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Abstract 
One of the central problems in building broad-coverage 
story understanding systems is generating expectations 
about event sequences, i.e. predicting what happens next 
given some arbitrary narrative context. In this paper, we 
describe how a large corpus of stories extracted from 
Internet weblogs was used to learn a probabilistic model of 
event sequences using statistical language modeling 
techniques. Our approach was to encode weblog stories as 
sequences of events, one per sentence in the story, where 
each event was represented as a pair of descriptive key 
words extracted from the sentence. We then applied 
statistical language modeling techniques to each of the event 
sequences in the corpus. We evaluated the utility of the 
resulting model for the tasks of narrative event ordering and 
event prediction. 

Story Understanding Systems  
Automated story understanding has proved to be an 
extremely difficult task in natural language processing. 
Despite a rich history of research in automatic narrative 
comprehension (Mueller, 2002), no systems exist today 
that can automatically generate answers to questions about 
the events described in simple narratives of arbitrary 
content. Part of the difficulty is the amount of 
commonsense knowledge that is necessary to adequately 
interpret the meaning of narrative text or the questions 
asked of it. Accordingly, progress in this area has been 
made by limiting the story understanding task to specific 
domains and question types, allowing for the hand-
authoring of the relevant content theories needed to support 
interpretation. Mueller (2007) describes a state-of-the-art 
story understanding system that follows this approach, 
where a reasonably large number of questions about space 
and time can be answered with stories involving people 
eating in restaurants. By limiting the scope of the problem 
to restaurant stories, all of the relevant expectations about 
the activity of going to a restaurant could be formalized 
and integrated into a natural language processing pipeline. 

 Although promising, approaches like this suffer from 
problems of scalability. A significant amount of knowledge 
engineering effort is required to encode expectations about 
this one activity context, and others have demonstrated that 
many hundreds (or more) of these schemas are included in 
our commonsense understanding of everyday activities 
(Gordon, 2001). Accordingly, there is a strong need for 
new methods to acquire expectations about narrative 
events on a much larger scale. 
 A promising alternative was explored by Singh & Barry 
(2003), where commonsense expectations about everyday 
activities were acquired from thousands of volunteers on 
the web as part of the Open Mind Commonsense Project. 
Contributors to this knowledge base (StoryNet) authored 
these expectations as sequences of natural language 
sentences. This allows for more scaleable knowledge 
engineering, but requires additional processing to 
transform natural language expressions into knowledge 
that can be manipulated in automated story comprehension 
applications. In many respects, the (fictional) stereotypical 
activity descriptions that are contributed by volunteers to 
this knowledge base are not so different from the real 
(nonfiction) stories that people write in their Internet 
weblogs, describing the experiences of their daily lives. 
Given the tens of millions of Internet weblogs in existence, 
we considered the question: Can the stories that people 
write in Internet weblogs be used to acquire expectations 
about everyday event sequences? 
 In this paper, we describe an approach for acquiring a 
probabilistic model of event sequences through the large-
scale processing of stories in Internet weblogs. This 
approach begins with the processing of an existing corpus 
of stories automatically extracted from hundreds of 
thousands of Internet weblogs. Events within these stories 
are represented as a predicate-argument pair, one pair for 
each sentence, consisting of a main verb in the sentence 
and the head word of its patient argument. We then 
describe the novel application of existing language 
modeling technologies to create a probabilistic event 
model. Multiple variations of this model are then evaluated 



for their utility in two narrative comprehension tasks: 
narrative event ordering and event prediction. 

Event Representation in Weblog Stories 
At the time this paper was written, it was estimated that 
there were over 70 million Internet weblogs in existence 
(Technorati, 2007). However, not all the content of a 
weblog entry consists of narrative descriptions of peoples’ 
daily lives. By annotating random weblog entries, Gordon 
et al. (2007) estimated that roughly 17% percent of weblog 
text belongs to the story genre, the rest consisting of news 
article quotations, commentary, opinion, and lists, among 
others. To exploit weblogs as a corpus of narrative text, 
Gordon et al. developed a number of automated story 
extraction techniques, incorporating automated part-of-
speech tagging, confidence smoothing, and various 
machine learning algorithms. Using a method that favored 
recall performance over precision performance, they 
applied their system to 3.4 million Internet weblog entries. 
From these, 4.5 million segments of story text were 
extracted, a corpus consisting of 1.06 billion words. 
 We used this existing corpus of Internet weblog stories 
from Gordon et al. as a starting point for our research on 
modeling event sequences. Our first task was to prepare the 
corpus for analysis by applying a maximum entropy based 
sentence delimiting algorithm (Reynar & Ratnaparkhi, 
1997). Since the automated story extraction algorithm was 
not sentence aligned, very often the first and the last 
sentence of each segment were actually sentence fragments 
not a complete sentence; therefore we simply removed 
these fragments from the beginning and end of every 
segment. The resulting corpus consisted of 371,626 story 
segments and a total of 66,485,305 sentences. 
 Our assumption was that these stories consisted largely 
of time-ordered event descriptions. While very few of 
these stories described the stereotypical events of any 
given activity context, the sheer size of the corpus would 
allow us to acquire useful statistical regularities. 
 Our strategy was to borrow techniques that have been 
employed for statistical language modeling in other natural 
language processing applications. Statistical language 
modeling is most often used to estimate the relative 
probability of a given sequence of words, e.g. to improve 
the performance of automated speech recognition systems. 
In our own work, we sought to apply these techniques at 
the level of events, rather than words. Accordingly, it was 
necessary to devise a scheme for identifying the events in 
narrative text, and encoding them in a uniform manner as 
nodes in a transition network. Here we drew upon ideas 
that have been explored in the area of semantic role 
labeling (Palmer et al., 2005), where the propositional 
content of sentences is encoded as predicate-argument 
relationships, where both the predicates and arguments are 
simply words extracted from the sentence. Typically, the 
sense-disambiguated lemma of each verb in the sentence is 
used as a predicate, and spans of text are identified as 
arguments, as in the following example. 

 
 “I got a flat tire.”  get(“I”, “a flat tire”)  
 
 In order to create very compact representations of events 
in weblogs stories, we adapted this style of predicate-
argument representation in the following manner. First, we 
select only one verb in each sentence (henceforth, the 
“main verb”) as a compact expression of the event type. 
Second, we use only the patient of this verb (referred to 
using the PropBank convention of ‘ARG1’) to differentiate 
between events with the same main verb. Third, we 
represent this patient of the verb not as a substring of the 
sentence, but as a single word that is the syntactic head of 
this argument. With these simplifying principles, we can 
effectively encode the event described by a sentence as a 
pair of words: a verb for the event type and a single word 
for its patient. The following are some sentences that are 
representative of those found in our story corpus, with the 
main verb and patient indicated with single and double 
underlining, respectively. 
  

1. I got a flat tire coming back from the concert. 
2. I thought it was just the bad pavement at first. 
3. The guy next to me pointed to my tire, so I pulled 

over. 
4. I wish I had a better towing plan, though. 
5. I blew a few hundred dollars to get the car home. 
 

 By casting narrative sentences as a pair of event words, 
narrative sequences in weblog stories can be compactly 
represented as sequences of these pairs. For a sequence 
consisting of the five sentences above, this encoding would 
be as follows: got-tire, thought-was, pointed-tire, wish-had, 
blew-dollars. 
 Representing event sequences in this manner allows for 
the efficient application of existing statistical language 
modeling tools. Here each event word pair can be treated 
as a single “word” in a “sentence” of consecutive story 
events, where the length of this event sentence is exactly 
the number of sentences in the extracted weblog story. In 
this manner, tools for learning a statistical language model 
from a corpus of sentences can be used to learn a statistical 
event model from a corpus of event sequences. 
 In the sections that follow, we describe our approach to 
extracting event word pairs from weblog sentences, 
applying language modeling tools to event sequences, and 
comparative evaluations of variations of this model on two 
story interpretation tasks. 

Predicate-Argument Extraction 
A key component to our approach is the ability to 
accurately extract the main verb and patient word from 
each sentence in the corpus. There exist a number of well-
known techniques for finding the head verbs of sentences 
(Collins, 1999) and their semantic role arguments (Gildea 
& Jurafsky, 2002; Moschitti et al., 2006). However, these 
techniques typically operate on the syntactic parse trees of 



sentences. Given the size of our corpus (over 66 million 
sentences) and the challenge of producing accurate parse 
trees from (often ungrammatical) weblog text, we chose 
instead to develop techniques that did not rely on the 
syntax of the sentence. Specifically, we developed a set of 
systems using machine learning algorithms that identified 
main verbs and patient words using only lexical and part-
of-speech information for words in the sentence.  
 For the task of main verb extraction, we began by 
creating a training corpus of sentences where the main verb 
was annotated. Unfortunately we did not have the 
resources to annotate weblog story text for use as training 
data. Instead, we created a training corpus automatically by 
processing the Penn Treebank corpus with a slightly 
modified version of Collins’ head-finding rules (Collins, 
1999). Specifically, we modified the head-verb finding 
rules so as to annotate only the most dominating verb that 
was not an auxiliary verb. After annotating the main verb 
in this manner, the syntactic tree information was removed 
from this corpus, leaving only the lexical items and part-of-
speech information in each of the Treebank sentences.  
 Given the Treebank corpus annotated with the main 
verbs, a head verb recognition module was developed 
using machine learning techniques. Using the part-of-
speech tags in the Treebank corpus, we extracted each of 
the verbs in each sentence for use as training data in a 
binary classification task (main-verb or not main-verb). For 
each training instance, the lexical token of the verb and a 
window of words around the verb constituted the feature 
set. For each verb in the window, we use both the part-of-
speech tag and the actual word as features, but for all other 
words we use just the part-of-speech tags. Although we 
believe that using the lexical tokens of the words around 
the verb would improve the performance of main verb 
extraction on the Treebank data, we limited these features 
to part-of-speech tags with the hope that these features 
would generalize well between the newswire text genre of 
Treebank data and our story corpus. On the other hand, the 
actual word of the verb is clearly indicative of whether it is 
the main verb of a sentence or not, and these features are 
especially helpful in distinguishing auxiliary from main 
verbs in a sentence.  
 Using these features, the task of head verb recognition is 
cast as a binary verb classification problem (main-verb or 
not main verb). We used the popular SVM-lite 
implementation of a Support Vector Machine learning 
algorithm (Joachims, 1999). For each sentence, the verb 
with the highest confidence level is considered to be the 
main verb of the sentence. 10,000 sentences of the 
Treebank corpus were used as the development set and the 
remaining sentences (around 40,000) were used as a cross 
validation train/test set. The average accuracy on the 
Treebank data is 91.7% with the standard deviation of 
0.7%. A maximum entropy classifier was also tested for 
the classification task but performed slightly worse on this 
task. 
 Our second task was to identify the lexical head of the 
patient argument of the main verb in a sentence. The 

PropBank corpus (Palmer et al., 2005) provides semantic 
role annotations for a portion of the Treebank corpus, and 
is widely used for the task of automated semantic role 
labeling. Semantic role labeling systems typically build the 
parse tree of the sentence using rule-based or statistical 
parsers and use this syntactic information to assign 
semantic roles to the constituents of the sentence. As we 
discussed previously, we needed to develop a module to 
extract the patient argument of the main verb, what would 
be the argument labeled “ARG1” in PropBank annotations, 
for each sentence using only lexical and part-of-speech 
information. For this task, our approach was similar to 
main-verb extraction. We used the Propbank corpus to 
build a training corpus of sentences that were already 
annotated with the main verb as well as the lexical head of 
the main verb’s ARG1 argument. As with the extraction of 
the main verb, a window of tags around each word that 
could potentially be the head of ARG1 (e.g. nouns, 
pronouns, verbs, adjectives, but not articles, conjunctions, 
etc), as well as a window of tags around the main verb, was 
used as features in a binary classification task. As before, 
the lexical token of each verb was used as a feature, but 
only the part-of-speech tags were used for all other words. 
Two more features for the task of patient word extraction 
seemed to have a great impact on the performance: a 
binary feature that indicated whether the word is located 
after or before the main verb in the sentence, and the 
sequence of part-of-speech tags between the word and the 
main verb, where the frequency of the sequence in the 
training data was at least three. SVM-light was used as the 
binary classifier to decide whether or not a word is the 
head of ARG1. The word with the highest confidence level 
was returned as ARG1 of the main verb.  
 Experiments showed that if two different classifiers are 
used for two different cases, one when the head of ARG1 
is a verb (i.e. ARG1 is a VP or S) and one for all other 
cases, the accuracy of the combined system increased 
significantly. 10,000 sentences were used as the 
development set and the rest (around 40,000 sentences) 
were used for the cross validation evaluation of the system. 
The average accuracy of ARG1 extraction for VP/S case 
was 86.7% and for all other cases was 75.3%. A binary 
classifier was also used to decide whether or not to apply 
the VP/S classifier. The accuracy of this binary classifier 
was 96.1%. 

Language Modeling of Event Sequences 
As our event recognition modules (main verb and patient 
word) use part-of-speech tags as features, these tags 
needed to be assigned to each word in our story corpus. For 
this purpose we applied a maximum entropy based part-of-
speech tagger (Ratnaparkhi, 1996) to the entire story 
corpus. We then applied the predicate-argument extraction 
module to the corpus, producing a new corpus where each 
story was represented as a sequence of word pairs (main 
verb and argument word).  



 Our next step was to develop a probabilistic model of 
the event sequences in this corpus. In selecting a type of 
model to use, our goals were to find a model that would 
allow for a good fit to the data, but also one that was 
computationally feasible, i.e. fast enough to process the 66 
million events extracted from our corpus. With these 
concerns in mind, we chose the SRI Language Modeling 
toolkit (SRILM) to build a model for the sequence of 
events in the form of a traditional language model (Stolcke, 
2002).  
 Language modeling has proven that it is able to model 
sequential data like sequences of words, tags, and 
phonemes very well in other natural language processing 
tasks. There is an intuition for using a language model for 
sequences of story events. Given the nature of the narrative 
genre, many events tend to be described in sequential 
order. For example, if you get a speeding ticket while 
driving on the highway, it is probable that you 
subsequently pay the fine; we expect that the probability of 
“get/ticket” preceding “pay/fine” is much higher than the 
probability of “have/dinner” preceding “pay/fine”.  
 Language modeling also has a number of characteristics 
that make it well suited for modeling event sequences in 
our corpus. Tools like the SRI Language Modeling toolkit 
are extremely fast, allowing us to analyze significant 
portions of our corpus. Furthermore, there has been a lot of 
research on smoothing techniques and other issues related 
to language modeling that can be applied to story event 
modeling, improving the utility of such a model in 
practical applications. Practically speaking, sequences of 
story events can be analyzed by language modeling tools 
by treating them as a special type of sentence. Each event 
in a story (word pair) is treated as a single word, and each 
story can be represented as a sequence of words. In this 
manner, the SRILM tool can be used to extract the 
probability of event unigrams, event bigrams, event 
trigrams, and so on, from our corpus of 3.7 million stories 
(sentences in language modeling terminology). To use this 
language model, one can estimate the probability of a 
sequence of events by calculating n-gram probabilities. 
These probabilities can then be used in many different 
story understanding applications, such as event ordering, 
event prediction, story classification, story similarity 
evaluation and automated story generation.  
 Following this approach, we built a language model 
using the SRILM toolkit, with an n-gram order of five, and 
using the default smoothing parameters. In order to 
evaluate the comparative performance of this model, we 
also constructed a number of alternative models using this 
approach.  
 The first alternative model was built after applying a 
large-coverage dictionary (Courtois, 2004) to group nouns 
and verbs that differed only in their inflection or plurality. 
The idea was to use a dictionary in order to filter some 
noisy events and to decrease the sparsity of the data. In 
addition to filtering unknown main verb and patients, the 
dictionary was also used to replace each word with its 
lemma. The reason for using lemmatization is to further 

decrease the sparsity of the data. Here we are looking for a 
more general model of a story; e.g. no matter what the 
tense of the verb ‘flip’ is, we want to have the same 
predicate for both cases “flip/coin” and “flipped/coins.” 
 A second alternative model was built by using just the 
main verb of the sentence (without a patient word). The 
motivation is to find out how much the procedure of 
extracting the argument contributes to the performance of 
the model. A third alternative model was built for the case 
where a random verb was selected (without a patient word) 
instead of applying our main-verb extraction approach. A 
fourth alternative was built where both a random verb from 
the sentence and a random (potential) patient word were 
extracted. These last two models provide comparisons for 
measuring how much the main verb extraction and patient 
word extraction modules contribute to the quality of the 
model. 
 Finally, a fifth alternative model was built in which all 
of the verbs of a sentence were extracted (without patient 
words). The reason behind building this model was that the 
performance of the sentence delimitation module on the 
weblog corpus is not nearly as high as for the newswire 
data that it was trained on, and many of the weblog 
sentences actually contain more than one complete 
sentence. Therefore, by extracting one verb from each 
delimited sentence, we are actually losing some of the 
event information that is described in the story. Comparing 
this model with the model using only the main verb gives 
us the opportunity to compare the effect of sentence 
delimitation errors on the performance of the overall 
model. In the next section we describe an evaluation of all 
of these different models on two tasks, event ordering and 
sentence prediction. 

Evaluation of Event Models 
To evaluate how well our event model and its five 
alternatives captured the regularities present in this corpus, 
we conducted a comparative evaluation of all of these 
models on two simple story understanding tasks. In each 
case, the models were trained on a subset of 900,000 
stories and a different subset of 100,000 stories was used to 
test the system.  
 Our first evaluation was based on an event ordering task, 
designed to evaluate how well these models capture the 
expected order of events in narrative text. The task was 
formulated as a binary decision regarding the true ordering 
of events in a test story. For each story in the test set, we 
asked our model to decide which of two event sequences 
were more likely: the events of the story in their original 
order, or a random ordering of the same events. As an 
illustration, the example story presented earlier in this 
paper would be presented to our primary model as the 
following two options: 

1. (correct) got-tire, thought-was, pointed-tire, wish-
had, blew-dollars 

2. (incorrect) wish-had, got-tire, blew-dollars, 
thought-was, pointed-tire 



 As a baseline, a random selection would yield an 
accuracy of 50% on this task. The comparative accuracy 
for each of the six models on this task is presented in Table 
1.  
 

Model Percent 
correct 

Main verb + patient word 63.4% 
a1: Lemmatized verb + patient 63.9% 
a2: Main verb only 64.7% 
a3: Random verb only 60.5% 
a4: Random verb + random patient 55.4% 
a5: all verbs only 61.5% 

Table 1. Evaluation on event ordering task 
 
 The results presented in Table 1 indicate that our 
primary model (main verb + patient word) is outperformed 
by two of the alternative models. The first alternative 
model (a1) sees a slight improvement, most likely due to 
the decrease in data sparsity due to the application of the 
dictionary. However, the best result overall is found in the 
second alternative model (a2) where only the main verb 
extraction module is applied, representing events as single 
word entities (without any patient word). In addition to 
further diminishing the data sparsity problem, the high 
performance of this model can be attributed to the relative 
difficulty of the task: ordering the next verb in a sequence 
is comparatively easier than ordering the verb and its 
patient. Considering the models that select random verbs 
and patients (a3 and a4), it is clear that our extraction 
approach provides some utility to the resulting model, but 
the biggest contributor is the selection of an appropriate 
main verb. Also, low performance of the fifth alternative 
model (a5) demonstrates that selecting only a single verb 
to represent events is more effective than using all verbs in 
a sentence. 
 Our second evaluation was based on an event prediction 
task, designed to evaluate how well these models could 
make accurate predications about the next events in a 
narrative sequence. In this task, the model is asked to 
decide which of two story sequences is correct. The first is 
an unmodified sequence from the test corpus, but the 
second replaces the last event in the sequence with a 
different event selected at random from the entire corpus. 
As an illustration, the example story presented earlier in 
this paper would be presented to our primary model as the 
following two options: 

1. (correct) got-tire, thought-was, pointed-tire, wish-
had, blew-dollars 

2. (incorrect) got-tire, thought-was, pointed-tire, 
wish-had, add-dimension 

Here “blew-dollars” is replaced with a random event 
picked from the corpus, “add-dimension”. This evaluation 
approximates the task of predicting the next event (the last 
event in the sequence) when an event sequence is given 
(the preceding events). As with the first evaluation, a 
random choice baseline would yield an accuracy of 50%. 

Table 2 shows the comparative results for the second 
evaluation. 
 

Model Percent 
correct 

Main verb + patient word 52.5% 
a1: Lemmatized verb + patient 52.3% 
a2: Main verb only 53.2% 
a3: Random verb only 51.5% 
a4: Random verb + random patient 50.3% 
a5: all verbs only 51.8% 

Table 2. Evaluation on event prediction task 
 
 The results presented in Figure 2 show that the event 
prediction task is much more difficult than the event 
ordering task. However, the relative performance of the 
models on these two tasks is very similar. Again, our 
primary model (main verb + patient word) is outperformed 
by the model consisting of the main verb only (a2), 
although in this task there is no advantage to be gained by 
applying a dictionary (a1). As in the previous task, 
selecting random verbs or patients (a3 and a4) or all verbs 
(a5) yields lower performance, validating the utility of our 
main verb extraction module.  
 Overall, these two evaluations demonstrate that 
language modeling is an appropriate technology for 
modeling event sequences, but only for the task of event 
ordering. Using only our main verb extraction module to 
represent events, we achieve performance that is 14.7% 
above a random baseline. In contrast, performance on the 
task of event prediction is much lower, only a few 
percentage points above the random baseline. For this task, 
it is clear that incremental improvements and alternative 
approaches will need to be explored in future work. 

Discussion 
In this paper we have explored a novel approach to the 
development of broad-coverage knowledge resources for 
use in automated story-understanding systems. We focused 
specifically on the development of an event model, a 
resource for encoding expectations about event sequences 
in everyday narrative contexts. Our approach was to 
develop a means of extracting event sequences from 
narrative text documents, apply this technology to an 
extremely large corpus of Internet weblog text, and use 
language modeling techniques to build a probabilistic 
model. Our evaluation of this model, and several 
alternative models, demonstrated some utility of our 
approach for the task of ordering narrative events, but not 
for the task of event prediction.  
 As a first effort in the research area of event model 
extraction from story corpora, we are encouraged by our 
results. However, there are a number of challenges that 
must be addressed in future work in order to achieve levels 
of performance that have practical utility. 
 First, we expect that significant improvements could be 
obtained if the story corpus was preprocessed with more 



care. Compared to the newswire text on which the 
extraction models were trained, the story corpus suffers 
from ungrammatical sentences, fragments, and spelling 
errors. These problems hinder the performance of the 
automated sentence delimitation, part-of-speech tagging, 
and word extraction modules that we employ. Also, the 
corpus was created using automated story extraction 
algorithms, favoring high recall over high precision. 
Although this decision might be appropriate for the task of 
story retrieval from Internet weblogs (its original purpose), 
an approach that favored precision over recall would be 
preferable for the purpose of event modeling. 
 Second, our approaches to main verb and patient word 
extraction could be significantly improved. Certainly, some 
advanced natural language processing techniques (e.g. 
anaphora resolution) could be appropriately applied to this 
corpus to aid in argument extraction. However, we expect 
that the most significant gains could be achieved by 
working with a large amount of annotated Internet weblog 
text. Having annotated weblog data would allow us to train 
new sentence delimiters, part-of-speech taggers, main verb 
extractors, and patient word extractors that were 
specifically tuned to this genre of data. More importantly, 
an annotated corpus would allow us to evaluate the 
performance of each of these components on the test data, 
giving us a better idea of which modules most need 
improvement. At the very least, it would be good to have 
an annotated corpus of weblog text where the main verb 
and patient words were tagged. This would be 
comparatively less expensive to produce than a corpus of 
full syntactic parses and semantic role labels. 
 Third, we believe that there are suitable alternatives to 
language modeling as a framework for modeling event 
sequences. One of the problems with this type of n-gram 
model is that it does not optimally handle missing events in 
a sequence. The nature of storytelling is about the selective 
description of events to compose an effective narrative, not 
simply the reporting of all events in an episode. Statistical 
models that more robustly handle missing events (e.g. 
Hidden Markov Models) may be more suitable for this 
task, if challenges of scalability could be overcome. 
 Finally, we believe that future work in this area must be 
conducted in the context of a specific story understanding 
task in order to evaluate the utility of different approaches. 
A system that achieves 70% or 80% on either the event 
ordering or event prediction task may be a remarkable 
technical achievement, but if practical automated story 
understanding systems require accuracy of 90% or more, 
then alternatives to learning these models from data will 
need to be pursued. 
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