Below we describe
the annotation scheme in [Traum et al., 2018].

2.1 Transaction Unit

A transaction unit (TU) is a basic unit of intentional struc-
ture in a multi-floor interaction. It consists of the initial ut-
terance that expresses the intention of the speakers and every
subsequent utterance across all the floors to achieve the orig-
inal speaker’s intention. Each utterance belongs to a transac-
tion unit, which is defined by a set of utterances. The “TU”
column of Table 1 shows an numerical identifier for the unit
which is the same for all utterances that are part of the TU.

In some cases, multiple transactions are “active” at the
same time, in that they have been initiated but not termi-
nated. For example, Table 1 shows a case where two transac-
tion units are included in the dialogue: TU1 is about moving
somewhere, while TU2 is about taking a picture. TU2 is ini-
tiated in utterance #6, before TU1 is completed in utterance
#8. Both transactions are thus running in parallel during this
part of the dialogue.



2.2 Antecedent and Relation-Type

In [Traum et al., 2018], relations are annotated between utter-
ances in the same TU, using antecedents and relation-types.
Any utterances after the first utterance in the transaction unit
have antecedents, shown in the “Ant” column of Table 1, as
the utterance ID of the antecedent utterance. Relation types
are summarized in Table 2. These relations are categorized
first as to whether they are from the same participant (expan-
sions), from different participants in the same floor, or across
floors. Each of these categories has a set of specific relations
and in some cases sub-types. Relation types are indicated in
the “Rel” column in Table 1.

The set of relations within a transaction define a tree struc-
ture, where the first utterance is the root node, which has no
relation-type or antecedent annotations. In the example in
Table 1, #1 and #6 are the root nodes of the two transaction
units.

Table 2: Relation-types in a multi-floor dialogue

Type Sub-types
Expansions relate utterances that are produced by the

same participant within the same floor.
continue
link-next
correction
summarization

Responses relate utterances by different participants
within the same floor.
acknowledgment

done
doing
wilco
understand
try
unsure
can’t

clarification
req-clar
clar-repair
missing info
nack
repeat

processing
question-response

answer
non-answer

other
3rd turn feedback
reciprocal response

Translations relate utterances in different floors.
transalation-l
transalation-r
comment
quotation

3 Neural dialogue structure parser for
Multi-Floor Dialogue

In this section, we introduce a neural dialogue structure parser
for the annotation scheme proposed by [Traum et al., 2018].
A dialogue structure parser based on end-to-end neural net-
works improved the parsing performance more than legacy
models using hand-crafted features [Afantenos et al., 2015;
Shi and Huang, 2019]. Thus, we built an end-to-end neural
dialogue structure parser model with available data and ex-
plored its limitations.

In our dialogue structure parsing task on multi-floor dia-
logues, three tasks are closely related: transaction units, an-
tecedents, and relation-type identifications. We expect that
multi-task learning will improve the overall parsing perfor-
mance more than single models. The attention mechanism
can explicitly represent their relations. Thus, our model is
based on a recurrent neural network that has both soft and
hard attention mechanism with multi-task learning.

Our proposed model (Fig. 1) mainly includes four net-
works:
• Hierarchical encoder has utterance and context en-

coders for encoding each dialogue context in different
dialogue levels.
• The antecedent predictor estimates the antecedent that

corresponds to each utterance.
• The transaction-unit predictor estimates the type of

transaction boundaries of each utterance.
• The relation-type predictor estimates the relation-type

of each utterance and its antecedent.
The transaction-unit and relation-type predictors share the
prediction results of the antecedent predictor as attention
weights, because their prediction results are related to the
potential tree structures decided by the antecedent predictor
model. Such a two-stage approach, which predicts the de-
pendency structure of the utterances and its relation-types,
resembles previous work [Shi and Huang, 2019]. However,
that model targets single-floor dialogue structure parsing, and
our model predicts the dialogue structure of multi-floor dia-
logues and clusters the utterances in different floors as one
transaction unit.

3.1 Hierarchical Encoder
Our hierarchical encoder consists of utterance and context en-
coders. The utterance encoder receives a word at each time
step using forward and backward GRUs [Cho et al., 2014] to
encode each utterance into a fixed-length vector:

−→
ht,i =

−−→
GRUutt(

−−−→
ht,i−1,Embedding(wt,i)), (1)

←−
ht,i =

←−−
GRUutt(

←−−−
ht,i+1,Embedding(wt,i)), (2)

ht,i = [
−→
ht,i;
←−
ht,i], (3)

ht =
1

|Ut|

|Ut|∑
i=1

ht,i. (4)

Here t is the utterance numbers in the dialogue context and i
is the word order in the utterance. ht,i is the hidden vector cal-
culated from each word wt,i and the hidden vector in previous



Figure 1: Overview of proposed neural dialogue structure parser

time-step ht,i−1 in utterance Ut = {wt,1, wt,2, · · · , wt,N}.
Each word wt,i is converted to a fixed-length vector using
an embedding layer before calculating the hidden vector. In
each utterance, we added a special symbol, which indicates
the types of floors, to prefixes and suffixes of utterance and
trained the embedding rule as done with words.

In the context encoder, utterance vectors are input to en-
code the dialogue history to get context-level vector repre-
sentation h′

t for each utterance in the dialogue contexts:
−→
h′
t =
−−→
GRUhist(

−−→
h′
t−1, ht)), (5)

←−
h′
t =
←−−
GRUhist(

←−−
h′
t+1, ht), (6)

h′
t = [
−→
h′
t ;
←−
h′
t ]. (7)

We introduce a soft-attention mechanism
[Luong et al., 2015] for dialogue contexts to compute
contextual representation h̄attn

t for each utterance Ut:

attention(h′
t−j , h

′
t) = h′T

t−jWanth
′
t, (8)

αj =
exp(attention(h′

t−j , h
′
t))∑k

j=1 exp(attention(h′
t−j , h

′
t)
, (9)

h̄attn
t =

k∑
j=1

αj · h′
t−j . (10)

Here k is the number of previous utterances considered in
the calculation of attention, Wattn is a trainable weight-matrix,
and αj ∈ [0, 1]k.

In addition, we introduce a hard-attention mechanism for
explicitly considering the antecedent, which corresponds to
each turn t:

h̄ant
t =

k∑
j=1

βj · h′
t−j (11)

Here βj takes 1 if utterance Ut−j is the antecedent of utter-
ance Ut and 0 in other cases (βj ∈ {0, 1}k).

Attention vectors h̄attn
t and h̄ant

t , which are calculated on
the basis of the hard and soft-attention mechanisms, are com-
bined:

ĥfc
t = tanh(Linearattn([h̄

attn
t ; h̄ant

t ;h′
t]). (12)

Here Linearattn is a linear transformation layer, which in-
cludes a bias term. ĥfc

t is a shared vector for predicting
the transaction units and relation-types. Note that gold an-
tecedent β is used in training; however, in the inference, the
model uses predicted distribution of h̄ant

t by the antecedent
predictor.

3.2 Antecedent Predictor
As shown in Table 1, each utterance has an annotation of
the corresponding antecedent as its utterance ID (#). To pre-
dict the antecedents for each utterance Ut, we calculated the
scores between each utterance and the contextual utterances:

antecedent(h′
t−j , h

′
t) = h′T

t−jWanth
′
t, (13)

β̂j =
exp(antecedent(h′

t−j , h
′
t))∑k

j=1 exp(antecedent(h′
t−j , h

′
t)
. (14)

Here, k is the number of preceding utterances that can be
the antecedent, Want is a trainable weight-matrix, and β̂j ∈
[0, 1]k. By calculating the position of antecedent from the
weights of attention, we can carry this knowledge forward to
other predictions in the rater step: transaction-unit prediction
and relation-types prediction.

We set the cross-entropy loss between predicted distribu-
tion β̂ and actual antecedent label β as a loss function that
enforces that the contextual utterance has the highest score
when it is the antecedent of Ut:

Lt,ant = −
k∑

j=1

βj log(β̂j). (15)

Note that we also calculate the attention weight corre-
sponding to the case where the utterance does not have any
antecedent using the trainable vector and the hidden vector
h′
t.



3.3 Transaction-Unit Predictor
We formulate the problem of transaction unit prediction as
a sentence classification problem that determines the bound-
aries of the transaction units in dialogues. The transaction-
unit predictor classifies each utterance into the following
three classes:
• Start: the utterance is the beginning of a transaction

unit.
• Continue: the utterance belongs to the same transaction

unit as the previous utterance.
• Other: the utterance cannot be categorized into either of

the above classes.
Other indicates that the utterance belongs to an already open
transaction that is different from the one the previous utter-
ance belongs to, such as utterance #7 and #9 in Table 1. We
predict transaction boundaries using ĥfc

t , derived from the cal-
culation results of soft and hard-attentions to the context:

p̂tu
t = softmax(Lineartu pred(ĥ

fc
t )). (16)

Here Lineartu pred is a linear transformation layer that includes
a bias term, and p̂tu

t is the predicted distribution of the trans-
action boundaries.

We used the cross-entropy loss as the loss function:

Lt,tu = −
|ptu

t |∑
j=1

ptu
j log(p̂tut,j). (17)

Here ptu
t is a three-dimensional vector corresponding to the

type of target transaction boundaries.

3.4 Relation-Type Predictor
We used ĥfc

t as well as the transaction-unit predictor to predict
the relation-type of each utterance with its antecedent:

p̂rel
t = softmax(Linearrel pred(ĥ

fc
t )). (18)

Here Linearrel pred is a linear transformation layer that in-
cludes the bias term and p̂rel

t is the predicted distribution of
the relation-types.

We used the cross-entropy loss for the training:

Lt,rel = −
|prel

j |∑
j=1

prel
j log(p̂relt,j ). (19)

Here prel
t is a vector, whose dimensions correspond to a rela-

tion label defined in Table 2.

3.5 Objective Function
We have to optimize the above three models not only to a sin-
gle model but also to the other two models because these tasks
are closely related. In this study, we introduce a multi-task
loss, which combines each prediction loss of the antecedent,
the transaction-unit, and the relation-type predictor. In multi-
task learning, we interpolate the loss functions of three tasks:

L =
1

N

N∑
t=1

(γantLt,ant + γtuLt,tu + γrelLt,rel). (20)

Here N is the dialogue length. γant, γtu, and γrel are the
weights for adjusting the importance of each predictor in the
loss calculation.

4 Experimental Settings
In our experiment, we evaluated the dialogue structure pars-
ing performance of our proposed model. In this section, we
describe the dataset for the training and evaluation, the setting
of the model training, and the evaluation metrics.

4.1 Dataset
We used a dataset [Traum et al., 2018] that contains Exp. 1
and Exp. 2 data1. The dialogues were annotated based on a
previously described scheme [Traum et al., 2018], which was
specifically designed to handle multiple conversational floors.
As shown in Table 3, these dialogue data consist of 48 dia-
logues (1829 transactions) executed by several different com-
manders.

Table 3: Numbers of dialogues, utterances, and transactions

Dialogues Utterances Transactions
Exp. 1 24 4527 780
Exp. 2 24 6994 1049

To evaluate the parsing performance of the proposed
model, we randomly divided all of the dialogues in Exp. 1 and
Exp. 2 into six subsets and applied double cross-validation
[Mosier, 1951]. We used a single subset for validation and a
test-set for each, and the remaining subset was used as train-
ing data. We evaluated every possible combination of train-
ing, validation, and test-set and the final performance by a
majority vote on the prediction results of the models, which
share the same test-set.

4.2 Model Settings
We evaluated the dialogue structure parsing performance of
the proposed model in multi-floor dialogues by comparing
the dialogue structure parsing performances of the proposed
model with the multi-task loss (Multi) and the models indi-
vidually trained for each task (Single). We also compared the
cases based on both the Offline and Online models. The pro-
posed model described in Section 3 uses bi-directional GRUs
in the context encoder to make predictions for each utterance
Ut; this means the model cannot start parsing during the dia-
logue. We call this setting Offline. In contrast, we also con-
sidered a model that only uses previous contexts without sub-
sequent contexts in the prediction for each utterance Ut. We
call this setting Online. The online model is important for
real-time dialogue robot processing, which can only use the
observed information based on the interaction sequence. We
built the online model only using forward-GRUs instead of
bidirectional-GRUs in the context encoder.

We used the same hyper-parameter settings in each model.
The vocabulary size was 500, the word embedding size was
100, and the hidden size was 300. We used byte pair encod-
ing (BPE) for tokenization [Sennrich et al., 2016]. In train-
ing, we used a mini-batch size of 64 and an Adam opti-
mizer [Kingma and Ba, 2014] with a learning rate of 1e-4.
We set γant, γtu, and γrel to 1. In the relation-type predic-
tion, we integrated the ‘acknowledgement,” “clarification,”

1The annotation for Exp. 3 is still in progress.



Table 4: Prediction performances of transaction units, antecedents, and relation-types

TU Ant Rel
Models Prec. Rec. F1 TuAcc Prec. Rec. F1 TreeAcc Prec. Rec. F1 TreeAcc w/ rel

Majority 55.71 74.64 63.80 - 23.59 48.57 31.76 - 8.54 29.22 13.21 -
Single-Online 95.43 95.46 95.44 81.19 93.92 90.89 92.34 68.12 92.38 92.84 92.53 63.80
Multi-Online 95.99 95.99 95.99 84.25 93.93 90.84 92.33 70.09 93.69 94.11 93.80 66.81

(96.26) (96.27) (96.26) (85.34) - - - - (94.75) (94.94) (94.77) (67.74)
Single-Offline 95.31 95.35 95.33 81.46 94.26 90.70 92.40 68.83 94.86 93.22 92.91 64.62
Multi-Offline 96.05 96.07 96.06 84.52 94.58 91.95 93.21 71.35 93.75 94.26 93.90 69.05

(96.30) (96.31) (96.30) (85.51) - - - - (94.68) (94.95) (94.69) (69.92)

and “question-response” sub-types into these classes because
some sub-types rarely appeared in the dataset. In addition,
we defined a label where utterance has no antecedent, as well
as relation-types (#1 and #6 in Table 1).

4.3 Evaluation Metrics
We defined the micro and meso-level evaluation metrics for
our dialogue structure parsing task. For the micro-level evalu-
ation, we defined the label prediction performances of the an-
tecedents, the transaction units, and the relation-types by pre-
cision (Prec.), recall (Rec.), and F1. Note that we took the rel-
ative position of each utterance from its antecedent as a label
to compute the metrics when evaluating the antecedent pre-
diction performance. In other words, we compared the differ-
ence between the position of predicted antecedents and actual
antecedents. We also introduced metrics for the meso-level
structure [Traum and Nakatani, 1999] in dialogues to evalu-
ate the consistency of the parsing results. We used the fol-
lowing three metrics:

• TuAcc is the ratio of the transaction units that perfectly
predicted the transaction boundaries for each utterance
within the transaction unit.

• TreeAcc is the ratio of the transaction units that perfectly
predicted the antecedents for each utterance within the
transaction unit.

• TreeAcc w/ rel is the ratio of the transaction units
that perfectly predicted the antecedents and the relation-
types for each utterance within the transaction unit.

Note that the meso-level metrics are stricter than the micro-
level metrics, which judge the prediction result of each utter-
ance.

5 Experimental Results
Table 4 shows the performances of each dialogue structure
parser. Here Single denotes a case where the transaction unit,
the antecedent, and the relation-type predictors were individ-
ually trained. Multi denotes a case where these models were
trained with multi-task learning loss. In addition, Offline in-
dicates that the model used the dialogue entirely for parsing,
and Online indicates that the model used only the preceding
context of each utterance. Majority denotes a case where the
always predicts the most frequent label. Prec., Rec., and F1

are the weighted averages2 of the precision, recall, and F1
scores of the predicted labels. The brackets are the prediction
results where the oracle antecedent was fed into the model.

The result shows that the dialogue structure parsing perfor-
mance (transaction unit prediction, antecedent prediction, and
relation-types prediction) of the Offline models have slightly
improved from the Online models. This result indicates that
subsequent contexts are useful for predicting labels for each
utterance, but we have enough prediction accuracy without
using the subsequent context. When the Multi models use
oracle antecedents to predict the transaction units and the
relation-type, we can further improve the performance of di-
alogue structure parsing.

Table 5: Transaction unit prediction performance of Multi-Offline
model

Tu-Label Precision Recall F1 Count
Start 0.9466 0.9306 0.9385 1829
Continue 0.9750 0.9800 0.9775 8599
Other 0.8694 0.8591 0.8642 1093
Weighted-Avg 0.9605 0.9607 0.9606 11521

　　

　

Table 5 shows the results of the transaction unit prediction
in Multi-Offline model, which was the best model in our ex-
periment. We confirmed that the model achieved over 85%
F1 for all labels (types of transaction boundary). However,
there is still a problem in the predicting “Other” (when the ut-
terance belongs to a different transaction than the previous ut-
terance, but it is not the start of a new transaction). Our model
decided labels with the highest prediction probability for each
utterance; however, we did not take into account the consis-
tency of the prediction results in the sequence of dialogue. To
solve this problem, we can introduce a model that takes into
account information about the entire prediction results, such
as Conditional Random Field (CRF) [Lafferty et al., 2001]
for further improvements.

Table 6 shows the results of the antecedent prediction in
the Multi-Offline model. Here each label indicates the rela-
tive position from each utterance to its antecedent. Note that
this table only shows the prediction results by considering a
maximum of 10 previous utterances. We excluded a few cases

2We calculated the weighted averages based on the label frequen-
cies.



Table 6: Antecedent prediction performance of Multi-Offline model

Position Precision Recall F1 Count
-10 58.33 66.67 62.22 21
-9 73.08 57.58 64.41 33
-8 82.50 63.46 71.74 52
-7 80.77 74.12 77.30 85
-6 90.48 85.39 87.86 178
-5 81.31 64.44 71.90 135
-4 91.87 85.32 88.48 477
-3 94.98 87.00 90.82 1023
-2 94.84 93.06 93.94 2509
-1 95.99 95.47 95.73 4262
Weighted-Avg 94.58 91.15 93.21 8775

　　　

when the antecedent of the utterance is not included in the ten
previous utterances, and the utterance has no antecedent. Our
model can predict antecedents with high performance when
the relative position was not distant. On the other hand, the
prediction performance was below 80% when the relative po-
sitions were distant (greater than five in absolute). This result
suggests the difficulty of addressing long-term dependency in
dialogues. In addition, our model ignores the consistency of
the tree structure associated with the predicted antecedents.
The search for dialogue structures using dynamic program-
ming probably has the potential to improve the performance
of our model.

Table 7: Relation-type prediction performance of Multi-Offline
model

Relation-Type Precision Recall F1 Count
Expansions
-continue 0.9090 0.8890 0.8989 955
-link-next 0.9937 0.9969 0.9953 318
-correction 0.4000 0.1111 0.1739 36
-summarization 0.00 0.00 0.00 13
Responses
-acknowledgement 0.9729 0.9706 0.9717 3366
-clarification 0.7951 0.8500 0.8216 420
-processing 1.0000 0.9957 0.9978 233
-question-answer 0.5705 0.5174 0.5427 172
-other 0.3333 0.0606 0.1026 33
-3rd-turn-feedback 0.5000 0.0400 0.0741 25
-reciprocal-response 0.00 0.00 0.00 5
Translations
-l 0.9593 0.9814 0.9703 1563
-r 0.9830 0.9840 0.9835 1942
-comment 0.4000 0.3810 0.3902 21
No-antecedent 0.9185 0.9463 0.9322 2419
Weighted-Avg 0.9375 0.9426 0.9390 11521

　

　　

Table 7 shows the results of the relation-type predictions
in the Multi-Offline model. Our model showed higher F1
scores in frequent relation-types, including when the utter-
ance has no antecedent. There is still a challenge in pre-
dicting low-frequent relation-types due to the lack of training
data. Ongoing annotation work [Traum et al., 2018] with ad-
ditional data may remedy this problem. We also need to look
at ways to deal with these unbalanced labels.

Finally, in Table 8, we show an example of dialogue struc-
ture parsing on a fragment of multi-floor dialogue. Note that
we displayed the correct labels in brackets when the label was
incorrectly predicted, and “#” corresponds to cases where the
utterance does not have the antecedent. The first example
shows that the model accurately predicts all the transaction
boundaries, antecedents, and relation-types, even if transac-
tions were interleaved. However, the second example is in-
cluding error predictions of transaction boundaries. In this
example, there are only two TUs, but the model has deter-
mined that the utterance has three TUs. Note that, even if we
assume the prediction of TU at #8 is correct, the prediction
at #11 is still not correct. When such confusion occurs, the
error extends beyond one utterance to multiple utterances. In
many cases, delays in communication and differences in the
quality of annotations between Exp.1 and 2 often confuse pre-
dictions.

6 Conclusion

We built a neural dialogue structure parser with an atten-
tion mechanism that applies multi-task learning to automat-
ically identify the dialogue structure of multi-floor dialogues.
The experimental results showed that our proposed model
improved the identification performance on all tasks com-
pared to the model trained on single task settings. How-
ever, problems remain with the performance of the dialogue
structure identification due to the lack of training data, es-
pecially for rare labels. To prevent this problem, we will
consider pre-training and the transfer learning of models us-
ing existing dialogue corpora and discourse-relation datasets.
We also explore the possibility of introducing powerful mod-
els of similar tasks related for predicting tree-structure in
a document, such as a dependency parsing [Nivre, 2010]
and discourse parsing based on rhetorical structure theory
[Webber et al., 2012; Mann and Thompson, 1988].

This study has developed the first baseline model for au-
tomatic identification of dialogue structure on multi-floor di-
alogues. It has a potential for applying to the automatic an-
notation of dialogue structure on multi-floor dialogues, and
encourage the development of a dialogue manager and robot
navigator on multi-floor settings.
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Table 8: Examples of the dialogue structure parsing on multi-floor dialogue

Left Floor Right Floor Prediction
# Commander DM→Commander DM→ RN RN TU Ant Rel
1 turn right

twenty degrees
Start # #

2 turn right 20 Continue 1 translation-r
3 executing ... Continue 1 response-ack.
4 image Continue 1 translation-r
5 done image

sent
Continue 4 response-ack.

6 go forward fif-
teen feet

Start # #

7 sent Other 5 translation-l
8 and go through

door on right
Other 6 expansion-cont.

9 move forward
about 15 feet ,
going through
door on right ,
image

Continue 8 translation-r

10 executing ... Continue 8 response-ack.
1 take a picture Start # #
2 image Continue 1 translation-r
3 image sent Continue 2 response-ack.
4 sent Continue 3 translation-l
5 turn left ninety

degrees
Start # #

6 turn left 90 Continue 5 translation-r
7 executing ... Continue 5 response-ack.

8 take a picture
after each com-
mand

Start
(Continue)

#
(5)

#
(expansion-cont.)

9 done Other
(Continue) 6 response-ack.

10 take pic after
each command

Other
(Continue) 8 translation-r

11 image Other
(Continue) 8 translation-r

12 image sent Continue 11 response-ack.
13 sent Continue 12 translation-l
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