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1 Introduction and Related Work 2 Parsing Methods

o . .1 Voting Model
Natural language understanding is an essential mozol— g

ule in any dialogue system. To obtain satisfac/Ve use a simple conditional probability model
tory performance levels, a dialogue system need3(f | W) for parsing. The model represents the
a semantic parser/natural language understandiffpbability of producing slot-value pajfr as an out-
system (NLU) that produces accurate and detaild@Ht given that we have seen a particular word or
dialogue oriented semantic output. Recently, B-gramW as input. Our two-stage procedure for
number of semantic parsers trained using eithélenerating a frame for a given input sentence is: (1)
the FrameNet (Baker et al., 1998) or the Propl.:ind a set of all slot-value that correspond with each
Bank (Kingsbury et al., 2002) have been reportedvord/ngram (2) Select the top portion of these can-
Despite their reasonable performances on genefifates to form the final frame (Bhagat et al., 2005;
tasks, these parsers do not work so well in spd=eng and Hovy, 2003).

cific domains. Also, where these general purpose
parsers tend to provide case-frame structures, tl‘%iz
include the standard core case roles (Agent, Patie@ur next approach is the Maximum Entropy (Berger
Instrument, etc.), dialogue oriented domains tenet al., 1996) classification approach. Here, we cast
to require additional information about addresseesur problem as a problem of ranking using a classi-
modality, speech acts, etc. Where general-purpofier where each slot-value pair in the training data is
resources such as PropBank and Framenet providensidered a class and feature set consists of the un-
invaluable training data for general case, it tends tigrams, bigrams and trigrams in the sentences (Bha-
be a problem to obtain enough training data in a spgat et al., 2005).

cific dialogue oriented domain.
. . 2.3 Support Vector Machines
We in this paper propose and compare a num-

ber of approaches for building a statistically trainedVe use another commonly used classifier, Support
domain specific parser/NLU for a dialogue systemvector Machine (Burges, 1998), to perform the
Our NLU is a part of Mission Rehearsal Exercisésame task (Bhagat et al., 2005). Approach is sim-
(MRE) project (Swartout et al., 2001). MRE is ailar to Section 2.2.

large system that is being built to train experts, in

which a trainee interacts with a Virtual Human using-4 L-@nguage Model

voice input. The purpose of our NLU is to convertAs a fourth approach to the problem, we use the Sta-
the sentence strings produced by the speech recdigtical Language Model (Ponte and Croft, 1997).
nizer into internal shallow semantic frames comWe estimate the language model for the slot-value
posed of slot-value pairs, for the dialogue module. pairs, then we construct our target interpretation as

Maximum Entropy



Method| Precison| Recall| F-score 5 Future Work
Voting 0.82 0.78 0.80
ME 0.77 0.80 0.78
SVM 0.79 0.72 0.75
LM1 0.80 0.84 0.82
LM?2 0.82 0.84 0.83

Having successfully met the initial challenge of
building a statistical NLU with limited training data,
we have identified multiple avenues for further ex-
ploration. Firstly, we wish to build an hybrid system
that will combine the strengths of all the systems to
Table 1: Performance of different systems on tegtroduce a much more accurate system. Secondly,
data. we wish to see the effect that ASR output has on
each of the systems. We want to test the robustness
_ _ of systems against an increase in the ASR word er-
a set of the most likely slot-value pairs. We usgq rate  Thirdly, we want to build a multi-clause
unigram-based and trigram-based language MOfgarance chunker to integrate with our systems. We
els (Bhagat et al., 2005). have identified that complex multi-clause utterances
_ have consistently hurt the system performances. To
3 Experiments and Results handle this, we are making efforts along with our
We train all our systems on a training set 47 c_oIIeagues in the speech community to build a rea_l-
: time speech utterance-chunker. We are eager to dis-
sentence-frame pairs. The systems are then tested on . . .
cover any performance benefits. Finally, since we

an unseen test set 80 sentences. For the test sen- o .
already have a corpus containing sentence and their

tences, the system generated frames are compare . .
fresponding semantic-frames, we want to explore

. . C
agalns_t the manually built gold standard frames, a %oe possibility of building a Statistical Generator us-
Precision, Recall and F-scores are calculated for

ing the same corpus that would take a frame as input
each frame.

and produce a sentence as output. This would take

Table 1 shows .the average Precision, Recall angs a step closer to the idea of building a Reversible
F-scores of the different systems for thietest sen- System that can act as a parser when used in one

tences: Voting based (Voting), Maximum ENtropYire tion and as a generator when used in the other.
based (ME), Support Vector Machine based (SVM),
tanguage I\l\jogell lt))asecc; V\/_ltrr: u_mgramsL(l\I;Il\zlll) ?r?q?eferences
anguage ode ased wit trlgrams ( ) eCoIIin F. Baker, Charles J. Fillmore, and John B. Lowe. 1998. The berkeley
F-scores show that the LM2 system performs the fCrameget project. IrProceedings of COLING/AGLpage 8690, Montreal,
best though the system scores in general for all the "
ot H :Adam L. Berger, Stephen Della Pietra, and Vincent J. Della Pietra. 1996. A
systems are very close. To test the StatIStI(.)a| Slgmﬁ\_ maxir'_nu_m entropy approach to natural language processhugnputational
cance of these scores, we conduct a two-tailed pairedtinguistics 22(1):39-71.
Student’s t test (Manning and Schtze, 1999) 0N th@hul Bhagat, Anton Leuski, and Eduard Hovy. 2005. Statistical shallow
i ing despite little training data. Technical report available at
F-scores of these systems for thtetest cases. The  pro i o o
p:/iwww.isi.edu/rahul .
test shows that there is no statistically significant dif-
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