
Vector-Based Natural Language
Call Routing

Jennifer Chu-Carroll � Bob Carpenter
�

Lucent Technologies Bell Laboratories Lucent Technologies Bell Laboratories

This paper describes a domain independent, automatically trained natural language call
router for directing incoming calls in a call center. Our call router directs customer calls based
on their response to an open-ended “How may I direct your call?” prompt. Routing behavior
is trained from a corpus of transcribed and hand-routed calls and then carried out using vector-
based information retrieval techniques. Terms consist of n-gram sequences of morphologically
reduced content words, while documents representing routing destinations consists of weighted
term frequencies derived from calls to that destination in the training corpus. Based on the sta-
tistical discriminating power of the n-gram terms extracted from the caller’s request, the caller
is 1) routed to the appropriate destination, 2) transferred to a human operator, or 3) asked a dis-
ambiguation question. In the last case, the system dynamically generates queries tailored to the
caller’s request and the destinations with which it is consistent, based on our extension of the
vector model. Evaluation of the call router performance over a financial services call center us-
ing both accurate transcriptions of calls and fairly noisy speech recognizer output demonstrated
robustness in the face of speech recognition errors. Furthermore, our system showed a substan-
tial improvement in performance over existing systems by correctly routing 93.8% of the calls
after punting 10.2% of all calls to a human operator on transcription, with approximately 4%
degradation in performance when using speech recognizer output with a 23% word error rate.

1. Introduction

The call routing task is one of directing a customer’s call to an appropriate destination
within a call center or providing some simple information, such as current loan rates,
on the basis of some kind of interaction with the customer. In current systems, such in-
teraction is typically carried out via a touch-tone system with a rigid pre-determined
navigational menu. The primary disadvantages of such navigating menus for users are
the time it takes to listen to all the options and the difficulty of matching their goals to
the given options. These problems are compounded by the necessity of descending a
nested hierarchy of choices to zero in on a particular activity. Even requests with sim-
ple English phrasings such as “I want the balance on my car loan” may require users to
navigate as many as four or five nested menus with four or five options each. We have
developed an alternative to touch-tone menus that allows users to interact with a call
router in natural spoken English dialogues just as they would with a human operator.

In a typical dialogue interaction between a caller and a human operator, the opera-
tor responds to a caller request by either routing the call to an appropriate destination,
or by querying the caller for further information to determine where the call should

� 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A; jencc@research.bell-labs.com�
600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A; carp@research.bell-labs.com

c
�

199? Association for Computational Linguistics

Computational Linguistics Volume ??, Number ?

be routed. Thus, in developing an automatic call router, we select between these two
options as well as a third option of sending the call to a human operator in situations
where the router recognizes that it is beyond its capabilities to automatically handle the
call. The rest of this paper provides both a description and an evaluation of an automatic
call router which consists of 1) a routing module driven by a novel application of vector-
based information retrieval techniques, and 2) a disambiguation query generation mod-
ule that utilizes the same vector representations as the routing module and dynamically
generates queries tailored to the caller’s request and the destinations with which it is
consistent, based on our extension of the vector model. The overall call routing system
has the following desirable characteristics. First, the training of the call router is do-
main independent and fully automatic, allowing the system to be easily ported to new
domains. Second, the disambiguation module dynamically generates queries based on
caller requests and candidate destinations, allowing the system to tailor queries to spe-
cific circumstances. Third, the system is highly robust to speech recognition errors. Fi-
nally, the overall performance of the system substantially improves upon that of previ-
ous systems. With transcription (perfect recognition), we punt 10.2% of the calls to the
operator, correctly routing 93.8% of the remainder either with or without disambigua-
tion. With spoken input processed automatically with recognition performance at a 23%
word error rate, the system performance degrades by merely 4%.

2. Related Work

Call routing is similar to topic identification (McDonough et al., 1994) and document
routing (Schütze, Hull, and Pedersen, 1995) in identifying which one of n topics (or
in the case of call routing, destinations) most closely matches a caller’s request. Call
routing is distinguished from these activities by requiring a single destination to be
selected, but allowing a request to be refined in an interactive dialogue. We are further
interested in carrying out the routing process using natural, conversational language.

The only work on natural language call routing to date that we are aware of is that
by Gorin and his colleagues (Gorin, Riccardi, and Wright, 1997; Abella and Gorin, 1997;
Riccardi and Gorin, 1998), who designed an automated system to route calls to AT&T
operators. They select salient phrase fragments from caller requests (in response to the
system’s prompt of “how may I help you?”), such as made a long distance and the area
code for, and sometimes including phrases that are not meaningful syntactic or semantic
units, such as it on my credit. These salient phrase fragments, which are incorporated
into their finite state language model for their speech recognizer, are then used to com-
pute likely destinations, which they refer to as call types. This is done by either comput-
ing a posteriori probabilities for all possible call types (Gorin, 1996) or by passing the
weighted fragments through a neural network classifier (Wright, Gorin, and Riccardi,
1997). Abella and Gorin (1997) utilized the Boolean formula minimization algorithm for
combining the resulting set of call types based on a hand-coded hierarchy of call types.
This algorithm provides the basis for determining whether or not the goal of the request
can be uniquely identified, and their intention is to utilize the outcome of this algorithm
to select from a set of dialogue strategies for response generation.

3. Corpus Analysis

To examine human-human dialogue behavior, we analyzed a set of 4497 transcribed
telephone calls involving customers interacting with human operators. We analyzed
these calls along two dimensions: the semantics of caller requests and the dialogue actions
for operator responses. The analysis of the semantics of caller requests is intended to deter-

2

Chu-Carroll and Carpenter Vector-Based Natural Language Call Routing

Destination Name Activity Indirect Request
of calls 949 3271 277
% of all calls 21.1% 72.7% 6.2%

Table 1
Semantic Types of Caller Requests

mine an appropriate subset of the classes of user utterances that the call router should
handle automatically (as opposed to transferring to a human operator). The analysis
of the dialogue actions for operator responses, on the other hand, is intended to deter-
mine the types of responses the call router should be able to provide in response to user
utterances in order to help design the response generation component of the call router.

3.1 Semantics of Caller Requests
In our corpus, all callers respond to an initial open-ended prompt of “ � ABC � bank-
ing services call director; how may I direct your call?” We classified user responses to this
prompt into three classes, based on their levels of specificity:

Destination Name, in which the caller explicitly specifies the name of the department
to which he wishes to be transferred. The requested destination can form an
answer to the operator’s prompt by itself, as in “deposit services”, or be part of a
complete sentence, as in “I would like to speak to someone in auto leasing please.”

Activity, in which the caller provides a description of the activity he wishes to perform,
and expects the operator to transfer his call to the appropriate department that
handles the given activity. Such descriptions may be ambiguous or unambigu-
ous, depending on the level of detail the caller provides, which in turn depends
on the caller’s understanding of the organization of the call center. For instance,
in the particular call center we studied, since all transactions related to savings
accounts are handled by the deposit services department, the request “I want
to talk to someone about savings accounts” will be routed to deposit services. On
the other hand, a similar request “I want to talk to someone about car loans” is
ambiguous between consumer lending, which handles new car loans, and loan
services, which handles existing car loans. Queries can also be ambiguous due
to the caller’s providing more than one activity, as in “I need to get my checking
account balance and then pay a car loan.”

Indirect Request, in which the caller describes his goal in a roundabout way, often in-
cluding irrelevant information. This typically occurs with callers who are unfa-
miliar with the call center organization, or those who have difficulty concisely
describing their goals. An example of an indirect request is “ah I’m calling ’cuz
ah a friend gave me this number and ah she told me ah with this number I can buy some
cars or whatever but she didn’t know how to explain it to me so I just called you you
know to get that information.”

Table 1 shows the distribution of caller requests in our corpus with respect to these
semantic types. Our analysis shows that in the vast majority of calls, the request was
based on either destination name or activity. Since in our corpus there are only 23 dis-
tinct destinations,

�
and each destination only handles a fairly small number (dozens to

1 Although the call center had near 100 departments, in our corpus of 4,500 calls, only 23 departments
received more than 10 calls. We chose to base our experiments on these 23 destinations.

3

Computational Linguistics Volume ??, Number ?

Notification Query
NP Others

of calls 3608 657 232
% of all calls 80.2% 14.6% 5.2%

Table 2
Call Operator Dialogue Actions

hundreds) of activities, requests based on destination names and activities are expected
to be more predictable and thus more suitable for handling by an automatic call router.
Thus, our goal is to focus on automatically routing the calls based on destination names
and activities, while leaving the indirect requests for human operators.

3.2 Dialogue Actions for Operator Responses
In addition to analyzing how the callers phrased their requests in response to the op-
erator’s initial prompt, we also analyzed how the operators responded to the callers’
requests.

�

We found that in our corpus, the human operator either notifies the caller of
a destination to which the call will be transferred, or queries the caller for further infor-
mation, most frequently when the original request was ambiguous and much less often
when the original request was not heard or understood.

Table 2 shows the frequency that each dialogue action was employed by human
operators in our corpus. It shows that nearly 20% of all caller requests require further
disambiguation. We further analyzed these calls that were not immediately routed and
noted that 75% of them involve underspecified noun phrases, such as requesting car
loans without specifying whether it is an existing car loan or a new car loan. The remain-
ing 25% mostly involve underspecified verb phrases, such as asking to transfer funds
without specifying the accounts to and from which the transfer will take place, or miss-
ing verb phrases, such as asking for direct deposit without specifying whether the caller
wants to set up a direct deposit or change an existing direct deposit.

Based on our analysis of operator responses, we decided to first focus our router
responses on notifying the caller of a selected destination in cases where the caller re-
quest is unambiguous, and on formulating a query for noun phrase disambiguation in
the case of noun phrase underspecification in the caller request. For calls that do not
satisfy either criterion, the call router should simply punt them to a human operator.

4. Vector-Based Call Routing

In addition to notifying the caller of a selected destination or querying the caller for
further information, an automatic call router should also be able to identify when it is
unable to handle a call and route the call to a human operator for further processing.
The process of determining whether to route a call, generate a disambiguation query,
or to punt the call to an operator is carried out by two modules in our system, the rout-
ing module and the disambiguation module, as shown in Figure 1. Given a caller request,
the routing module selects a set of candidate destinations to which it believes the call
can reasonably be routed. If there is exactly one such destination, the call is routed to
that destination and the caller notified; if there is no appropriate destination, the call is

2 In most calls, we analyzed the utterances given in the operator’s second turn in the dialogue. However, in
situations where the operator generates an acknowledge, such as uh-huh, midway through the caller’s
request, we analyzed utterances in the next operator turn.

4

Chu-Carroll and Carpenter Vector-Based Natural Language Call Routing

Candidate Destinations

of

>1

1 0
destinations?

Potential Query

No

Caller Request

Yes
exists?
Query

Routing Module

Disambiguation Module

Human

Routing
Notification

Response

Operator
Disambiguating
Query

Caller

Figure 1
Call Router Architecture

sent to an operator; and if there are multiple candidate destinations, the disambiguation
module is invoked. In the last case, the disambiguation module attempts to formulate
a query which it believes will allow it to solicit relevant information from the caller to
allow the revised request to be routed to a unique destination. If such a query is suc-
cessfully formulated, it is posed to the caller, and the system makes another attempt
at routing the revised request, which includes the original request and the caller’s re-
sponse to the follow-up question; otherwise, the call is again sent to a human operator.

Our approach to call routing is novel in its application of vector-based information
retrieval techniques to the routing process, and in its extension of the vector-based rep-
resentation for dynamically generating disambiguation queries (Chu-Carroll and Car-
penter, 1998). The routing and disambiguation mechanisms are detailed in the following
sections.

4.1 The Routing Module
4.1.1 Vector Representation for the Routing Module. In vector-based information re-
trieval, the database contains a large collection of documents, each of which is repre-
sented as a vector in � -dimensional space. Given a query, a query vector is computed
and compared to the existing document vectors, and those documents whose vectors
are similar to the query vector are returned. We apply this technique to call routing by
treating each destination as a document, and representing the destination as a vector
in � -dimensional space. Given a caller request, an � -dimensional request vector is com-
puted. The similarity between the request vector and each destination vector is then
computed and those destinations which are close to the request vector are then selected
as the candidate destinations. This vector representation for destinations and query is
illustrated in simplified 2-dimensional space in Figure 2.

In order to carry out call routing with the aforementioned vector representation,
three issues must be addressed. First, we must determine the vector representation for

5

Computational Linguistics Volume ??, Number ?

C: I want the balance on
 my car loan.

Credit Card Services Deposit Services

Consumer Lending

ABA Routing

Credit Card Fraud

Bank Hours

Loan Services

Figure 2
2-Dimensional Vector Representation for the Routing Module

each destination within the call center. Once computed, these destination vectors should
remain constant as long as the organization of the call center remains unchanged.

�

Sec-
ond, we must determine how a caller request will be mapped to the same vector space
for comparison with the destination vectors. Finally, we must decide how the similarity
between the request vector and each destination vector will be measured and a thresh-
old above which the candidate destinations will be selected.

4.1.2 The Training Process. The goal of the training phase of the call router is to deter-
mine the values of the destination vectors (and term vectors) that will subsequently be
used in the routing process. Our training process, depicted in Figure 3, requires a cor-
pus of transcribed calls each of which is routed to the appropriate destination.

�

These
routed calls are processed by five domain-independent procedures to obtain the desired
document (destination) and term vectors.

Document Construction. Since our goal is to represent each destination as an � -dimensional
vector, we must create one (virtual) document per destination. The document for a des-
tination contains the raw text of the callers’ contributions in all calls routed to that des-

3 One may consider allowing the call router to constantly update the destination vectors as new data is
being collected while the system is deployed. We leave adding learning capabilities to the call router for
future work.

4 The transcription process can be carried out by humans or by an automatic speech recognizer. In the
experiments reported in this paper, we used human transcriptions.

6

Chu-Carroll and Carpenter Vector-Based Natural Language Call Routing

Document
Construction

Morphological
Filtering &
Stop word
Filtering

Text for
ABA Routing

Text for
Deposit Svc

Text for
Touchline

. . .
. . .

Term
Extraction

. . .
. . .

ABA Routing

Deposit Svc
Filtered Text for

Filtered Text for

Filtered Text
for Touchline

Term-Document
Matrix
Construction

mxn
Term-Document
MatrixDecomposition

Singular Value
Term
Vectors &
Document
Vectors

. . .
. . .

ABA Routing

Deposit Svc

for Touchline

Salient Terms for

Salient Terms for

Salient Terms

Corpus of

& Routed
Transcribed

Calls

Figure 3
Training Process for the Routing Module

tination, since these are the utterances that provided vital information for routing pur-
poses. For instance, the document for deposit services may contain utterances such as
“I want to check the balance in my checking account” and “I would like to stop payment on a
check.” In our experiments, the corpus contains 3753 calls routed to 23 destinations.

�

Morphological Filtering and Stop Word Filtering. For routing purposes, we are concerned
with the semantics of the words present in a document, but not with the morphological
forms of the words themselves. Thus we filter each (virtual) document, produced by
the document construction process, through the morphological processor of the Bell
Labs Text-to-Speech synthesizer (Sproat, 1998) to extract the root form of each word in
the corpus. This process will reduce singulars, plurals, and gerunds to their root forms,
such as reducing service, services, and servicing to the root service. Also, the various verb
forms are also reduced to their root forms, such as reducing going, went, and gone to go.

Next, the root forms of caller utterances are filtered through two lists, the ignore list
and the stop list, in order to build more accurate n-gram term models for subsequent
processing. The ignore list consists of noise words, which are common in spontaneous
speech and can be removed without altering the meaning of an utterance, such as um
and uh. These words sometimes get in the way of proper n-gram extraction, as in “I’d
like to speak to someone about a car uh loan.” When the noise word uh is filtered out of the

5 These calls are a subset of the 4500 calls used in our corpus analysis. We excluded calls to destinations
that were not represented by more than 10 calls, as well as ambiguous calls that were not resolved by the
operator.

7

Computational Linguistics Volume ??, Number ?

utterance, we can then properly extract the bigram car+loan. The stop list enumerates
words that are ubiquitous and therefore do not contribute to discriminating between
destinations, such as the, be, for, and morning. We modified the standard stop list dis-
tributed with the SMART information retrieval system (Salton, 1971) to include domain
specific terms and proper names that occurred in our training corpus. Note that when
a word on the ignore list is removed from an utterance, it allows words preceding and
succeeding the removed word to form n-grams, such as car+loan in the example above.
On the other hand, when a stop word is removed from an utterance, a placeholder is
inserted into the utterance to prevent the words preceding and following the removed
stop word to form n-grams. For instance, after stop word filtering, the caller utterance
“I want to check on an account” becomes “ � sw � � sw � � sw � check � sw � � sw � account”,
resulting in two unigrams check and account. Without the placeholders, we would ex-
tract the bigram check+account, just as if the caller had used the term checking account in
the utterance.

In our experiments, the ignore list contains 25 words which are variations of com-
mon transcriptions of speech disfluencies, such as ah, aah, and ahh. The stop list contains
over 1,200 words, including function words, proper names, greetings, etc.

Term Extraction. The output of the filtering processes is a set of documents, one for each
destination, containing the root forms of the content words extracted from the raw texts
originally in each document. In order to capture word co-occurrence, n-gram terms are
extracted from the filtered texts. First, a list of n-gram terms and their counts are gen-
erated from all filtered texts. Thresholds are then applied to the n-gram counts to select
as salient terms those n-gram terms that occurred sufficiently frequently. Next, these
salient terms are used to reduce the filtered text for each document to a bag of salient
terms, i.e., a collection of n-gram terms along with their respective counts. Note that
when an n-gram term is extracted, all of the lower order k-grams, where 1

�
k � n, are also

extracted. For instance, the word sequence “checking account balance” will result in the
trigram check+account+balance, as well as the bigrams check+account and account+balance
and the unigrams check, account, and balance.

In our experiments, we selected as salient terms unigrams that occurred at least
twice and bigrams and trigrams that occurred at least three times. This resulted in 62
trigrams, 275 bigrams, and 420 unigrams. In our training corpus, no 4-gram occurred
three times. Manual examination of these n-gram terms indicates that almost all of the
selected salient terms are relevant for routing purposes. �

Term-Document Matrix Construction. Once the bag of salient terms for each destination is
constructed, it is very straightforward to construct an ��� � term-document frequency
matrix � , where � is the number of salient terms, � is the number of destinations, and
an element ���	�
 represents the number of times the term � occurred in calls to destination�

. This number indicates the degree of association between term � and destination
�
, and

our underlying assumption is that if a term occurred frequently in calls to a destination
in our training corpus, then occurrence of that term in a caller’s request indicates that
the call should be routed to that destination.

In the term-document frequency matrix � , a row � � is an � -dimensional vector
representing the term � , while a column �
 is an � -dimensional vector representing the
destination

�
. However, by using the raw frequency counts as the elements of the matrix,

6 It would have been possible to hand-edit the set of n-gram terms at this point to remove unwanted terms.
The results we report in this paper use the automatically selected terms without any hand-editing.

8

Chu-Carroll and Carpenter Vector-Based Natural Language Call Routing

more weight is given to terms that occurred more often in the training corpus than to
those that occurred less frequently. For instance, a unigram term such as account, which
occurs frequently in calls to multiple destinations will have greater frequency counts
than say, the trigram term social+security+number. As a result, when the two vectors are
combined, as will be done in the routing process, the term vector for account contributes
more to the combined vector than that for social+security+number. In order to balance
the contribution of each term, the term-document frequency matrix is normalized so
that each term vector is of unit length. Let

�
be the result of the normalizing the term-

document frequency matrix, whose elements are given as follows:

� �	�
�� � �	�
�����	��
���
 ����	�
��
���
�

Our second weighting is based on the notion that a term which only occurs in a
few documents is more important in routing than a term which occurs in many doc-
uments. For instance, the term stop+payment, which occurred only in calls to deposit
services, should be more important in discriminating among destinations than check,
which occurred in many destinations. Thus, we adopted the inverse-document frequency
(IDF) weighting scheme (Sparck Jones, 1972) whereby a term is weighted inversely to
the number of documents in which it occurs. This score is given by:

����� � � � ������� �
�

� � � �
where � is a term, � is the number of documents in the corpus, and

� � � � is the number of
documents containing the term � . If � only occurred in one document, �� "! � � � �#�$�%� � � ; if
� occurred in every document, �& "! � � � ��')(+* �-, �/. . Thus, using this weighting scheme,
terms that occur in every document will be eliminated. 0 We weight the matrix B by
multiplying each row � by �� "! � � � to arrive at the matrix C:1 �	�
2� ���2� ��3 �547698 �;:
Singular Value Decomposition and Vector Representation. In the weighted term-document
frequency matrix

1
, terms are represented as � -dimensional vectors (in our system,

n=23), and destinations are represented as � -dimensional vectors (in our system, m =
757). In order to provide a uniform representation of term and document vectors and
to reduce the dimensionality of the document vectors, we applied the singular-value
decomposition to the � � � matrix

1
(Deerwester et al., 1990) to obtain:1 �=< 4+>?4+@�ACB

where

1.< is an � � � orthonormal matrix

2.
@

is an � � � orthonormal matrix

3.
>

is an ��� � positive matrix whose nonzero values are D � � � BFEGEFEGB D+H � H , where I
is the rank of

1
, and they are arranged in descending orderD � � ��J D � � �

J 4G4F4 J D H � H �K.
Figure 4 illustrates the results of singular value decomposition according to the

above equation. The shaded portions of the matrices are what we use as the basis for
our term and document vector representations, as follows:

7 To preserve all terms, we could have used a common variant of the IDF weighting where IDF(t) =L;M�N
�PO+QSRTGUWVYX for some non-negative Z .

9

Computational Linguistics Volume ??, Number ?

xx=

mxmUmxnC S nxn
T

Vmxn

Figure 4
Singular Value Decomposition

1.< H is an � � I matrix, in which each row forms the basis of our term vector
representation

2.
@ H is an � � I matrix, in which each row forms the basis of our document
vector representation

3.
> H is an I � I positive diagonal matrix whose values are used for appropriate
scaling in the term and document vector representation

The actual representation of the term and document vectors is < H and
@ H scaled

(or not) by elements in
> H , depending on whether the representation is intended for

comparisons between terms, between documents, or between a term and a document.
For instance, since the similarity between two documents can be measured by the dot
product between vectors representing the two documents (Salton, 1971), and

1 A 4 1
contains the dot products of all pairwise column vectors in the weighted term-document
frequency matrix

1
, the similarity between the

�
th and � th documents can simply be

recovered by element
� 1 A 4 1 �����

. Since U is orthonormal and S is a diagonal matrix,1 A 4 1 � � < 47>?4F@ A � A 4 � < 4+>?4F@ A �
� @�47> A 4 < A 4 < 47> 4+@ A
� @�47> 4+> 47@ A
� � @�4+> �54 � @�4+> � A
� � @ H 4+> H � 4 � @ H 4+> H � A

The above equations suggest that scaling the vectors
@ H with elements in

> H , i.e., repre-
senting documents as row vectors in

@ H 4Y> H , facilitates comparisons between documents.
The same reasoning holds for representing terms as row vectors in < H 47> H for compar-
isons between terms, although in this particular application, we are not interested in
term/term comparisons.

To measure the degree of association between a term and a document, we look up an
element in the weighted term-document frequency matrix. Since S is a diagonal matrix,
we have 1 � < 4+>?47@�A

� < 4 � @ 4F> � A
� < H 4 � @ H 4F> H � A

Therefore, representing terms simply by row vectors in <CH and documents by row vec-
tors in

@ H 4-> H allows us to make comparisons between documents, as well as between
terms and documents.

10

Chu-Carroll and Carpenter Vector-Based Natural Language Call Routing

≅ x

(n+1)xrmx(n+1)C

x

mxrU rxrS V
T

Figure 5
Pseudo-Document Generation

4.1.3 Call Routing. As discussed earlier, two processes need to be carried out during
the call routing process. First, a pseudo-document vector must be constructed to represent
the caller’s request in order to facilitate the comparisons between the request and each
document vector. Second, a method for comparison must be established to measure the
similarity between the pseudo-document vector and the document vectors in

@ H 4&> H ,
and a threshold must be determined to allow for selection of candidate destinations.

Pseudo-Document Generation. Given a caller utterance (either in text form from a key-
board interface or as the output from an automatic speech recognizer), we first perform
the morphological and stop word filtering and the term extraction procedures as in the
training process to extract the relevant n-gram terms from the utterance. Since higher-
level n-gram terms are in general better indicators of potential destinations, we further
allow trigrams to contribute more to constructing the pseudo-document than bigrams,
which in turn contribute more than unigrams. Thus we assign a weight ��� to trigrams,� � to bigrams, and �

�
to unigrams,

�
and each extracted n-gram term is then weighted

appropriately to create a bag of terms in which each extracted n-gram term occurs �

times. As a result, when we construct a pseudo-document from the bag of terms, we get
the effect of weighting each n-gram term by �

.

Given the extracted n-gram terms, we can present the request as an � � , vector�
where each element

� �
in the vector represents the number of times the

�
th term

occurred in the bag of terms. The vector
�

is then added as an additional column vector
in our original weighted term-document frequency vector

1
, as shown in Figure 5, and

we want to find the new corresponding column vector in
@

,
@��

, that represents the
pseudo-document in the reduced I -dimensional space. Since U is orthonormal and S is
a diagonal matrix, we have

� � < 4F>?4+@�� A
� A � @��94F> 4 < A

� A 4 < � @��94F> 4 < A 4 <
� @��94F>

Finally, note that
� A 4 < � � A 4 < H and that

@ � 4 > � @ � 4 > H . @ � 4S> H is a pseudo-
document representation for the caller utterance in I -dimensional space, and is scaled
appropriately for comparison between documents. This vector representation is simply

8 In our system, 	 ��

� ; 	 ��
�� ; and 	 ��
�� .

11

Computational Linguistics Volume ??, Number ?

obtained by multiplying
� A

and < H , or equivalently, summing the vector representing
each term in the bag of n-gram terms.

Candidate Destination Selection. Once the pseudo-document vector representing the caller
request is computed, we measure the similarity between the pseudo-document vector
and each document vector in

@ H 4F> H . There are a number of ways one may measure the
similarity between two vectors, such as using the cosine score between the vectors, the
Euclidean distance between the vectors, the Manhattan distance between the vectors,
etc. We follow the standard technique adopted in the information retrieval community
and select the cosine score as the basis for our similarity measure. The cosine score be-
tween two n-dimensional vectors x and y is given as follows:

� (D ��� B�� � � � 4�� A� ��� � � ��
�� �� 4 �/�	� � �

	 ��
Using cosine reduces the contribution of each vector to its angle by normalizing for

length. Thus the key in maximizing cosine between two vectors is to have them point
in the same direction. However, although the raw vector cosine scores give some indi-
cation of the closeness of a request to a destination, we noted that the absolute value of
such closeness does not translate directly into the likelihood for correct routing. Instead,
some destinations may require a higher cosine value, i.e., a closer degree of similarity,
than others in order for a request to be correctly associated with those destinations.
Thus, in order to select a unique threshold for candidate destination selection that can
be appropriately applied across destinations, we transform the cosine score for each
destination using a sigmoid function specifically fitted for that destination to obtain a
confidence score that represents the router’s confidence that the call should be routed
to that destination.

From each call in the training data, we generate, for each destination, a cosine
value/routing value pair, where the cosine value is that between the destination vector
and the request vector, and the routing value is 1 if the call was routed to that destina-
tion in the training data and 0 otherwise. Thus, for each destination, we have a set of
cosine value/routing value pairs equal to the number of calls in the training data. The
subset of these value pairs whose routing value is 1 will be equal to the number of calls
routed to that destination in the training set. Then, for each destination, we used the
least squared error method in fitting a sigmoid function, ,�� � ,�
���������������� � , to the set of
cosine/routing value pairs. Assuming

� � and
� � are the coefficients of the fitted sigmoid

function for destination
�
, we have the following confidence function for a destination�

and cosine value
�

: � �"!$#
��%'& B %'(B*)�� �,+ � � +
.- ��� :*/10 � :*2 � �

Thus the score given a request and a destination, where d is the vector corresponding to
destination

�
, and r is the vector corresponding to the request is

� �"!�#
��%3& B %'(B*4 �65 ��7 B�8 ��� .

We tested the routing performance using cosine vs. confidence values on transcrip-
tions of 307 unseen unambiguous requests. In each case, we selected the destination
with the highest cosine/confidence score to be the target destination. Using raw cosine
scores, 92.2% of the calls are routed to the correct destination. On the other hand, using
sigmoid confidence fitting, 93.5% of the calls are correctly routed. This yields an error
reduction rate of 16.7%, illustrating the advantage of transforming the raw cosine scores
to more uniform confidence scores that allow for more accurate comparisons between
destinations.

12

Chu-Carroll and Carpenter Vector-Based Natural Language Call Routing

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%
 C

or
re

ct

Threshold

Upperbound
Lowerbound

Figure 6
Router Performance vs. Confidence Threshold

Once we have obtained a confidence value for each destination, the final step in the
routing process is to compare the confidence values to a pre-determined threshold and
return those destinations whose confidence values are greater than the threshold as can-
didate destinations. To determine the optimal value for this threshold, we ran a series of
experiments to compute the upperbound and lowerbound of the router’s performance
by varying the threshold from 0 to 0.9 at 0.1 intervals. The lowerbound represents the
percentage of calls that are routed correctly, while the upperbound indicates that per-
centage of calls that have the potential to be routed correctly after disambiguation (see
Section 5 for details on upperbound and lowerbound measures). Figure 6 illustrates
the results of this set of experiments and shows that a threshold of 0.2 yields optimal
performance. Thus we adopt 0.2 as our confidence threshold for selecting candidate
destinations in the rest of our discussion.

4.1.4 Call Routing Example. To illustrate the call routing process with an example, sup-
pose the caller responds to the operator’s prompt with “I am calling to apply for a new car
loan.” First the caller’s utterance is passed through morphological filtering to obtain the
root forms of the words in the utterance, resulting in “I am call to apply for a new car
loan.” Next, words on the stop list are removed and replaced with a placeholder, re-
sulting in “ � sw � � sw � call � sw � apply � sw � � sw � new car loan”. From the filtered
utterance, the router extracts the salient n-gram terms to form a bag of terms as fol-
lows: new+car+loan, new+car, car+loan, call, apply, new, car, and loan. A request vector is
then computed by taking the weighted sum of the term vectors representing the salient
n-gram terms, and the cosine value between this request vector and each destination
vector is computed. The cosine value for each destination is subsequently transformed
using the destination-specific sigmoid function to obtain a confidence score for each
destination. Figures 7(a) and 7(b) show the cosine scores and the confidence scores for
the top five destinations, respectively. Given a confidence threshold of 0.2, the only can-
didate destination selected is Consumer Lending. Thus, the caller’s request is routed
unambiguously to that destination.

4.2 The Disambiguation Module
4.2.1 Vector Representation for the Disambiguation Module. When the routing mod-
ule returns more than one candidate destination, the disambiguation module is invoked
in an attempt to formulate an appropriate query to solicit further information from the
caller to determine a unique destination to which the call should be routed. As dis-

13

Computational Linguistics Volume ??, Number ?

1. Consumer Lending 0.979
2. Loan Services 0.260
3. Home Loans 0.077
4. Collateral Control 0.069
5. Operator 0.038

(a) Cosine Scores

1. Consumer Lending 0.913
2. Deposit Services 0.070
3. PC Banking 0.049
4. Loan Services 0.035
5. Auto Leasing 0.032

(b) Confidence Scores

Figure 7
Ranking of Candidate Destinations

Loan Services

Consumer Lending

C: Car loans please.

Figure 8
2-Dimensional Vector Representation for the Disambiguation Module

cussed earlier, this occurs when two or more destination vectors are close to the request
vector, as illustrated in reduced 2-dimensional space in Figure 8. In the example, the
caller’s request “car loans please” is ambiguous since the caller does not specify whether
he is interested in existing or new car loans. Therefore, the vector representation for the
request falls between the vectors representing the two candidate destinations, Consumer
Lending and Loan Services, and is close to both of them. The goal of the disambiguation
process is to solicit an n-gram term from the caller so that when the vector representing
this new n-gram term is added to the original request vector, the refined request vector
will be unambiguously routed to one of the two candidate destinations. In terms of our
vector representation, this means that our goal is to find term vectors that are close to
the differences between the candidate destination vectors and the request vector, i.e.,
the highlighted vectors in Figure 8. These difference vectors, which are dynamically
generated from the destination and request vectors, form the basis from which the dis-
ambiguation queries will be generated.

4.2.2 Query Formulation. Our disambiguation module selects a subset of the salient
n-gram terms from which the query will be generated. The subset of n-gram terms are
those related to the original query that can likely be used to disambiguate among the
candidate destinations. They are chosen by filtering all n-gram terms based on the fol-
lowing three criteria, as shown in Figure 9:

1.Closeness: Since the goal of the disambiguation process is to solicit terms
whose corresponding vectors are close to the difference vectors, the first step
in the term selection process is to compare each n-gram term vector with the
difference vectors and select those n-gram term vectors which are close to the
difference vectors by the cosine measure. Since both the destination vectors

14

Chu-Carroll and Carpenter Vector-Based Natural Language Call Routing

All n-gram terms
& vectors

of termsterms share
headword?

Select Close Terms Select Relevant Terms
Difference vectors

Term Selection

Select Terms with
Disambiguating Power

operator

0

>1

YN-question

1
No

Yes
WH-question

Terms
Selected

Figure 9
The Disambiguation Process

and the request vector are scaled for document/document comparison in@ H 4F> H space, the difference vectors are also represented in
@ H 4+> H space. As

discussed in Section 4.1.2, documents represented in
@ H 4F> H space are suitable

for comparison with terms represented in < H space. In our system, for each
difference vector, we compute the cosine score between the difference vector
and each term vector, and select the 30 terms with the highest cosine scores as
the set of close terms. The reasons for selecting a threshold on the number of
terms instead of on the cosine score are twofold. First, in situations where
many term vectors are close to the difference vector, we avoid generating an
overly large set of close terms but instead focus on a smaller set of most
promising terms. Second, in situations where few term vectors are close to the
difference vector, we still select a set of close terms in the hope that they may
contribute to formulating a reasonable query, instead of giving up on the
disambiguation process outright.

2.Relevance: From the set of close terms, we select a set of relevant terms which
are terms that further specify a term in the original request. A term is
considered relevant if it can be combined with a term in the original request to
form a valid n-gram term, and the relevant term will be the resulting n-gram
term. For instance, if car+loan is a term in the original request, then both new
and new+car would produce the relevant term new+car+loan. This mechanism
for selecting relevant terms allows us to focus on selecting n-gram terms for
noun phrase disambiguation by eliminating close terms that are semantically
related to underspecified n-gram noun phrases in the original request but do
not contribute to further disambiguating them.

3.Disambiguating power: The final criterion that we use for term selection is to
restrict attention to relevant terms that can be added to the original request to
result in an unambiguous routing decision using the routing mechanism
described in Section 4.1.3. In other words, we combine the original request

15

Computational Linguistics Volume ??, Number ?

with each relevant term to form a refined request and the routing module is
invoked to determine if this refined request can be unambiguously routed to a
unique destination. The set of relevant terms with disambiguating power then
form the set of selected terms from which the system’s query will be
formulated. If none of the relevant terms satisfy this criterion, then we include
all relevant terms in the set of selected terms. Thus, instead of giving up the
disambiguation process when no one term is predicted to resolve the
ambiguity, the system poses a question to solicit information from the caller to
move the original request one step toward being an unambiguous request.
After the first disambiguation query is answered, the system subsequently
selects a new set of terms from the refined, though still ambiguous, request
and formulates a follow-up disambiguation query.

The result of this selection process is a finite set of terms which are relevant to the
original ambiguous request and, when added to it, are likely to resolve the ambiguity.
The actual query is formulated based on the number of terms in this set as well as
features of the selected terms. As shown in Figure 9, if the three selection criteria ruled
out all n-gram terms, then the call is sent to a human operator for further processing.
If there is only one selected term, then a yes-no question is formulated based on this
term. If there is more than one selected term in the set, and a significant number of
these terms share a common headword,

�

X, the system generalizes the query to ask the
wh-question “for what type of X?” Otherwise, a yes-no question is formed based on the
term in the selected set that occurred most frequently in the training data, based on the
heuristic that a more common term is likely to be relevant than an obscure term. A third
alternative would be to ask a disjunctive question, but we have not yet explored this
possibility. Figure 1 shows that after the system poses its query, it attempts to route the
refined request, which is the original request augmented with the caller’s response to
the disambiguation query. In the case of wh-questions, n-gram terms are extracted from
the caller’s response. In the case of yes-no questions, the system determines whether
a yes or no answer is given.

���
In the former case, the term selected to formulate the

disambiguation query is considered the caller’s response, while in the latter case, the
response is treated as in responses to wh-questions.

Note that our disambiguation mechanism, like our training process for basic rout-
ing, is fully domain-independent. It utilizes the set of n-gram terms, as well as term and
document vectors that were obtained by the training of the call router. Thus, porting the
call router to a new task does not require any domain specific work on the disambigua-
tion module.

4.2.3 Disambiguation Example. To illustrate the disambiguation module of our call
router, consider the request “loans please.” This request is ambiguous because the call
center we studied handles mortgage loans separately from all other types of loans, and
for all other loans, existing loans and new loans are again handled by different depart-
ments.

Given this request, the call router first performs morphological, stop word, and ig-
nore word filterings on the input, resulting in the filtered utterance of “loan � sw � .” N-

9 In our implemented system, this path is selected if 1) there are 5 or less selected terms and they all share a
common headword, or 2) there are more than 5 terms and at least 5 of them share a common headword.

10 In our current system, a response is considered a yes response only if it explicitly contains the word yes.
However, as discussed in (Green and Carberry, 1994; Hockey et al., 1997), responses to yes-no questions
may not explicitly contain a yes or no term. We leave incorporating a more sophisticated response
understanding model, such as (Green and Carberry, 1994), into our system for future work.

16

Chu-Carroll and Carpenter Vector-Based Natural Language Call Routing

gram terms are then extracted from the filtered utterance, resulting in the unigram term
loan. Next, the router computes a pseudo-document vector that represents the caller’s
request, which is compared in turn with the destination vectors. The cosine values be-
tween the request vector and each destination vector are then mapped into confidence
values. Using a confidence threshold of 0.2, we have two candidate destinations, Loan
Services and Consumer Lending; thus the disambiguation module is invoked.

Our disambiguation module first selects from all n-gram terms those whose term
vectors are close to the difference vectors, i.e., the differences between each candidate
destination vector and the request vector. This results in a list of 60 close terms, the
vast majority of which are semantically close to loan, such as auto+loan, payoff, and owe.
Next, the relevant terms are constructed from the set of close terms by selecting those
close terms that form a valid n-gram term with loan. This results in a list of 27 relevant
terms, including auto+loan and loan+payoff, but excluding owe, since neither loan+owe nor
owe+loan constitutes a valid bigram. The third step is to select those relevant terms with
disambiguating power, resulting in 18 disambiguating terms. Since 11 of these terms
share a head noun loan, a wh-question is generated based on this headword, resulting
in the query “for what type of loan?”

Suppose in response to the system’s query, the user answers “car loan.” The router
then adds the new bigram car+loan and the two unigrams car and loan to the original re-
quest and attempts to route the refined request. This refined request is again ambiguous
between Loan Services and Consumer Lending because the caller did not specify whether
it was an existing or new car loan. Again, the disambiguation module selects the close,
relevant, and disambiguating terms, resulting in a unique trigram exist+car+loan. Thus,
the system generates the yes-no question “is this about an existing car loan?”

� �
If the user

responds “yes”, then the trigram exist+car+loan is added to the refined request and the
call unambiguously routed to Loan Services; if the user says “no, it’s a new car loan”, then
the trigram new+car+loan is extracted from the response and the call routed to Consumer
Lending.

5. Evaluation of the Call Router

5.1 Routing Module Performance
We performed an evaluation of the routing module of our call router on a set of 389
calls disjoint from the training corpus. Of the 389 requests, 307 were unambiguous and
routed to their correct destinations, and 82 were ambiguous and annotated with a list
of potential destinations. Unfortunately, in this test set, only the caller’s utterance in
response to the system’s initial prompt of “how may I direct your call?” was recorded and
transcribed; thus we have no information about where the ambiguous calls should be
routed after disambiguation. We evaluated the routing module performance on both
transcriptions of caller utterances as well as output of the Bell Labs Automatic Speech
Recognizer (Reichl et al., 1998) based on speech input of caller utterances (Carpenter
and Chu-Carroll, 1998).

5.1.1 Term Extraction Performance. Since the vector representation for caller requests
is computed based on the term vectors representing the n-gram terms extracted from
the requests, the performance of our call router is directly tied to the the accuracy of
terms extracted from each caller utterance. Given the set of n-gram terms obtained from

11 Our current system uses simple template filling for response generation by utilizing manually constructed
mappings from n-gram terms to their inflected forms, such as from exist+car+loan to an existing car loan.

17

Computational Linguistics Volume ??, Number ?

Word Accuracy Term Accuracy
Raw Rooted Unigram Bigram Trigram

Precision 78.6% 79.8% 93.7% 96.5% 98.5%
Recall 76.0% 77.2% 88.4% 85.5% 83.6%

Table 3
Word Accuracy vs. Term Accuracy on ASR Output

the training process, the accuracy of extraction of such terms based on transcriptions
of caller utterances is 100%. However, when using the output of an automatic speech
recognizer as input to our call router, deletions of terms present in the caller’s request
as well as insertions of terms that did not occur in the request affect the term extraction
accuracy and thus the routing performance.

We evaluated the output of the automatic speech recognizer based on both word
accuracy and term accuracy, as shown in Table 3. Word accuracy is measured by taking
into account all words in the transcript and in the recognized string. Two sets of results
are given for word accuracy, one based on raw forms of words and the other based on
comparisons of the root forms of words, i.e., after both the transcript and the recognized
string are sent through our morphological filter. Term accuracy is measured by taking
into account only the set of actual/recognized words which contribute to routing per-
formance, i.e., after both the transcript and the recognized string are sent through the
term extraction process.

For each evaluation dimension, we measured the recognizer performance by calcu-
lating the precision and recall. Precision is the percentage of words/terms in the recog-
nizer output that are actually in the transcription, i.e., percentage of found words/terms
that are correct, while recall is the percentage of words/terms in the transcription that
are correctly returned by the recognizer, i.e., percentage of actual word/terms that are
found. Table 3 shows that using the root forms of words results in a 1% absolute im-
provement (approximately 5% relative improvement) in both precision and recall over
using the raw forms of words.

A comparison of the rooted word accuracy and the unigram accuracy shows that
the recognizer performs much better on content words than on all words combined.
Furthermore, comparisons among term accuracies for various n-gram terms shows that
as n increases, precision increases while recall decreases. This is because finding a cor-
rect trigram requires that all three unigrams that make up the trigram be correctly rec-
ognized in order, hence the low recall. On the other hand, this same feature makes it
less likely for the recognizer to postulate a trigram by chance, hence the high precision.
An overall observation in the results presented in Table 3 is that the speech recognizer
misses between 12-17% of the n-gram terms used by the call router, and introduces an
extra 1-6% of n-gram terms that should not have existed. In the next section, we show
how these deletions and insertions affect the call router’s performance.

5.1.2 Destination Selection Performance. In evaluating the performance of the routing
module, we compare the list of candidate destinations with the manually annotated
correct destination(s) for each call. The routing decision for each call is classified into
one of 8 groups, as shown in Figure 10. For instance, group 2a contains those calls which
are 1) actually unambiguous, 2) considered ambiguous by the router, and 3) has the
potential to be routed to the correct destination, i.e., the correct destination is one of
the candidate destinations. On the other hand, group 3b contains those calls which are
1) actually ambiguous, 2) considered unambiguous by the router, and 3) routed to a

18

Chu-Carroll and Carpenter Vector-Based Natural Language Call Routing

3a 3b

one of possible?

yes no

Is call routed by router?

yes no

Is call routed by router?

yes no

2b2a

contains correct?

yes no

1a 1b

correct?

yes no

4a 4b

overlaps with possible?

yes no

yes no

Is request actually unambiguous?

Figure 10
Classification of Routing Module Outcome

Unambiguous Requests Ambiguous Requests All Requests
Lowerbound 1a/(1+2) 4a/(3+4) (1a+4a)/all
Upperbound (1a+2a)/(1+2) (3a+4a)/(3+4) (1a+2a+3a+4a)/all

Table 4
Calculation of Upperbounds and Lowerbounds

destination which is not one of the potential destinations.
We evaluated the router’s performance on three subsets of our test data: unambigu-

ous requests alone, ambiguous requests alone, and all requests combined. For each set
of data, we calculated a lowerbound performance, which measures the percentage of
calls that are correctly routed, and an upperbound performance, which measures the
percentage of calls that are either correctly routed or have the potential to be correctly
routed. Table 4 shows how the upperbounds and lowerbounds are computed based on
the classification in Figure 10 for each of the three data sets. For instance, for unambigu-
ous requests (classes 1 and 2), the lowerbound is the number of calls actually routed to
the correct destination (group 1a) divided by the number of total unambiguous requests,
while the upperbound is the number of calls actually routed to the correct destination
(group 1a) plus the number of calls which the router finds to be ambiguous between the
correct destination and some other destination(s) (group 2a), divided by the number of
unambiguous requests. The calls in 2a are considered potentially correct because it is
likely that the call will be routed to the correct destination after disambiguation.

Tables 5(a) and (b) shows the upperbound and lowerbound performance for the
three test sets based on transcriptions of caller requests and output of an automatic
speech recognizer, respectively. These results show that the system’s overall perfor-
mance in the case of perfect recognition falls somewhere between 75.6% and 97.2%,
while the performance using our current automatic speech recognizer (ASR) output
falls between 72.2% and 92.5%. The actual performance of the system is determined
by two factors: 1) the performance of the disambiguation module, which determines
the correct routing rate of the unambiguous calls that are considered ambiguous by the
router (class 2a, 16.6% of all unambiguous calls with transcription and 15.9% with ASR
output), and 2) the percentage of calls that were routed correctly out of the ambiguous
calls that were considered unambiguous by the router (class 3a, 40.4% of all ambiguous
calls with transcription and 36.6% with ASR output). Note that the performance figures
given in Tables 5(a) and (b) are based on 100% automatic routing. In the next section, we
discuss the performance of the disambiguation module, which determines the overall

19

Computational Linguistics Volume ??, Number ?

Unambiguous Requests Ambiguous Requests All Requests
Lowerbound 80.1% 58.5% 75.6%
Upperbound 96.7% 98.8% 97.2%

(a) Performance on Transcriptions

Unambiguous Requests Ambiguous Requests All Requests
Lowerbound 77.9% 51.2% 72.2%
Upperbound 93.8% 87.8% 92.5%

(b) Performance on ASR Output

Table 5
Router Performance with Threshold = 0.2

system performance, and show how allowing calls to be punted to human operators
affects the system’s performance.

5.2 Disambiguation Module Performance
To evaluate our disambiguation module, we needed dialogues which satisfy two crite-
ria. First, the caller’s first utterance must be ambiguous. Second, the operator must have
asked a follow up question to disambiguate the request and have subsequently routed
the call to the appropriate destination. We used 157 calls that met these two criteria as
our test set for the disambiguation module. Note that this test set is disjoint from the test
set used in the evaluation of the call router, since none of the calls in that set satisfied
the second criterion (those calls were not recorded or transcribed beyond the caller’s
response to the operator’s prompt). Furthermore, for this test set, we only had access to
the transcriptions of the calls but not the original speech files.

For each ambiguous call, the first caller utterance was given to the router as input.
The outcome of the router was classified as follows:

1.Unambiguous: in this case the call was routed to the selected destination. This
routing was considered correct if the selected destination was the same as the
actual destination and incorrect otherwise.

2.Ambiguous: in this case the router attempted to initiate disambiguation. The
outcome of the routing of these calls were determined as follows:

(a) Correct, if a disambiguation query was generated which, when
answered, led to the correct destination.

(b) Incorrect, if a disambiguation query was generated which, when
answered, could not lead to a correct destination.

(c) Reject, if the router could not form a sensible query or was unable to
gather sufficient information from the user after its queries and routed
the call to a human operator.

Table 6 shows the number of calls that fall into each of the 5 categories. Out of the
157 calls, the router automatically routed 115 of them either with or without disam-
biguation (73.2%). Furthermore, 87.0% of these automatically routed calls were sent to
the correct destination. Notice that out of the 52 ambiguous calls that the router con-
sidered ambiguous, 40 were routed correctly (76.9%). This is because our statistically-
trained call router is able to distinguish between cases where a semantically ambiguous

20

Chu-Carroll and Carpenter Vector-Based Natural Language Call Routing

Routed As Unambiguous Routed As Ambiguous
Correct Incorrect Correct Incorrect Reject

40 12 60 3 42

Table 6
Performance of Disambiguation Module on Ambiguous Calls

Correct Incorrect Reject
Class 1 63.2% 1.3% 0%
Class 2 7.5% 1.7% 5.3%
Class 3 6.5% 2.2% 0%
Class 4 7.0% 0.4% 4.9%
Total 84.2% 5.6% 10.2%

(a) Performance on Transcriptions

Correct Incorrect Reject
Class 1 61.4% 2.3% 0%
Class 2 7.2% 2.9% 5.0%
Class 3 5.9% 2.6% 0%
Class 4 6.3% 2.1% 4.3%
Total 80.8% 9.9% 9.3%

(b) Performance on ASR Output

Table 7
Overall Performance of Call Router

request is equally likely to be routed to two or more destinations, and situations where
the likelihood of one potential destination overwhelms that of the other(s). In the latter
case, the router routes the call to the most likely destination instead of initiating disam-
biguation, which has been shown to be an effective strategy; not surprisingly, human
operators are also prone to guess the destination based on likelihood and route calls
without disambiguation.

5.3 Overall Performance
Our final evaluation of the overall performance of the call router is calculated by apply-
ing the results for evaluating the disambiguation module in Section 5.2 to the results for
the routing module in Section 5.1. Tables 7(a) and (b) show the percentage of calls that
will be correctly routed, incorrectly routed, and rejected, if we apply the performance of
the disambiguation module (Table 6) to the calls that fall into each class in the evaluation
of the routing module (results from which we obtained Tables 5(a) and (b)).

� �

The results in Table 7(a) shows that, with perfect recognition, our call router sends
84.2% of all calls in our test set to the correct destination either with or without disam-
biguation, sends 5.6% of all calls to the incorrect destination, and punts 10.2% of the
calls to a human operator. In other words, our system attempts to automatically han-
dle 89.8% of the calls, of which 93.8% are routed to their correct destinations. When
speech recognition errors are introduced to the routing module, the percentage of calls
correctly routed decreases while that of calls incorrectly routed increases. However, it is
interesting to note that the rejection rate decreases, indicating that the system attempted
to handle a larger portion of calls automatically.

12 Note that the results in Table 7(b) is an upperbound for the system’s overall performance on recognizer
output, since the performance of the disambiguation module presented in Table 6 is evaluated on
transcribed texts (we were not able to obtain any speech data which were recorded and transcribed
beyond the caller’s initial response to the system’s prompt). In reality, the insertions and deletions of
n-gram terms in the recognizer output may lead to some inappropriate disambiguation queries or more
rejections to human operators.

21

Computational Linguistics Volume ??, Number ?

of Destinations On Transcription On ASR Output
Rejection Rate Correct Rate Rejection Rate Correct Rate

Our system 23 0% 94% 3% 92%
WGR97 14 10% 84% 12% 78%
WGR97 14 40% 94% 40% 83%

Table 8
Comparison of Our System Performance with WGR97

5.4 Performance Comparison with Existing Systems
As discussed in Section 2, Gorin and his colleagues have experimented with various
methodologies for relating caller utterances with call types (destinations). Their system
performance is evaluated by comparing the most likely destination returned by their
call type classifier given the first caller utterance with a manually annotated list of des-
tinations labeled based again on the first caller utterance. A call is considered correctly
classified if the destination returned by their classifier is present in the list of possible
destinations. In other words, their evaluation scheme is similar to our method for com-
puting the upperbound performance of our router discussed in Section 5.1.2. We evalu-
ated our router using their evaluation scheme with a rejection threshold of 0.2 on both
transcriptions and recognition output on our original set of 389 calls used in evaluating
the routing module. Table 8 shows a comparison of our system’s performance and the
best performing version of their system (Wright, Gorin, and Riccardi, 1997) (WGR97).

� �

As shown in Table 8, our system not only performs substantially better than the
best existing system on both transcription and speech recognizer output, but is also
much more robust in the presence of speech recognition errors. When evaluated on
transcriptions of caller utterances, our system automatically routes all calls at a correct
routing rate of 94%, while to achieve the same routing rate, WGR97 must punt 40% of all
calls to the human operator. When evaluated on speech recognizer output, our system
achieves a substantially higher correct routing rate at a substantially lower rejection rate.
Note that the comparison between these two systems is based strictly on performance
alone, and does not take into account factors such as the confusability of destinations
and speech recognizer performance.

6. Future Work

In our current system, we performed morphological filtering so that words with the
same root form are clustered together. We are interested in further clustering words that
are similar in meaning, such as car, auto, and automobile, even though they are not re-
lated by regular morphological processes. Similarly, digits or sequences of digits can be
conflated into a single term, as can states, car makes and models, and so on. This kind
of hand clustering of the lexicon should improve performance by overcoming inherent
data sparseness problems. In our earlier experiments, we used latent semantic analy-
sis (Deerwester et al., 1990) for dimensionality reduction in an attempt to automatically
cluster words that are semantically similar. This involved selecting dimensionality

�

which is less than the rank I of the original term-document matrix. But we found per-
formance degrades for any

� � I . We are interested in exploring other resources for
automatically clustering words in a given domain, and in extracting clusters from exist-

13 (Wright, Gorin, and Riccardi, 1997) presents system performance in the form of a rejection rate vs. correct
classification rate graph, with rejection rate ranging between 10-55% and correct classification rate
ranging between 63-94%. We report on two sets of results from their graph in Table 8, one with the lowest
rejection rate and one which they chose to emphasize in their paper.

22

Chu-Carroll and Carpenter Vector-Based Natural Language Call Routing

ing thesauri.
In the current version of our system, the interface between the automatic speech

recognizer and the call router is the top hypothesis of the speech recognizer for the
speech input. As reported in Table 3, this top hypothesis has an approximately 10%
error rate on salient unigrams. One way to improve this error rate is to allow the speech
recognizer to produce a probabilistic word graph rather than a single best hypothesis.
The n-gram terms can then be extracted from the graph in a straightforward manner
and weighted according to their scores from the recognizer. Our assumption is that this
will lead to increased recall, with perhaps a slight degradation in precision. However,
since increased recall will, at the very least, increase the chance that the disambiguation
module can formulate reasonable queries, we expect the system’s overall performance
to improve as a result.

7. Conclusions

We described and evaluated a domain independent, automatically trained call router
that takes one of three actions in response to a caller’s request. It can route the call to
a destination within the call center, attempt to dynamically formulate a disambigua-
tion query, or route the call to a human operator. The routing module selects a set of
candidate destinations based on n-gram terms extracted from the caller’s request and
a vector-based comparison between these n-gram terms and each possible destination.
If disambiguation is necessary, a yes-no question or a wh-question is dynamically gen-
erated from among n-gram terms automatically extracted from the training data based
on closeness, relevance, and disambiguating power. This query formulation process al-
lows the system to tailor the disambiguating query to the caller’s original request and
the candidate destinations.

We have further demonstrated the effectiveness of our call router by evaluating
the call router on both transcriptions of caller requests and the output of an automatic
speech recognizer on these requests. When the input to the call router is free of recog-
nition error, our system performs substantially better than the best previously existing
system by correctly routing 93.8% of the calls after punting 10.2% of all calls to a human
operator. When using the output of a speech recognizer with an approximately 23%
word error rate, the upperbound of the router performance drops from 97.2% to 92.5%,
while the lowerbound of the performance drops from 75.6% to 72.2%, illustrating the
robustness of our call router in the face of speech recognition errors.

Acknowledgments

We would like to thank Christer Samuelsson and Jim Hieronymus for helpful discus-
sions, Wolfgang Reichl for providing us with speech recognition results, and Diane Lit-
man for her comments on an earlier draft of this paper.

References

Abella, Alicia and Allen L. Gorin. 1997. Generating semantically consistent inputs to a dialog
manager. In Proceedings of the 5th European Conference on Speech Communication and Technology.

Carpenter, Bob and Jennifer Chu-Carroll. 1998. Natural language call routing: A robust,
self-organizing approach. In Proceedings of the Fifth International Conference on Spoken Language
Processing.

Chu-Carroll, Jennifer and Bob Carpenter. 1998. Dialogue management in vector-based call
routing. In Proceedings of the 36th Annual Meeting of the Association of Computational Linguistics
(COLING-ACL98), pages 256–262.

23

Computational Linguistics Volume ??, Number ?

Deerwester, Scott, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard
Harshman. 1990. Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407.

Gorin, Allen L. 1996. Processing of semantic information in fluently spoken language. In
Proceedings of the International Conference on Spoken Language Processing.

Gorin, Allen L., G. Riccardi, and J. H. Wright. 1997. How may I help you? Speech Communication,
23:113–127.

Green, Nancy and Sandra Carberry. 1994. A hybrid reasoning model for indirect answers. In
Proceedings of the 32rd Annual Meeting of the Association for Computational Linguistics.

Hockey, Beth Ann, Deborah Rossen-Knill, Beverly Spejewski, Matthew Stone, and Stephen Isard.
1997. Can you predict responses to yes/no questions? yes, no, and stuff. In Proceedings of the
5th European Conference on Speech Communication and Technology, pages 2267–2270.

McDonough, J., K. Ng, P. Jeanrenaud, H. Gish, and J. R. Rohlicek. 1994. Approaches to topic
identification on the switchboard corpus. In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, pages 385–388.

Reichl, Wolfgang, Bob Carpenter, Jennifer Chu-Carroll, and Wu Chou. 1998. Language modeling
for content selection in human-computer dialogues. In Proceedings of the Fifth International
Conference on Spoken Language Processing.

Riccardi, G. and A. L. Gorin. 1998. Stochastic language models for speech recognition and
understanding. In Proceedings in the Fifth International Conference on Spoken Language Processing.

Salton, Gerald. 1971. The SMART Retrieval System. Prentice Hall, Inc.
Schütze, Hinrich, David A. Hull, and Jan O. Pedersen. 1995. A comparison of classifiers and

document representations for the routing problem. In Proceedings of the 18th SIGIR Conference.
Sparck Jones, Karen. 1972. A statistical interpretation of term specificity and its application in

retrieval. Journal of Documentation, 28(1):11–20.
Sproat, Richard, editor. 1998. Multilingual Text-to-Speech Synthesis: The Bell Labs Approach.

Kluwer, Boston, MA.
Wright, J. H., A. L. Gorin, and G. Riccardi. 1997. Automatic acquisition of salient grammar

fragments for call-type classification. In Proceedings of the 5th European Conference on Speech
Communication and Technology.

24

