CS 599: Computational Models of
Dialogue Modelling: Fall 2005
Lecture 4: Frame-based and

Information-state based
Approaches

David Traum

http://www.ict.usc.edu/~traum

Outline

Frame-based approach
- Example systems: MIT

Frame+agenda
- CMU

Information-state approach

- Trindikit

- Other kits

Example information-based theories &
systems

- EDIS

Transaction Dialogues

o User has a request
o System needs info from user to process request

e Dialogue proceeds as:
- User specifies request

- System gathers necessary info
o Q&A
e Spontaenous assertion from user
- System looks up information & provides response

Frame-based Approach

Also called form-based (MIT)

Central data structure is frame with slots
- DM is monitoring frame, filling in slots

Used for transaction dialogues

Generalizes finite-state approach by allowing multiple
paths to acquire info

Frame:

- Set of information needed

- Context for utterance interpretation
- Context for dialogue progress

Allows mixed initiative

Example: MIT Wheels system

e« Domain: searching used car ads

e« Transaction domain + constraint
satisfaction

e No slots are mandatory,
- try to find the best set of matches
- Try to find an appropriate # of matches

Example: MIT Jupiter System (1)

e Retrieval of weather forecast domain
- Multiple sources
- Content processing
- Information on demand
- Context

e 1-888-573-8255

MIT Jupiter System (2)

o Uses Galaxy architecture

- SUMMIT ASR
e 2000 word vocabuluary, 1-9% OOV
- TINA NL understanding
e Creates semantic frames from text
» Used for both query understanding (user)
o Content understanding (web-based weather text)
- GENESIS generation
o User text
e SQL queries
» Keyword-value
- Dialogue control table
» Conditions for operations
e context

Problems with Frames

e Not easily applicable to complex tasks
- May not be a single frame
- Dynamic construction of information
- User access to “product”

Agenda + Frame (CMU
Communicator)

e Product:
- hierarchical composition of frames

e Process:
- Agenda

e Generalization of stack
e Ordered list of topics
e List of handlers

Example: CMU Communicator
System

The Information State
Approach to Dialogue

Modelling:
Some Results of the TRINDI Project

David Traum

USC Institute for Creative Technologies
traum®ict.usc.edu

TRINDI Project

e Task-Oriented Instructional Dialogue

e European Union Telematics, 2yr
project (1998-2000)

e ~15 Researchers

e Consortium: U Gothenburg, U
Edinburgh, U Saarlandes, SRI
Cambridge, Xerox

Motivating Problems

e Dialogue theories are largely incomparable
- despite often similar intended coverage

- e.g., motivation for answering questions:
- cooperativity vs. obligations vs. QUD structure

- Heterogeneous building blocks

e Large gap between dialogue models in systems and
broad-coverage theories

« Dialogue systems are hard to build
- despite rapid progress in ASR, TTS, NLP
- hard to convert systems to new domains
- insufficient attention to "theoretical’ concerns

Deficiencies of Previous
Dialogue Theories

e Inappropriate for direct implementation
- Some aspects too vague
e e.g., Relevance Theory (a la Sperber and Wilson)

- some aspects too complex for efficient computation
e e.g., Implicit Belief using Modal Predicate Logic

e Hard to evaluate/compare with other theories
e even when covering same dialogue phenomena
» Heterogeneous building blocks

- How to combine, e.g., mentalistic and structural

Deficiencies of Current
Dialogue Systems

o Software engineering challenge
- combining heterogeneous sub-systems

« Domain/Task specific design
- little carried over to next system

e |Insufficient attention to dialogue structure

- Dialogue usually conceived as FSM
e inflexible interaction
» does not scale to large tasks

Partial Solution: Dialogue
Toolkits

e Software Integration
(OAA, Trains/Trips,Verbmobil)

e FSM Dialogue Kits (Nuance, OGlI, ...)
e Slot-Filling (Phillips)
e Current Development Kits:

- Utterance-based (DARPA Communicator)
= [nformation-based (TrindiKit)

Approach to Problems

Information State approach to formalizing
theories of dialogue modelling

Dialogue Move Engine (TrindiKit) for
implementing a dialogue modelling theory

Example implementations

Comparative experimentation,
enhancements, & evaluation

Information State Theories of
Dialogue

e Statics

- Informational components (functional spec)
e e.g., QUD, common ground, dialogue history, ...

- formal representations (acessibility)
e e.g., lists, records, DRSes, ...
e Dynamics
- dialogue moves
 abstractions of i/0 (e.g., speech acts)
- update rules - atomic updates
- update strategy - coordinated application of rules

Sample GoDiS information
state

(1)

AGENDA = { findout(?return) }

findout(?Ax.month(x))
B = findout(?Ax.class(x))

PRIVATE =
respond(?Ax.price(x))
BEL={} /
L TMP = (*same as SHARED*)
.
dest(paris))
COM = transport(plane)
SHARED = task(get_price_info)

QUD = < AX.origin(x) >

_ LM = { ask(sys, Ax.origin(x)) }))

Sample GoDiS update rule

e integrateAnswer

(in(SHARED.LM, answer(usr, A))
fSt(SHARED.QUD, Q)
. relevant_answer(Q, A)

pre:

A

" pOop(SHARED.QUD)
eff: < reduce(Q, A, P)
. add(SHARED.COM, P)

Dialogue Move Engine

e Handles Dialogue Management tasks:
- consumes observed dialogue moves
- updates information state

- produces new dialogue moves to be
performed

e Can be implemented as:

- Update (&Selection) Rules
- Update Algorithm

TrindiKit

e Architecture based on information
states

e Modules (dialogue move engine, input,
interpretation, generation, output
etc.) access the information state

e Resources (databases, lexicons,
domain knowledge etc.)

TrindiKit

inter- gene-
pret rate

\—4—/\\>K /A%—/

Information State

= =

TrindiKit Features

e Explicit information state data-structure
- makes systems more transparent
- closer to dialogue processing theory
- easier comparison of theories

e modularity for simple and efficient
reconfiguration and reusability

e rapid prototyping

TrindiKiT Includes

A library of datatype definitions

- conditions and operations

facilities for writing update rules and algorithms
tools for visualizing information state
debugging facilities
A library of basic ready-made modules for i/o,
interpretation, generation, etc.

Resource interfaces

Building a TrindiKit system

Build or select from existing components:
e Type of information state (DRS, record, ...)

o A set of dialogue moves

e Information state update rules,

e DME Module algorithm(s), including control
algorithm

e Resources: databases, grammars, plan libraries
etc., or external modules

Building a system

domain knowledge : domain-specific
[(resources) J system

dialogue theory — >
(IS, rules, moves etc)
software engineering :>_
(basic types, control flow)

TrindiKit Systems

GoDiS (Larsson et al) - information state: Questions
Under Discussion

MIDAS - DRS information state, first-order reasoning
(Bos &Gabsdil, 2000)

EDIS - PTT Information State, (Matheson et al 2000)
SRI Autoroute - information state based on

Conversational Game Theory (Lewin 2000)
Robust Interpretation (Milward 1999)

System Comparisons

Cross-IS Theories: SRI vs. EDIS on AutoRoute Dialogues
Different formalizations: PTT using DRSes or Records
Different Update strategies:

- GoDiS with or without plan accomodation

- Midas using different grounding strategies

Different Languages, Tasks, and interactivity

- GoDiS: English vs. Swedish

- GoDiS: AutoRoute vs. Travel Agent

- IMDIS: dialogue vs. text

Potential Impact

o Better development environment for formal
dialogue theories
- easy testing/revision of theories
- comparison across theories

e Closer integration of theories and systems
o Better dialogue system development

- Information state vs. dialogue state
- extension to other domains

Post-Trindi Applications

e Siridus Project (EU 2000-)
- Command and negotiative dialogues
- Spanish
- GoDiS, SR
 IBL for Mobile Robots (U Edinburgh)
- Midas
e Tutoring Electricity (U Edinburgh)
- EDIS

Successor Toolkits

e TrindiKit revisions
e Dipper
e Midiki

EDIS SYSTEM

e Uses PTT theory
e Trindikit implementation
e Autoroute domain

PTT Informational Components

¢ Separate Views for System and User
(System assumptions about User)

¢ Private, Public, and Semi-public components of View
captures grounding process (Clark& Schaefer '87)
— GND represents common ground

— set of DUs represent partitioned semi-public in-
formation introduced but not (yet) grounded

— UDUs structure accessible ungrounded DUs

¢ (Semi-)Public Information includes:

— public events
— social commitments of participants

¢ Private Information includes

— Intentions
— Beliefs

EDIS Formalization of Information

Components

¢ Record (AVM) for Views, with fields for each dia-
logue participant:

GND: PT-Rec
Public Information

UDUS: list of accessible DU IDs
CDU (DU-ID,PT-Rec)

current Discourse Unit

FDU (DU-ID,PT-Rec)
penultimate Discourse Unit
INT: list of intended actions

e« PT-REC contains:

DH: list of dialogue acts
Dialogue History of performed dialogue acts

OBL: list of action types

Obligations of participants to perform actions
SCP: list of states

Social Commitments of agents to Propositions

COND: list of implications
relevant conditional anticipated effects

PTT Informatlon State

-G : PT-R
C : PT-R
Cbu | ip . DU.ID
C : PI-R
PDU : | p . DUID
UDUs : List(DU-ID)
LINT : List(Action) i

DH : List(Action)
~ |OBL . List(Action)

PI-R : [SCP . List(Prop) J
COND : List(Action)

EDIS Dialogue Moves

e Forward-looking

assert(dp,Prop)
check(dp, Prop)
direct (dp,act-type)
info-request(dp,Q)

e Backward Looking

Address(dp,act)

e accept

e agree

e answer
Understanding Act

e Acknowledge(dp,DU-ID)

Update Strategy

+ Deliberation (produce new intentions)
+ Acting on intentions (produce output dialogue moves)

¢ UUpdate based on an observed utterance
1. Create a new DU and push it on top of UDUs.
2. Perform updates for backwards grounding acts.

3. For other types, record in cdu.dh and apply the
update rules for act class

4. Apply inference update rules to all parts of the
IS which contain newly added acts.

Update Rules

¢ effects of observed dialogue acts

— formalized in terms of social commitments

¢ inference

— Ohbligation Resolution
— Conditional Resolution
— Intention Resolution

e Deliberation

— adopting new intentions

Dialogue Act Effect Updates

act ID:2, ack(DP,DU1)

effect peRec(w.Gnd,w.pdu.tognd)

effect remove(DU1,UDUS)

act ID:c, forward-looking-act(DP)

effect push(obl,u-act(o(DP),CDU.id))

act ID:2, accept(DP,ID2)

effect accomplished via rule resolution

act ID:2, agree(DP,ID2)

effect push(scp,scp(DP,P(ID2)))

act ID:2, answer(DP,ID2,1D3)

effect push(scp,ans(DP,Q(ID2),P(ID2))) |

act ID:2, assert(DP,PROP)

effect push(scp,scp(DP,PROP))

effect push(cond,accept{o(DP)ID)—
scp(o(DP),PROP))

act ID:1, assert(DP,PROP)

effect push(cond,accept{o(DP),ID)—
scp(o(DP),PROP))

act ID:2, check(DPF,PROP)

effect push(obl,address(o(DP),ID))

effect push(cond,agree(o(DP),ID) —
scp(DP,PROP))

act ID:2, direct(DP, Act)

effect push(obl address(o{DF).ID))

effect push(cond,accept{o(DP),ID) —
obl{o(DP),Act))

act ID:2, info request(DP,Q)

effect push(obl,address(o(DP),ID))

Deliberation Factors

aobligations

— to perform understanding acts
— to address previous dialogue acts
— to perform other actions

potential obligations
that would result if another act were performed,
as represented in the cond field (or CDU.OBL)

insufficiently understood dialogue acts
with a 1 confidence level in cdu.dh

intentions to perform complex acts

Deliberation Rules

. Grounding:
OBL U-act, everything in CDU understood
= ack(W,CDU)

. Address:
OBL address act
== accept, agree, or answer

. Anticipatory Planning:
INT actl A COND actl — OBL act2
= act2 add an intention to perform an action

. SubGoal: Int(actl) A NextSubact(Actl Act2)
= Act2
(a) check CDU.DH:1

(b) info-request

Sample Autoroute Dialogue

W WIZARD CALLER
[1]: How can | help you? [2]: A route please
[3]: Where would you like to start? [4]: Malvern
[5]: Great Malvern? [6]: Yes
[7]: Where do you want to go? [8]: Edwinstowe
[9]: Edwinstowe in Nottingham? [10]: Yes
[11]: When do you want to leave? [12]: Six pm
[13]: Leaving at 6 p.m.? [14]: Yes

[15]: Do you want the quickest or [16]: Quickest
the shortest route?

[17]: Please wait while your route
is calculated.

| C:

InfoState after [2]: A route please

CA3: (2,
GND: | DE: <(_‘AE:L’2,
SCP: < =
COND: < =
UDUS: <DU3>
[OBL:
DH:
opu. | TOGND: | (o
| COND:
1D DU2
[OBL:
DH:
cpu. | TOGND:
SCP:
' COND:
1D DU3

INT- / giveroule(W)
accepti W.CAG)

[INT: <getroute{C)= |

I OBL- understandingAct{ W . DU3)
addressi C.LCAZ)

acknowledge(C.DUZ) >

info_request(W helpform)

<addressi CLCA2) >

<(CAZ: C2, info_request{ W Thelpform)=

< =

< =

<addressi W CAG) =

CAG: C2, direct(C giveroute(W))
CAS C2 answer| CCA2.CAL)
CA4: C2assert(Cowant(Coroute))

<sepl Cowant(Croute)) =
<accepli W.CAG) -> obl{ W,

info_requesti W !start]-\

acknowledge(W DL3 X

miveroute!W))= |

InfoState after [4]: Malvern, prompting check

- P

giveroute(W)
OBL: understanding Act{ W DLU5)
\address[{_".(_‘hﬂ)

'CA10: €2, acknowledge(C.DU4)

GND= bl { cA9: €2, accept(W.CA6)
CAR: C2. info_request(W ,7start)
SCP: < =
| COND: < >

UDUSs: <DUS=

OBL: <address(C.CAS)> 1]
DH. <L‘A'§: €2, accept(W CA6) >
TOGND: CAS: C2.info_request(W 7start)
w: | PDL: SCP- .
| COND: < >]
1D: DU4 |
[(OBL: < > 1
bH. <{_‘A]2:Cz,answerff_‘,(_‘AH,CAIIJ >
TOGND: CA11: C1.assert(C start(malvern))
CDU:
SCP: < =
| COND: = = |
1D: DUS |

checki{ W startimalvern))\
INT acknowledge(W DUS)
\ giveroute{ W) f

L

LG [INT: <getroute(C)= |

W

O

InfoState after [5]. Great Malvern?

GND:

UDUSs:

P

CDuU:

|INT:

OBL:

III."ICA 13: C2, acknowledge! W.DUS §
DH: VCALZ: C2, answer{ CCAR)
I\-,'l'_".-f'nl I: C1,assert{ Cstart{malvern) jf

'understandingAct(C.DU6)
giveroute(W)

i

S5CP: < =
| COND: < = i
=DUe=
| OBL: < > |
DH. <l.'_‘.-f!.12: 2. answer(C CARCALL) >
TOGMND: CAll:Cl, assert] Cstart{malvern))
5CP: < >
COND: < =]
I D5
[OBL: <address(C.CAl4)>
TOGND: DH: <CA14: C2, check(W startimalvern)) =
5CP: < >
COND: <agree(C.CALS) > scpi W startimalvern)) =
1D DU6

<giveroute(W)=
[INT: <getrouteC)= |

InfoState after [7]: Where do you want to go?

OBL:
DH:
| COND: < =
UDUS: <DUS=>
I ' OBL:
W roeND: | O
PDU: SCP:
 COND:
| 1D DU7
' OBL:
DH:
CDLU: TOGRD: SCP:
 COND:
| 1D DUS
I INT: <giveroute(W) >
C: [INT: <getroute(C)> |

understanding Act{ C.DUS J> 1
<givcmutctw]

<CAIT: CZ,acknuwlcdgctW.DUﬂ>
GND: CAlG: C2 agree(C.CALL)

SCP: scpi C start(malvern))
' scpi W start{ malvern))

< >
<CAl6: C2 agree(CCALS) >

<scp(Cstart(malvern)) >

o =

<address(C.CAIS)=

<(CA18: C2.info_request(W Tdest) >
o >

= >

C:

W:

|

opr. (vnderstandingAct(W.DU3)
' address(C,CA2)

e
DI <C.ﬂ~.3. 2

.acknowledge(C.DU2) >

GND: CA2: C2, info_request(W.?helpform)
SCP: < >
| COND: < > |
UDUS: <DU3>
i [OBL: <address(C.CA2)> 1
DH: <CA2: C2. info_request(W, helpform) >
PDU: TOGND: SCP: < >
| COND: < > |
ID: DU2]
i OBL: <address(W,CA6)> 1
CA6: C2, direct(C.giveroute{W))
DH: CAS5: C2, answer(C,CA2.CA4)
CDU: TOGND: CA4: C2_assert(C.owant(C.,route))
SCP: <sep(C.want(C.route)) >
_CDND: <accept{ W.CAG) -> obl{ W_giveroute(W)) >
ID: DU3]
info_request(W, 7start)
iveroute(W
INT: Emept[W[,C A}ﬁ)
acknowledge(W.DU3)
INT: <getroute(C)=]

