INFORMATIONRETRIEVAL AND CLASSIFICATION APPROACHES

ANTON LEUSKI

CHICAGO - 2035

1ST DIALOG

- Passive system, no initiative
- No context (likely)
- No strategy
- Limited set of responses
- Pre-recorded responses

2ND DIALOG

- Initiative
- Emotions
- Strategy
- Response generation
- Unlimited set of responses

VIRTUAL HUMAN

LANGUAGE Understanding

- Problem: Speech input is often unpredictable
 - Language ambiguity
 - Speech recognition errors
- Solution: Automatically train machines from input-output pairs

LANGUAGE Understanding

- Text Mapping
 - "Why did you kill yourself" -> "That detective is the right question"
- Information Extraction
 - "Alpha one six this is Bravo two five adjust fire over" ->
 "Bravo two five adjust fire out"
- Semantic parsing
 - "Why did you kill yourself" ->

```
speech-act <A213>
action info-req
actor detective
addressee hologram
type question
q-slot cause
time past
type kill
object doctor
```

TEXT MAPPING

- How do we do the mapping?
- We have...
- ... a set of Q/A pairs "Training" data
- ... a question "Test" data
- we have to select the "correct" answer

TEXT MAPPING

- Text classification
- Text retrieval

CLASSIFICATION

- Answer = class
- Question = instance
- Training questions = training instances
- Simplest case = 2 classes

CLASSIFICATION

- Text as points?!
- How to compute that line?
- What do we do if the line does not exist?
- What do we do if >2 answers (classes)?

TEXT AS VECTORS

Why did you kill yourself?

Why	did	you	kill	yourself
-----	-----	-----	------	----------

Term	tf
why	1
did	1
you	1
• • •	•••

- "Bag of words"
- Stopping
- Stemming

TEXT AS VECTORS

Why did you kill yourself

to capture order...

Why did	did you	you ki	11	kill yourself
Why did you	ı did yo	ou kill	you	ı kill yourself

TERM WEIGHTS

 $w_{i,j} = \begin{cases} 1 & \text{word } i \text{ is present in string } j \\ 0 & \text{otherwise} \end{cases}$ $w_{i,j} = tf_{i,j}$ $w_{i,j} = tf_{i,j}/df_i$ $w_{i,j} = tf_{i,j}/\log df_i$ $w_{i,j} = tf_{i,j}/\log df_i$ $w_{i,j} = tf_{i,j}/\log df_i$ $w_{i,j} = tf_{i,j}/\log df_i$ $v_{i,j} = tf_{i,j}/\log df_i$

CLASSIFICATION

- Text as points?!
- How to compute that line?
- What do we do if the line does not exist?
- What do we do if >2 answers (classes)?

dot product

subject to constraints

$$y_i \cdot [(\mathbf{w} \cdot \mathbf{x_i}) + b] \geqslant 1, i = 1...m$$

• maximize margin $\frac{1}{||\mathbf{w}||^2}$

using Lagrange multipliers

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{m} \alpha_i \cdot \{y_i \cdot [(\mathbf{w} \cdot \mathbf{x_i}) + b] - 1\}$$

extremum at

$$\frac{\partial}{\partial b}L(\mathbf{w}, b, \alpha) = 0, \frac{\partial}{\partial \mathbf{w}}L(\mathbf{w}, b, \alpha) = 0$$

• i.e.

$$\sum_{i=1}^{m} \alpha_i y_i = 0$$

and

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i$$

$$f(\mathbf{x}) = \operatorname{sgn}\left((\mathbf{x} \cdot \mathbf{w}) + b\right)$$
$$= \operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_i y_i(\mathbf{x} \cdot \mathbf{x}_i) + b\right)$$

CLASSIFICATION

- Text as points?!
- How to compute that line?
- What do we do if the line does not exist?
- What do we do if >2 answers (classes)?

• That "transformation" function can be very expensive to compute

Kernels to the rescue

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_i y_i (\mathbf{\Phi}(\mathbf{x}) \cdot \mathbf{\Phi}(\mathbf{x}_i)) + b\right)$$
$$= \operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i) + b\right)$$

• Kernel function, e.g.,

$$K(\mathbf{x}, \mathbf{x}_i) = \exp(-||\mathbf{x} - \mathbf{x}_i||^2)$$

Subject to constraints

$$y_i \cdot [(\mathbf{w} \cdot \mathbf{x_i}) + b] \geqslant 1 - \xi_i$$

 $\xi_i \geqslant 0, i = 1...m$

minimize

$$\tau(\mathbf{w}, \xi) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{m} \xi_i$$

- www.support-vector.net
- www.kernel-machines.org
- symlight.joachims.org
- www.csie.ntu.edu.tw/~cjlin/bsvm/

CLASSIFICATION

- Text as points?!
- How to compute that line?
- What do we do if the line does not exist?
- What do we do if >2 answers (classes)?

N-CLASS CLASSIFICATION

- one-against-all (N)
 - select the class with the highest f(x)
- one-against-one (N(N-1)/2)
 - voting: the class with largest number of wins

TEXT RETRIEVAL

TEXT RETRIEVAL

- Information Retrieval
- Answer = document
- Question = query
- match query against documents...

TEXT AS VECTORS

TEXT RETRIEVAL

- Compute vector for each answer
- Compute vector for the question
- Order answers by the similarity
- Select the top-ranked answer

VECTORS ARE BAD!

- They work... But!
- no model
- ad-hoc weighting schemes

$$w_{i,j} = \frac{tf_{i,j}}{tf_{i,j} + 0.5 + 1.5 \frac{doclen}{avgdoclen}} \cdot \frac{\log(\frac{colsize + 0.5}{docf_i})}{\log(colsize + 1)}$$

- ad-hoc similarity measure
- difficult to interpret
- impossible to explain
- unclear how to improve

LANGUAGE MODEL

Word generator

That	detective	is	the	right	question	

LANGUAGE MODEL

- Random process
 - M
- Defined by the text probabilities
 - $P(W|M) = P(w_1,...,w_N|M)$

probability | präbə bilətē | | prabə bilədi | prabə biliti |

noun (pl. -ties)

the extent to which something is probable; the likelihood of something happening or being the case: the rain will make the probability of their arrival even greater.

- a probable event : for a time, revolution was a strong probability.
- the most probable thing: the probability is that it will be phased in over a number of years.
- Mathematics the extent to which an event is likely to occur, measured by the ratio of the favorable cases to the whole number of cases possible: the area under the curve represents probability | a probability of 0.5.

PHRASES

in all probability used to convey that something is very likely: he would in all probability make himself known.

ORIGIN late Middle English: from Latin *probabilitas*, from *probabilis 'provable*, *credible*' (see **probable**).

PROBABILISTIC MATCHING

- Estimate language models of question M_Q and answer M_A
- Compare the models (e.g., cross entropy)
 - number of bits to "encode" M_Q with M_A

$$H(M_Q||M_A) = -\sum_{w} P(w|M_Q) \log P(w|M_A)$$

- Select the most similar answer
 - ... or top *N* best
 - ... or with entropy below a threshold

ESTIMATION

MODELS

Unigram

$$P(W) = P(w_1...w_n) = \prod_{i=1}^{n} P(w_i)$$

- word independence
- P("did you kill") = P("you did kill")

Higher-order models

- n-gram: condition on preceding words
- cache: condition on a window
- grammar: condition of grammar structure

Are they useful?

- parameter estimation expensive
- need more data

UNIGRAM MODEL REVISITED

Unigram model:

$$P(w_1...w_n) = \prod_{i=1}^{n} P(w_i)$$

- Exchangeability instead of independence
- de Finetti's theorem

$$P(w_1...w_n) = \int_{\Theta} \prod_{i=1}^n P_{\theta}(w_i) p(d\theta)$$

hide dependencies in the parameters

probability measure over all possible parameter settings

UNIGRAM MODEL REVISITED

- Estimating the generative density
 - using N training strings (e.g, answers)
- Kernel-based estimation

$$p(d\theta) = \frac{1}{N} \sum_{l=1}^{N} K_l(d\theta)$$

Delta kernel (others exist)

$$K_{\delta,l}(d\theta) = \begin{cases} 1 & d\theta \sim P_l(w) \\ 0 & \text{otherwise} \end{cases}$$

Can show that

$$P(w_1...w_n) = \frac{1}{N} \sum_{l=1}^{N} \prod_{i=1}^{n} P_l(w_i)$$

UNIGRAM MODEL REVISITED

• LM

$$P(w|w_1...w_n) = \frac{P(w, w_1...w_n)}{P(w_1...w_n)} = \frac{\sum_{l=1}^{N} P_l(w) \prod_{i=1}^{n} P_l(w_i)}{\sum_{l=1}^{N} \prod_{i=1}^{n} P_l(w_i)}$$

- A much better estimate
- Interpretation: averaged (smoothed) over the training strings

P(W) ESTIMATIONS

- Maximum-likelihood
- Discounting
- Interpolation

MAXIMUM-LIKELIHOOD

relative word frequency

$$\hat{P}(w|M_W) = u_{W,ml}(w) = \frac{\#(w,W)}{|W|}$$

- unbiased
 - if we repeat estimation an infinite number of times with different starting points, we will get correct probabilities
- Zero-frequency problem

ZERO FREQUENCY PROBLEM

- Suppose some word not in the string
 - we get zero probability for the word
 - and any string with that word
- Happens with language

DISCOUNTING

- Laplace
 - add 1 to every count, normalize
- Lindstone
 - add a constant
- Absolute discounting
- Leave-one-out discounting
- Good-Turing estimation

INTERPOLATION

- Problem with discounting
 - treats all unseen words equally
- Use background probabilities
 - interpolate ML estimates with General English expectations

INTERPOLATION

Jelinek-Mercer

$$u_W(w) = \lambda \cdot u_{W,ml}(w) + (1 - \lambda) \cdot u_{GE,ml}(w) = \lambda \cdot \frac{\#(w, W)}{|W|} + (1 - \lambda) \cdot \frac{\#(w, GE)}{|GE|}$$

Dirichlet

$$u_W(w) = \frac{|W|}{|W| + \mu} \cdot u_{W,ml}(w) + \frac{\mu}{|W| + \mu} \cdot u_{GE,ml}(w)$$

- Witten-Bell
- Two-stage

LM SUMMARY

- Compute LM for each answer A
 - use unigram model
 - use Dirichlet smoothing

$$p(w|M_A) = \frac{\sum_{l=1}^{N} u_l(w) \prod_{i=1}^{n} u_l(a_i)}{\sum_{l=1}^{N} \prod_{i=1}^{n} u_l(a_i)}$$

- Compute LM for the question
- Compute cross-entropy for each pair

$$H(M_Q||M_A) = -\sum_{w} P(w|M_Q) \log P(w|M_A)$$

Select answer with the highest value

DISCUSSION

- That's how you do retrieval
- The assumption is that M_Q is similar to M_A
- Is it true?

DISCUSSION

- Not really!
- Questions and answers are generated by different speakers
- Questions have specific form
- They are two different "languages"!

DISCUSSION

- Single-language solution
 - retrieve training questions, not answers
 - individual questions
 - ... or pseudo-questions created by combining all questions appropriate to a single answer
- Cross-lingual solution
 - e.g. retrieve Chinese documents with an English query
 - view questions and answers as coming from two languages

CROSS-LINGUAL METHOD

- Question LM is replaced by the "translated" question LM:
 - we iterate over $\{Q_l, A_l\}$

$$p(w|M_Q) = \frac{\sum_{l=1}^{N} u_{A_l}(w) \prod_{i=1}^{n} u_{Q_l}(q_i)}{\sum_{l=1}^{N} \prod_{i=1}^{n} u_{Q_l}(q_i)}$$

- Two estimation functions u()
 - one for questions and one for answers with their own parameters
- Interpretation
 - estimate how the answer would look like and compare that estimation to the existing answers

TEXT MAPPING SUMMARY

- Classification methods
 - well-defined
 - well-studied
 - require feature vectors
- Retrieval methods
 - vector-based
 - probability-based
 - estimation
 - single-language and cross-language approaches

INFORMATION EXTRACTION

Y: FDC FDC other other FO FO WO WO K

X: Alpha one six this is Bravo two five adjust fire over

- Markup important word sequences
- Maximize likelihood of observing a sequence of labels given a sequence of words: P(Y | X)

CONDITIONAL RANDOM FIELDS

• CRF defines an expression for P(Y | X):

$$P(y|x) = \frac{1}{Z(x)} \exp \left\{ \sum_{i} \lambda_{i} f_{i}(y, x) \right\}$$

Markov CRF: iff

$$f_i(y,x) = f_i(y_{j-1}, y_j, x, j)$$

The CRF is determined by the parameters

CRF ON TEXT

• Feature functions?

- generally binary
- word
- word class (digit)
- word modification (capitalization)
- part of speech
- presence of a feature in position *j*, *j*+1, *j*+2, *j*-1, *j*-2

TRAINING CRF

Maximizing log-likelihood

$$\mathcal{L}(oldsymbol{\lambda}) = \sum_k \left[\log rac{1}{Z(oldsymbol{x}^{(k)})} + \sum_j \lambda_j F_j(oldsymbol{y}^{(k)}, oldsymbol{x}^{(k)})
ight]$$

• as

$$\frac{\partial \mathcal{L}(\boldsymbol{\lambda})}{\partial \lambda_j} = E_{\tilde{p}(\boldsymbol{Y}, \boldsymbol{X})} \left[F_j(\boldsymbol{Y}, \boldsymbol{X}) \right] - \sum_k E_{p(\boldsymbol{Y}|\boldsymbol{x}^{(k)}, \boldsymbol{\lambda})} \left[F_j(\boldsymbol{Y}, \boldsymbol{x}^{(k)}) \right]$$

- with empirical distribution over training $\tilde{p}(Y, X)$
- it might not have a closed solution

TRAINING MCRF

- Chained CRF are much easier to train
- Beyond the scope of this lecture :-)
- see for example
- J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In *International Conference on Machine Learning*, 2001.
- A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extraction and segmentation. In *International Conference on Machine Learning*, 2000.

SEMANTIC PARSING

"Why did you kill yourself" ->

speech-act <A213>
action info-req
actor detective
addressee hologram
type question
q-slot cause
time past
type kill
object doctor

- Translation from text to frames
- Note: Frame creation, not retrieval
- Likelihood, recall the cross-lingual technique

$$P(f|W) = \frac{\sum_{s} \phi_{F_s}(f) \prod_{i=1}^{m} \pi_{W_s}(w_i)}{\sum_{s} \prod_{i=1}^{m} \pi_{W_s}(w_i)}$$

SEMANTIC PARSING

- Rank all slot-value pairs by the likelihood
- Cut the top part of the ranking
 - determine threshold from the training data
- That's the frame
- How to use the frames?