Towards A Formal Theory of Repair in Plan
Execution and Plan Recognition

David R. Traum and James F. Allen
Computer Science Department
University of Rochester
Rochester, New York 14627-0226 USA

{traum,james } @cs.rochester.edu

Abstract

We present a situation theoretic formalization of plan execution
which allows for an abstract characterization of the role an action per-
formance plays in the execution of a plan, including characterizations
of performance error and plan repair. The Plan Ezecution Situation
presented generalizes the mental state of having a plan to include cases
where the plan is in the midst of execution, and allows for representa-
tion of dynamic change of the plan’s recipe as well as the attitudes of
the agent towards previous execution. We also show how this formal-
ism can be used in different plan inference tasks such as plan execution
monitoring and plan recognition.

Content Areas: intelligent agency, formal models

1 Introduction

Error and repair are essential notions for reasoning about action in a com-
plex and uncertain environment. The topic of repair in natural language
conversation has been a topic of much study in Conversation Analysis and
Psycholinguistics (e.g. [Schegloff et al., 1977; Levelt, 1983; Clark and Schae-
fer, 1989]), and more recently in Al (e.g. [Litman and Allen, 1990; Rau-
daskoski, 1990; McRoy, 1993; Traum and Hinkelman, 1992]). There has
also been work in plan execution monitoring and replanning in an uncer-
tain world (e.g. [Peng Si Ow, 1988; Ambros-Ingerson and Steel, 1988]), but
there has as yet been little foundational work on explicating formally just



what errors and repairs are, and how they relate to the task of performing a
plan. These concepts are necessary for reasoning about any plan execution
domain in which performance errors or dynamic replanning may take place.

Pollack and others have mentioned the need for distinguishing between
plans as “recipes” for actions and the mental state of having a plan. She
presents a definition of having a simple plan [Pollack, 1986; Pollack, 1990]
in terms of beliefs and intentions that an agent has about the recipe’s con-
stituent actions. This formulation was modified by Grosz and Sidner to rep-
resent a Shared Plan between two agents [Grosz and Sidner, 1990]. While
these formulations represent a significant increase in sophistication over pre-
vious frameworks for intended plan recognition, they are still inadequate for
modelling a common plan inference situation - one in which the agent has
begun executing the plan. One of the requirements for having a simple or
shared plan is that the agent(s) intend all of the actions in a plan. But con-
sider a case in which the first action has already been performed. Clearly
the agent does not intend this action any more, yet it is still a part of the
plan.

One might try to amend such a theory by claiming that the intended
plan plan consists of just those parts of the original recipe which have not
yet been performed (and about which agents still have intentions). This
formulation would have a number of deficiencies, however. First, it would
not allow for a convenient analysis of repair, since agents often repair actions
which have already been performed. Also, it will not allow represenation of
the roles an action plays towards plan execution, since it would be impossible
to distinguish the continuation of an ongoing plan from the initiation of a
plan.

It is often useful to be able to characterize, in an abstract sense, what
role a particular performance plays in the execution of a plan. In cases
of intended recognition (in which the performing agent intends for the ob-
serving agent to recognize her plan) such as natural language communica-
tion, the performing agent often gives signals as to how the current action
relates to plans which the observing agent should infer: whether the cur-
rent performance begins a new plan, or continues, completes, repairs or
cancels a pre-existing plan. For example, uttering the English clue word
“oops” indicates a belief that a previous action failed. Similarly, researchers
have found prosodic markings for repairs [Levelt and Cutler, 1983] and non-
finality [McLemore, 1991].



1.1 An Informal Example

We will illustrate this formalism with the following example, taken from
Kautz’ cooking microworld [Kautz, 1987]. Consider recognizing the actions
of a somewhat inept cook. The cook decides to make a meal, and after
some deliberaton decides to make Spaghetti Marinara. The first action the
cook performs is to make the marinara sauce, which, to an observer could
be a step in making either Spaghetti Marinara or Chicken Marinara. The
next thing the cook does is make Spaghetti, disambiguating the intent to
make Spaghetti Marinara. Next, the cook starts to boil the noodles. Our
cook, however boils the noodles too long, resulting in a pasty soup. Now
the cook has some sort of repair to make, and there are several choices of
next action. The cook could (1) just ignore the previous boiling, and boil
some more noodles, assuming there is another pot and more noodles. If not,
(2) the cook might have to perform some other actions such as cleaning the
pot and/or making more noodles. A third alternative is to give up on the
Spaghetti and make some Chicken, deciding on a meal of Chicken Marinara
instead.

While in each of the three scenarios, all of the actions described above
are performed in service to the agent’s desire and evolving plan to prepare
a meal, there is no single meal recipe that contains all of these actions, and
thus a system such as Kautz’s could not recognize this activity as fitting into
a single event. The best that it could do would be to decide that the cook
was preparing two meals (perhaps also with other events such as washing
dishes), one of which was uncompleted.

2 Sketch of Rational, Plan-based Behavior

Before proceeding with a formal account of plan execution, it will be helpful
to informally present a sketch of the mental attitudes that a plan-executing
agent will have and the deliberative processes that it will undergo. We
choose a model similar to the BDI model of [Bratman et al., 1988].

We start with beliefs and desires. From the desires, (and based on
beliefs and other goals and intentions), the agent will deliberate and choose
a set of goals: conditions that the agent will try to achieve. Planning
or means-ends reasoning will lead to the formation or selection of a plan
recipe designed to meet the goals. We view recipes as consisting of a set
of actions coupled with a set of constraints relating various properties of
these actions (e.g. constraints on relative timing or objects and locations



of actions, preconditions or effects represented as events or states which
must hold over times related to the times of actions). The agent then can
adopt or commit to plans. Plans are treated as individuals which can be
modified through time. At any given moment in time, a particular plan
will correspond to a particular plan recipe. This plan adoption will lead
to commitment to achieve (or maintain) the constraints of the plan and
intention to perform the actions in the plan.

When an agent has committed to a plan, she can try to perform an action
in that plan. She can also observe the situation she finds herself in, perhaps
revising her beliefs and desires. She can also replan, revising the plans she
is executing to correspond to different plan recipes, and thus changing the
her commitments and intentions. We distinguish two types of plan revision,
plan elaboration, in which additional actions (e.g., decompositions of non-
primitive actions) or constraints are added to a plan and plan repair, in which
some of the actions or constraints are removed. We can also distinguish the
action of plan repair from changing plans. In both cases, the intentions
and commitments of an agent change, but in the former case, the agent is
changing the contents of a plan which she continues to execute, whereas in
the latter, the agent drops all intentions and adopts a new set.

From the point at which a plan is adopted to the point at which the
intentions and commitments are dropped, we say that the agent is executing
the plan.

We can distinguish at least three distinct notions of the culmination of
plan:

Action Completion — all actions in the plan have been performed.

Successful Completion — all actions in the plan have been performed and
all of the constraints have been met as well.

Goal Satisfaction — the goals which motivated adoption of the plan have
been achieved.

Note that Successful Completion and Goal Satisfaction are somewhat
independent. It may be the case that the goals are met before the plan
is completed (e.g., imagine a plan to open an elevator door by pushing a
button: the goal is to get the elevator door open, but suppose it opens
by itself when someone else gets out). Depending on the plan adoption
procedures, a plan might also be successfully completed without having
satisfied the goals. A plan is an independent entity from the goals for which



it was adopted, and the same plan could be used to try to achieve many
different sets of goals. If a goal is not a constraint of the plan, it may be the
case that the plan is successfully executed but the goals are not met. In a
distributed control scenario, a plan executor may not have access to actual
goals and may simply adopt plans under orders of a superior.

A plan executor will monitor the success of the plans it is executing,
and engage in a repair if the plan is not successful. But the plan executor
will also need to monitor goals: plan repair might also be warranted if the
situation changes. This could include eliminating unnecessary actions if the
goals get met though events external to the plan itself.

3 Basic Ontology

We start with a Situation Theory, similar to [Devlin, 1991]. Situations are
individuals, and also provide bases for the truth or falsity of propositions.
We will notate general situations by the letter S, perhaps subscripted. For
situation S and proposition ¢ the notation “S |=¢” means that the propo-
sition ¢ is supported by situation S. Situations are also composable into
other situations, forming a lattice structure. Following Devlin we overload
the operator “C” to include the “part of” relation between two situations
as well as the usual subset relation between two sets. S; C S; means that
situation 57 is a part of situation Ss.

An interesting class of situations will be those corresponding to “hap-
penings”, which we will term occurrences and notate with lowercase Greek
letters. A subclass of these, those occurrences which are caused by the in-
tentional activity of agents will be termed executions. The key point of an
execution is not that it has particular properties intended by a performing
agent, but that intentional activity was instrumental in the performance.

Also important are abstractions over executions. We will term these
actions, and it is these actions which are components of mentalistic atti-
tudes such as intentions and plans. While a particular execution has many
features, only a small subset of them are actually intended. What we call ac-
tions are sometimes called action types [Goldman, 1970] or activities [Balka-
nski, 1990].

We use the symbol “>” to represent the “realizes” or “is characterized
by” relation between an execution and an action. An execution could realize
unrelated action types, and whenever an execution realizes an action type,
it always realizes a more abstract action type as well.



As an example, suppose there is some execution « which realizes a
MakeSpaghetti action: o >MakeSpaghetti(Agt, time). It would then also
be the case that this same execution realizes a MakeNoodles action:

a >MakeNoodles(Agt, time). It might also be the case that this same exe-
cution also realizes some unrelated action, say o >WakeUpDog(Agt, time).
In this case, we have two separate actions performed in the same execution.

3.1 Plans and Mental Attitudes

We treat plans as individuals; they are abstract objects whose attributes can
be modified through time, just as a physical objects can. We use the term
recipe to denote the functional characteristics of a plan at a particular time.
A recipe is a set of actions coupled with a set of constraints relating various
properties of these actions (e.g., constraints on relative timing, objects and
locations of actions, goals and preconditions represented as events or states
which must hold over times related to the times of actions). We denote the
set of actions of a recipe, R, by Actions(R). The set of constraints on a
recipe will be denoted by Constraints(R)!.

The agent of an action, a;, in a recipe, R, is denoted by Agt(a;, R).
For single agent recipes, all actions in the recipe will have the same agent
parameter.

A recipe can be said to have been performed in a situation if all the
actions have been performed and all of the constraints have been met. For-
mally,

Definition 1 Performedin(R,S) iff
Va; :a; € Actions(R) D Ja:a CSAab>a A
VC' : C € Constraints(R) D SE=C

A plan may be reflected by different recipes at different times, changing
as an agent modifies the plan. We denote the recipe of a plan, P, at time t as
Recipe(P,t). As ashorthand, the actions of a plan, Actions(Recipe(P,t)).
will be denoted Actions(P,t). The set of constraints on a plan will be de-
noted by Constraints(P,t).

There are several other mentalistic notions which we will assume, but
not attempt to define or axiomatize. These are: belief, intention, and
intentional-action. Belief is a relation between an agent and a proposition,

'Many of these constraints will be implicit in any Representation of a recipe, e.g. as
shared variables in two separate actions, or domain constraints on possible recipes



and we will use the notation?, Bel(Agt, ¢), to represent that agent Agt be-
lieves ¢. We represent (future directed) intention as having two arguments
other than the agent, an action which the agent intends to perform, and a
plan which this action is intended to (in part) achieve, Intends(Agt, a, P).
This is roughly equivalent the expression Int(Agt,By(a,P)) used by Pollack
and Grosz & Sidner. Finally, we represent present directed intention as an
abstract action in its own right, called #ry. o >Try(Agt,a,P) means that
the occurrence o is characterized by Agt intending to do action a as part
of executing Plan P.

We can now formally define an execution as an occurrence for which
there is some agent and plan such that the occurance realizes the agent
trying to perform an action in the plan: « is an execution iff dAgt, a, P :
a >Try(Agt,a, P)

3.2 Plan Execution Situations

Now we are in a position to introduce the central theoretical construct of this
paper, the Plan Execution Situation, roughly a generalization of Pollack’s
notion of an agent having a plan [Pollack, 1986; Pollack, 1990], translated
to the logic of situations.

A Plan Ezecution Situation (PES) is a situation in which a plan is being
executed. It is a piece of the world containing the relevant agents, objects,
and events that make up executions or attempted executions of plans. We
represent a plan execution situation PE as a 5-tuple,

[Agt, Ppg, Epg, Bindpg, SPE] where:

Agt represents the agent that is executing the plan.
Ppg represents the plan that this is the execution of.

Epg represents the set of executions which have been performed. in execut-
ing the plan. le., o € Epg, iff a >Try(Agt, a, Ppg).

Bindpg represents the instantiation (partial) function from actions of the
plan to performed executions. For each action in the plan, its instanti-
ation is an execution which the agent believes realizes that action. We
will generally view this function as a set of relationships of the form:
a; ~ oy where a; € Actions(Ppg), oz € Epp We will use a superscript

. PE . . .
version, a; ~ «; as shorthand to indicate that a; ~» «; € Bindpg.

2For simplicity, we omit the situational and temporal arguments of belief and intention.



Spr represents the execution status, either 1 or 0, representing whether or
not the plan is being executed. In this paper we will only consider
PES’s with status 1.

Each PES will also have a designated current time, now, and so we
will generally omit the temporal arguments from the recipe designators for
the PES’ plan. Thus Actions(Ppg), Constraints(Ppg), and Recipe(Ppg)
will be used to represent the components of a plan at the now time of the
PES. Similarly, Agt(a;, Ppr) and Time(a;, Ppg) will be used to represent
the agent and time of an action in the Plan’s recipe at the now time of the
plan execution situation.

Two predicates will be useful for classifying actions in a PES’s plan as
to whether they have been performed or not:

PE
~r QU

Definition 2 Instantiated(a, PE) iff a € Actions(Ppe) A3, 2
Definition 3 Uninstantiated(a, PE) iff a € Actions(Ppg)A
—Instantiated (a, PE)

Note that an action that is not in the plan at all is neither instantiated
or uninstantiated with respect to the PES.

An agent is executing a plan if (1) the agent intends to perform all
uninstantiated actions in support of the plan and (2) for each instantiated
action, the agent believes that the execution which the action is instantiated
to realizes that action. With regards to particular situations, an agent, Agt,
is executing a plan Ppg in a situation S iff there is a PES with status 1 that
is part of situation S. A PES is part of a situation if all the executions of the
PES are part of the situation and resulted from attempts to perform actions
in the plan and the agent intends to perform all the uninstantiated actions,
and believes that the instantiated actions are realized by the executions to
which they are bound. Formally,

Axiom 1 VPE,S: PECS =
VaeEPEOégS A
V[a; ~ o; € Bindpg|SEBel(Agt, a; >ai) A
(Spr = 1)AVa : Uninstantiated (a, PE) O SEIntends(Agt, a, Ppg)V
(Spr = 0) A —=Ja : SE=Intends(Agt, a, Ppg)

We define the remaining acts of a plan execution situation, RActs(PE)
as those actions in the plan which have not been instantiated by any of the



executions — these are the actions which still remain to be executed in order

for the plan execution situation to be completed.

Formally, RActs(PE) et {a; | Uninstantiated (a;, PE)}

A Plan Execution Situation, PE is action completed if all of the actions
in the plan are instantiated by executions. Formally,

ACompleted(PE) iff RActs(PE) = {}

A PES is successful in a situation if it is completed and all of its con-
straints have been met: Successful(PE,S) iff
ACompleted(PE) A PECS AVC : C' € Constraints(Ppg) D SEC

We call a plan execution situation feasible in a given situation if perfor-
mances of the uninstantiated actions will lead to a situation in which the
plan execution is successful (minimizing unexpected external events).

4 Updating Plan Execution Situations

The updating of a situation by an occurrence is a situation that includes both
the old situation as well as the occurrence. Generally this will involve adding
an occurrence which happens at the now point of the situation, and the
now point is then updated to immediately after the time of the occurrence.
We introduce a situation updating function, Update(«,S) which takes as
arguments an occurrence and a situation, and returns the updated situation.
A specialization of this is when the occurrence is an execution relevant to a
plan execution situation.

There are several ways in which an execution o may update a plan execu-
tion situation PE. The simplest is if the execution is intended to instantiate
one or more of the actions in RActs(PE). We define a predicate DoNext
over an execution and a PES which is true when there is a second PES which
is an update of the first with the execution and binding relationship added:

Definition 4 DoNext(«a, PE) iff

Jda € RActs(PE) : a >Try(Agt, a, Ppg)A
JPE’ : PE' = Update(a, PE) A Recipe(Ppr/) = Recipe(Ppr)A
Epr = Epg U {04} A Bindpgr = Bindpg U {a ~ 04}

FFor simplicity, the definition presented here allows an execution to realize only a single
action in the plan. The actual definition replaces the bound action, a, with a subset of

RActs(PE)



4.1 Sub-Action Relations

We may further classify executions as to what role they play in the progres-
sion of the plan execution. The first execution of an action in the plan of a
PES will begin the execution of the plan:

Definition 5 BEGINS(«, PE) iff DoNext(a, PE) A Epg = {}
Subsequent executions will continue the plan execution:
Definition 6 CONTINUES(«, PE) iff DoNext(«, PE) A Epg # {}

The final execution will complete the plan execution:

Definition 7 COMPLETES(«, PE) iff
DoNext(a, PE) A ACompleted (Update(a, PE))

An execution might also instantiate all actions in the plan:

Definition 8 PERFORMS(«, PE) iff
BEGINS (a, PE) A COMPLETES (a, PE)

4.2 Failure and Repair

We can define a failure as an execution which does not realize the action
which it was intended to.

Definition 9 Fail(«) iff JAgt,a, P : a >Try(Agt,a, P) A —a b>a

What is more relevant for plan execution than a normative characteri-
zation of failure is perceived failure. That is, an execution which the per-
forming agent takes to have been a failure. These are any executions of a
PES which are not bound to an action in the plan.

Definition 10 PerFail(a, PE) iff
a € Epp A —3a; @ (a; € Actions(Ppp) A a R @)

If an agent believes that her action is a failure, the updated PES will
include the execution, but will not have any new binding relationships.

There are at least two ways of continuing a plan execution other than
simply updating the plan by performing a next action. One is to change the
instantiation function, such that either some action a; in the plan which was

10



previously instantiated by some some execution « is no longer instantiated
by that execution, thus requiring a new execution to bind that action in
any completed plan, or, conversely, that some a; which was previously
uninstantiated is newly bound by an execution o already part of the PES.
Other instantiations in the Plan execution would remain the same. We
call this ERepair, standing for Execution Repair, since the same plan is
maintained but the beliefs are changed about the success of previous action,
and thus intentions about future actions are also changed.

Definition 11 ERepair(a, PE) iff 3PE’ : PE’ = Update(«, PE)A
Recipe(Ppr/) = Recipe(Ppr) A Eppr = Epg A Bindpgpy # Bindpg

Another type of plan execution repair is to modify the plan itself, so that
it is composed of a different recipe, though it still uses some of the same
executions. This might also entail further ERepair, if it eliminates actions
which have already been instantiated. We call this PRepair, standing for
Plan Repair, since we are changing the plan that is being executed. In a
PRepair the agent has changed intentions from performing the actions in
the old recipe to performing actions in the new one.

Definition 12 PRepair(«a, PE) iff
JPE’ : PE’ = Update(a, PE) A Recipe(Ppr/) # Recipe(Ppg) A
Epps = Epg

Some occurrences will be relevant for the eventual success or failure of a
plan execution, but do not fall into any of the above categories. These will
not be part of the PES as such, but will certainly be included in updates of
the situation in which success is evaluated, and may be cause for an agent
to undertake plan repair, especially if they affect the feasibility of the plan
execution.

4.3 Example

We now return to the cooking example presented at the beginning of the
paper. The plan recipe for Spaghetti Marinara might have the follow-
ing set of actions®: {a;:MakeSpaghetti, ag:MakeMarinara, az:BoilNoodles,
aq:AssembleMeal}, as well as an appropriate set of constraints on execution
order and the form of the products resulting from each action. Once the

*Ignoring for now specializations and abstractions of these actions.

11



agent has adopted this plan, we will have PES PEg as part of the current situ-
ation, where Actions(Ppg,) = {a1,a2,a3,a4}, and the execution and binding
relationship sets are empty. RActs(PEg) = {a;,a2,a3,a4}, and PEg is feasi-
ble, since there is a sequence of possible executions which will successfully
execute the plan. The agent begins execution by performing oy, making
the sauce (i.e. @y B>MakeSauce). The result is: PE; = Update(ay, PEy) =
[Agt, P, {a1}, {as ~ ay}, 1]. The next execution, ay is making the spaghetti,
and so: PE; = Update(ag, PE;) = [Agt, P, {a1, az}, {ag ~ aq,a1 ~ a2}, 1].
Next we get a3 the overboiling of the noodles. This leads initially to PE; =
Update(as, PEy) = [Agt, P, {ay, ag, a3}, {ag ~ aq,a1 ~ ag,a3 ~ as}, 1].
However this plan execution is infeasible, since the overboiled noodles will
not be usable. The agent notices this, deciding a3 is a failure, and per-
forms an ERepair. This will be o4, and the resulting PES is PE; =
Update(ay, PE3) = [Agt, P, {oq, ag, a3}, {az ~ a1,a1 ~ az}, 1]. Note that
vy, itself, is not in the execution list, since it was not done with the intention
to perform an action in the plan. Also, the binding relationship from az to
a3 has been removed, but a3 remains in the set of executions. It thus follows
that PerFail(as, PE4). Now taking the simplest case, the agent just contin-
ues by boiling more noodles (as), and then completes the plan by assembling
the meal (ag). The final PES will be PE¢= Update(ag, Update(as, PEy))
= [Agt, P, {aq, @z, a3, a5, ag}, {ag ~ a1, a1 ~ ag, a3 ~ a5, a4 ~ agl, 1].

Plan recongition proceeds in much the same way as the execution se-
quence described above. Initially the recognizer will not know what plan is
being executed. On observing aq, the recognizer will assume a plan to make
either Spaghetti Marinara or Chicken Marinara, as with Kautz’s system.
Observation of g will disambiguate the plan, and the recognizer will now
expect the other two actions. On noticing the overboiling, a3, the recog-
nizer will realize the plan will not succeed, and will be primed for a repair
of some sort. Observation of the second boiling, as, can be taken to be a
re-execution, leading to a hypothesis that an ERepair was performed, oy.
Thus, unlike Kautz’s system, this formalism allows the representation of a
hypothesis that all the observed occurrences were performed in support of a
single plan, rather than multiple events. Space does not permit going over
the other examples, but they proceed in much the same way.

12



5 Conclusion

The formulation given here provides the basis for a formal theory of plan
execution that can be used uniformly for a variety of plan inference tasks,
including plan recognition, plan execution monitoring, and interleaved plan-
ning and execution. It naturally extends mentalistic representations of hav-
ing a plan to include cases where execution is underway. A natural semantics
for repair is provided which allows extension of plan recognition techniques
to be able to represent cases of failed execution and dynamic plan change.

While the formalism given above does little to advance the practice of
plan execution monitoring, it provides a formal theory which can be eas-
ily integrated with other plan inference tasks. In cases of intended plan
recognition, such as natural language communication, the executing agent
often provides extra information about how a performance relates to other
actions in the plan. The PES formalism provides a convenient way of rea-
soning about the execution state so that the proper signals may be given
and interpreted.

References

[Ambros-Ingerson and Steel, 1988] J.A. Ambros-Ingerson and S. Steel, “Integrating plan-
ning, execution, and monitoring,” In Proceedings AAAI-88, pages 83-88, 1988, Also
in Readings in Planning, J. Allen, J. Hendler, and A. Tate (eds.), Morgan Kaufmann,
1990, pp. 735-740.

[Balkanski, 1990] Cecile T. Balkanski, “Modelling Act-Type Relations In Collaborative
Activity,” Technical Report 23-90, Harvard University Center for Research in Comput-
ing Technology, 1990.

[Bratman et al., 1988] Michael E. Bratman, David J. Israel, and Martha E. Pollack,
“Plans and Resource-Bounded Practical Reasoning,” Technical Report TR425R, SRI
International, September 1988, Appears in Computational Intelligence, Vol. 4, No. 4,
1988.

[Clark and Schaefer, 1989] Herbert H. Clark and Edward F. Schaefer, “Contributing to
Discourse,” Cognitive Science, 13:259 — 94, 1989.

[Devlin, 1991] Keith Devlin, Logic and Information, Cambridge University Press, 1991.
[Goldman, 1970] Alvin I. Goldman, A Theory of Human Action, Prentice Hall Inc., 1970.

[Grosz and Sidner, 1990] Barbara J. Grosz and Candace L. Sidner, “Plans for Discourse,”
In P. R. Cohen, J. Morgan, and M. E. Pollack, editors, Intentions in Communication.
MIT Press, 1990.

[Kautz, 1987] H. A. Kautz, A Formal Theory of Plan Recognition, PhD thesis, Depart-
ment of Computer Science, University of Rochester, Rochester, NY, 1987, Also available
as TR 215, Department of Computer Science, University of Rochester.

13



[Levelt, 1983] Willem J. M. Levelt, “Monitoring and self-repair in speech,” Cognition,
14:41-104, 1983.

[Levelt and Cutler, 1983] Willem J. M. Levelt and A. Cutler, “Prosodic Markings in
Speech Repair,” Journal of Semantics, 2:205-217, 1983.

[Litman and Allen, 1990] Diane J. Litman and James F. Allen, “Discourse Processing
and Common Sense Plans,” In P. R. Cohen, J. Morgan, and M. E. Pollack, editors,

Intentions in Communication. MIT Press, 1990.

[McLemore, 1991] Cynthia McLemore, The Pragmatic Interpretation of English Intona-
tion, PhD thesis, University of Texas at Austin, 1991.

[McRoy, 1993] Susan McRoy, Abductive Interpretation and Reinterpretation of Natural
Language Utterances, PhD thesis, University of Toronto, 1993, Reproduced as TR
CSRI-288 Department of Computer Science, University of Toronto.

[Peng Si Ow, 1988] Alfred Thierez Peng Si Ow, Stephen F. Smith, “Reactive Plan Revi-
sion,” In Proceedings AAAI-88, August 1988.

[Pollack, 1990] Martha E. Pollack, “Plans as Complex Mental Attitudes,” In P. R. Cohen,
J. Morgan, and M. E. Pollack, editors, Intentions in Communication. MI'T Press, 1990.

[Pollack, 1986] Martha E. Pollack, Inferring Domain Plans in Question-Answering, PhD
thesis, Department of Computer and Information Science, University of Pennsylvania,
May 1986.

[Raudaskoski, 1990] Pirkko Raudaskoski, “Repair Work in Human-Computer Interac-
tion,” In Paul Luff, Nigel Gilbert, and David Frohlich, editors, Computers and Con-
versation. Academic Press, 1990.

[Schegloff et al., 1977] E. A. Schegloff, G. Jefferson, and H. Sacks, “The Preference for
Self Correction in the Organization of Repair in Conversation,” Language, 53:361-382,
1977.

[Traum and Hinkelman, 1992] David R. Traum and Elizabeth A. Hinkelman, “Conversa-
tion Actsin Task-oriented Spoken Dialogue,” Computational Intelligence, 8(3):575-599,
1992, Special Issue on Non-literal language.

14



