
Learning a Probabilistic Model of Event Sequences
From Internet Weblog Stories

Mehdi Manshadi1, Reid Swanson2, and Andrew S. Gordon2

1Department of Computer Science, University of Rochester
P.O. Box 270226, Rochester, NY 14627

mehdih@cs.rochester.edu
2Institute for Creative Technologies, University of Southern California

13274 Fiji Way, Marina del Rey, CA 90292 USA
swansonr@ict.usc.edu, gordon@ict.usc.edu

Abstract
One of the central problems in building broad-coverage
story understanding systems is generating expectations
about event sequences, i.e. predicting what happens next
given some arbitrary narrative context. In this paper, we
describe how a large corpus of stories extracted from
Internet weblogs was used to learn a probabilistic model of
event sequences using statistical language modeling
techniques. Our approach was to encode weblog stories as
sequences of events, one per sentence in the story, where
each event was represented as a pair of descriptive key
words extracted from the sentence. We then applied
statistical language modeling techniques to each of the event
sequences in the corpus. We evaluated the utility of the
resulting model for the tasks of narrative event ordering and
event prediction.

Story Understanding Systems
Automated story understanding has proved to be an
extremely difficult task in natural language processing.
Despite a rich history of research in automatic narrative
comprehension (Mueller, 2002), no systems exist today
that can automatically generate answers to questions about
the events described in simple narratives of arbitrary
content. Part of the difficulty is the amount of
commonsense knowledge that is necessary to adequately
interpret the meaning of narrative text or the questions
asked of it. Accordingly, progress in this area has been
made by limiting the story understanding task to specific
domains and question types, allowing for the hand-
authoring of the relevant content theories needed to support
interpretation. Mueller (2007) describes a state-of-the-art
story understanding system that follows this approach,
where a reasonably large number of questions about space
and time can be answered with stories involving people
eating in restaurants. By limiting the scope of the problem
to restaurant stories, all of the relevant expectations about
the activity of going to a restaurant could be formalized
and integrated into a natural language processing pipeline.

 Although promising, approaches like this suffer from
problems of scalability. A significant amount of knowledge
engineering effort is required to encode expectations about
this one activity context, and others have demonstrated that
many hundreds (or more) of these schemas are included in
our commonsense understanding of everyday activities
(Gordon, 2001). Accordingly, there is a strong need for
new methods to acquire expectations about narrative
events on a much larger scale.
 A promising alternative was explored by Singh & Barry
(2003), where commonsense expectations about everyday
activities were acquired from thousands of volunteers on
the web as part of the Open Mind Commonsense Project.
Contributors to this knowledge base (StoryNet) authored
these expectations as sequences of natural language
sentences. This allows for more scaleable knowledge
engineering, but requires additional processing to
transform natural language expressions into knowledge
that can be manipulated in automated story comprehension
applications. In many respects, the (fictional) stereotypical
activity descriptions that are contributed by volunteers to
this knowledge base are not so different from the real
(nonfiction) stories that people write in their Internet
weblogs, describing the experiences of their daily lives.
Given the tens of millions of Internet weblogs in existence,
we considered the question: Can the stories that people
write in Internet weblogs be used to acquire expectations
about everyday event sequences?
 In this paper, we describe an approach for acquiring a
probabilistic model of event sequences through the large-
scale processing of stories in Internet weblogs. This
approach begins with the processing of an existing corpus
of stories automatically extracted from hundreds of
thousands of Internet weblogs. Events within these stories
are represented as a predicate-argument pair, one pair for
each sentence, consisting of a main verb in the sentence
and the head word of its patient argument. We then
describe the novel application of existing language
modeling technologies to create a probabilistic event
model. Multiple variations of this model are then evaluated

for their utility in two narrative comprehension tasks:
narrative event ordering and event prediction.

Event Representation in Weblog Stories
At the time this paper was written, it was estimated that
there were over 70 million Internet weblogs in existence
(Technorati, 2007). However, not all the content of a
weblog entry consists of narrative descriptions of peoples’
daily lives. By annotating random weblog entries, Gordon
et al. (2007) estimated that roughly 17% percent of weblog
text belongs to the story genre, the rest consisting of news
article quotations, commentary, opinion, and lists, among
others. To exploit weblogs as a corpus of narrative text,
Gordon et al. developed a number of automated story
extraction techniques, incorporating automated part-of-
speech tagging, confidence smoothing, and various
machine learning algorithms. Using a method that favored
recall performance over precision performance, they
applied their system to 3.4 million Internet weblog entries.
From these, 4.5 million segments of story text were
extracted, a corpus consisting of 1.06 billion words.
 We used this existing corpus of Internet weblog stories
from Gordon et al. as a starting point for our research on
modeling event sequences. Our first task was to prepare the
corpus for analysis by applying a maximum entropy based
sentence delimiting algorithm (Reynar & Ratnaparkhi,
1997). Since the automated story extraction algorithm was
not sentence aligned, very often the first and the last
sentence of each segment were actually sentence fragments
not a complete sentence; therefore we simply removed
these fragments from the beginning and end of every
segment. The resulting corpus consisted of 371,626 story
segments and a total of 66,485,305 sentences.
 Our assumption was that these stories consisted largely
of time-ordered event descriptions. While very few of
these stories described the stereotypical events of any
given activity context, the sheer size of the corpus would
allow us to acquire useful statistical regularities.
 Our strategy was to borrow techniques that have been
employed for statistical language modeling in other natural
language processing applications. Statistical language
modeling is most often used to estimate the relative
probability of a given sequence of words, e.g. to improve
the performance of automated speech recognition systems.
In our own work, we sought to apply these techniques at
the level of events, rather than words. Accordingly, it was
necessary to devise a scheme for identifying the events in
narrative text, and encoding them in a uniform manner as
nodes in a transition network. Here we drew upon ideas
that have been explored in the area of semantic role
labeling (Palmer et al., 2005), where the propositional
content of sentences is encoded as predicate-argument
relationships, where both the predicates and arguments are
simply words extracted from the sentence. Typically, the
sense-disambiguated lemma of each verb in the sentence is
used as a predicate, and spans of text are identified as
arguments, as in the following example.

 “I got a flat tire.” get(“I”, “a flat tire”)

 In order to create very compact representations of events
in weblogs stories, we adapted this style of predicate-
argument representation in the following manner. First, we
select only one verb in each sentence (henceforth, the
“main verb”) as a compact expression of the event type.
Second, we use only the patient of this verb (referred to
using the PropBank convention of ‘ARG1’) to differentiate
between events with the same main verb. Third, we
represent this patient of the verb not as a substring of the
sentence, but as a single word that is the syntactic head of
this argument. With these simplifying principles, we can
effectively encode the event described by a sentence as a
pair of words: a verb for the event type and a single word
for its patient. The following are some sentences that are
representative of those found in our story corpus, with the
main verb and patient indicated with single and double
underlining, respectively.

1. I got a flat tire coming back from the concert.
2. I thought it was just the bad pavement at first.
3. The guy next to me pointed to my tire, so I pulled

over.
4. I wish I had a better towing plan, though.
5. I blew a few hundred dollars to get the car home.

 By casting narrative sentences as a pair of event words,
narrative sequences in weblog stories can be compactly
represented as sequences of these pairs. For a sequence
consisting of the five sentences above, this encoding would
be as follows: got-tire, thought-was, pointed-tire, wish-had,
blew-dollars.
 Representing event sequences in this manner allows for
the efficient application of existing statistical language
modeling tools. Here each event word pair can be treated
as a single “word” in a “sentence” of consecutive story
events, where the length of this event sentence is exactly
the number of sentences in the extracted weblog story. In
this manner, tools for learning a statistical language model
from a corpus of sentences can be used to learn a statistical
event model from a corpus of event sequences.
 In the sections that follow, we describe our approach to
extracting event word pairs from weblog sentences,
applying language modeling tools to event sequences, and
comparative evaluations of variations of this model on two
story interpretation tasks.

Predicate-Argument Extraction
A key component to our approach is the ability to
accurately extract the main verb and patient word from
each sentence in the corpus. There exist a number of well-
known techniques for finding the head verbs of sentences
(Collins, 1999) and their semantic role arguments (Gildea
& Jurafsky, 2002; Moschitti et al., 2006). However, these
techniques typically operate on the syntactic parse trees of

sentences. Given the size of our corpus (over 66 million
sentences) and the challenge of producing accurate parse
trees from (often ungrammatical) weblog text, we chose
instead to develop techniques that did not rely on the
syntax of the sentence. Specifically, we developed a set of
systems using machine learning algorithms that identified
main verbs and patient words using only lexical and part-
of-speech information for words in the sentence.
 For the task of main verb extraction, we began by
creating a training corpus of sentences where the main verb
was annotated. Unfortunately we did not have the
resources to annotate weblog story text for use as training
data. Instead, we created a training corpus automatically by
processing the Penn Treebank corpus with a slightly
modified version of Collins’ head-finding rules (Collins,
1999). Specifically, we modified the head-verb finding
rules so as to annotate only the most dominating verb that
was not an auxiliary verb. After annotating the main verb
in this manner, the syntactic tree information was removed
from this corpus, leaving only the lexical items and part-of-
speech information in each of the Treebank sentences.
 Given the Treebank corpus annotated with the main
verbs, a head verb recognition module was developed
using machine learning techniques. Using the part-of-
speech tags in the Treebank corpus, we extracted each of
the verbs in each sentence for use as training data in a
binary classification task (main-verb or not main-verb). For
each training instance, the lexical token of the verb and a
window of words around the verb constituted the feature
set. For each verb in the window, we use both the part-of-
speech tag and the actual word as features, but for all other
words we use just the part-of-speech tags. Although we
believe that using the lexical tokens of the words around
the verb would improve the performance of main verb
extraction on the Treebank data, we limited these features
to part-of-speech tags with the hope that these features
would generalize well between the newswire text genre of
Treebank data and our story corpus. On the other hand, the
actual word of the verb is clearly indicative of whether it is
the main verb of a sentence or not, and these features are
especially helpful in distinguishing auxiliary from main
verbs in a sentence.
 Using these features, the task of head verb recognition is
cast as a binary verb classification problem (main-verb or
not main verb). We used the popular SVM-lite
implementation of a Support Vector Machine learning
algorithm (Joachims, 1999). For each sentence, the verb
with the highest confidence level is considered to be the
main verb of the sentence. 10,000 sentences of the
Treebank corpus were used as the development set and the
remaining sentences (around 40,000) were used as a cross
validation train/test set. The average accuracy on the
Treebank data is 91.7% with the standard deviation of
0.7%. A maximum entropy classifier was also tested for
the classification task but performed slightly worse on this
task.
 Our second task was to identify the lexical head of the
patient argument of the main verb in a sentence. The

PropBank corpus (Palmer et al., 2005) provides semantic
role annotations for a portion of the Treebank corpus, and
is widely used for the task of automated semantic role
labeling. Semantic role labeling systems typically build the
parse tree of the sentence using rule-based or statistical
parsers and use this syntactic information to assign
semantic roles to the constituents of the sentence. As we
discussed previously, we needed to develop a module to
extract the patient argument of the main verb, what would
be the argument labeled “ARG1” in PropBank annotations,
for each sentence using only lexical and part-of-speech
information. For this task, our approach was similar to
main-verb extraction. We used the Propbank corpus to
build a training corpus of sentences that were already
annotated with the main verb as well as the lexical head of
the main verb’s ARG1 argument. As with the extraction of
the main verb, a window of tags around each word that
could potentially be the head of ARG1 (e.g. nouns,
pronouns, verbs, adjectives, but not articles, conjunctions,
etc), as well as a window of tags around the main verb, was
used as features in a binary classification task. As before,
the lexical token of each verb was used as a feature, but
only the part-of-speech tags were used for all other words.
Two more features for the task of patient word extraction
seemed to have a great impact on the performance: a
binary feature that indicated whether the word is located
after or before the main verb in the sentence, and the
sequence of part-of-speech tags between the word and the
main verb, where the frequency of the sequence in the
training data was at least three. SVM-light was used as the
binary classifier to decide whether or not a word is the
head of ARG1. The word with the highest confidence level
was returned as ARG1 of the main verb.
 Experiments showed that if two different classifiers are
used for two different cases, one when the head of ARG1
is a verb (i.e. ARG1 is a VP or S) and one for all other
cases, the accuracy of the combined system increased
significantly. 10,000 sentences were used as the
development set and the rest (around 40,000 sentences)
were used for the cross validation evaluation of the system.
The average accuracy of ARG1 extraction for VP/S case
was 86.7% and for all other cases was 75.3%. A binary
classifier was also used to decide whether or not to apply
the VP/S classifier. The accuracy of this binary classifier
was 96.1%.

Language Modeling of Event Sequences
As our event recognition modules (main verb and patient
word) use part-of-speech tags as features, these tags
needed to be assigned to each word in our story corpus. For
this purpose we applied a maximum entropy based part-of-
speech tagger (Ratnaparkhi, 1996) to the entire story
corpus. We then applied the predicate-argument extraction
module to the corpus, producing a new corpus where each
story was represented as a sequence of word pairs (main
verb and argument word).

 Our next step was to develop a probabilistic model of
the event sequences in this corpus. In selecting a type of
model to use, our goals were to find a model that would
allow for a good fit to the data, but also one that was
computationally feasible, i.e. fast enough to process the 66
million events extracted from our corpus. With these
concerns in mind, we chose the SRI Language Modeling
toolkit (SRILM) to build a model for the sequence of
events in the form of a traditional language model (Stolcke,
2002).
 Language modeling has proven that it is able to model
sequential data like sequences of words, tags, and
phonemes very well in other natural language processing
tasks. There is an intuition for using a language model for
sequences of story events. Given the nature of the narrative
genre, many events tend to be described in sequential
order. For example, if you get a speeding ticket while
driving on the highway, it is probable that you
subsequently pay the fine; we expect that the probability of
“get/ticket” preceding “pay/fine” is much higher than the
probability of “have/dinner” preceding “pay/fine”.
 Language modeling also has a number of characteristics
that make it well suited for modeling event sequences in
our corpus. Tools like the SRI Language Modeling toolkit
are extremely fast, allowing us to analyze significant
portions of our corpus. Furthermore, there has been a lot of
research on smoothing techniques and other issues related
to language modeling that can be applied to story event
modeling, improving the utility of such a model in
practical applications. Practically speaking, sequences of
story events can be analyzed by language modeling tools
by treating them as a special type of sentence. Each event
in a story (word pair) is treated as a single word, and each
story can be represented as a sequence of words. In this
manner, the SRILM tool can be used to extract the
probability of event unigrams, event bigrams, event
trigrams, and so on, from our corpus of 3.7 million stories
(sentences in language modeling terminology). To use this
language model, one can estimate the probability of a
sequence of events by calculating n-gram probabilities.
These probabilities can then be used in many different
story understanding applications, such as event ordering,
event prediction, story classification, story similarity
evaluation and automated story generation.
 Following this approach, we built a language model
using the SRILM toolkit, with an n-gram order of five, and
using the default smoothing parameters. In order to
evaluate the comparative performance of this model, we
also constructed a number of alternative models using this
approach.
 The first alternative model was built after applying a
large-coverage dictionary (Courtois, 2004) to group nouns
and verbs that differed only in their inflection or plurality.
The idea was to use a dictionary in order to filter some
noisy events and to decrease the sparsity of the data. In
addition to filtering unknown main verb and patients, the
dictionary was also used to replace each word with its
lemma. The reason for using lemmatization is to further

decrease the sparsity of the data. Here we are looking for a
more general model of a story; e.g. no matter what the
tense of the verb ‘flip’ is, we want to have the same
predicate for both cases “flip/coin” and “flipped/coins.”
 A second alternative model was built by using just the
main verb of the sentence (without a patient word). The
motivation is to find out how much the procedure of
extracting the argument contributes to the performance of
the model. A third alternative model was built for the case
where a random verb was selected (without a patient word)
instead of applying our main-verb extraction approach. A
fourth alternative was built where both a random verb from
the sentence and a random (potential) patient word were
extracted. These last two models provide comparisons for
measuring how much the main verb extraction and patient
word extraction modules contribute to the quality of the
model.
 Finally, a fifth alternative model was built in which all
of the verbs of a sentence were extracted (without patient
words). The reason behind building this model was that the
performance of the sentence delimitation module on the
weblog corpus is not nearly as high as for the newswire
data that it was trained on, and many of the weblog
sentences actually contain more than one complete
sentence. Therefore, by extracting one verb from each
delimited sentence, we are actually losing some of the
event information that is described in the story. Comparing
this model with the model using only the main verb gives
us the opportunity to compare the effect of sentence
delimitation errors on the performance of the overall
model. In the next section we describe an evaluation of all
of these different models on two tasks, event ordering and
sentence prediction.

Evaluation of Event Models
To evaluate how well our event model and its five
alternatives captured the regularities present in this corpus,
we conducted a comparative evaluation of all of these
models on two simple story understanding tasks. In each
case, the models were trained on a subset of 900,000
stories and a different subset of 100,000 stories was used to
test the system.
 Our first evaluation was based on an event ordering task,
designed to evaluate how well these models capture the
expected order of events in narrative text. The task was
formulated as a binary decision regarding the true ordering
of events in a test story. For each story in the test set, we
asked our model to decide which of two event sequences
were more likely: the events of the story in their original
order, or a random ordering of the same events. As an
illustration, the example story presented earlier in this
paper would be presented to our primary model as the
following two options:

1. (correct) got-tire, thought-was, pointed-tire, wish-
had, blew-dollars

2. (incorrect) wish-had, got-tire, blew-dollars,
thought-was, pointed-tire

 As a baseline, a random selection would yield an
accuracy of 50% on this task. The comparative accuracy
for each of the six models on this task is presented in Table
1.

Model Percent
correct

Main verb + patient word 63.4%
a1: Lemmatized verb + patient 63.9%
a2: Main verb only 64.7%
a3: Random verb only 60.5%
a4: Random verb + random patient 55.4%
a5: all verbs only 61.5%

Table 1. Evaluation on event ordering task

 The results presented in Table 1 indicate that our
primary model (main verb + patient word) is outperformed
by two of the alternative models. The first alternative
model (a1) sees a slight improvement, most likely due to
the decrease in data sparsity due to the application of the
dictionary. However, the best result overall is found in the
second alternative model (a2) where only the main verb
extraction module is applied, representing events as single
word entities (without any patient word). In addition to
further diminishing the data sparsity problem, the high
performance of this model can be attributed to the relative
difficulty of the task: ordering the next verb in a sequence
is comparatively easier than ordering the verb and its
patient. Considering the models that select random verbs
and patients (a3 and a4), it is clear that our extraction
approach provides some utility to the resulting model, but
the biggest contributor is the selection of an appropriate
main verb. Also, low performance of the fifth alternative
model (a5) demonstrates that selecting only a single verb
to represent events is more effective than using all verbs in
a sentence.
 Our second evaluation was based on an event prediction
task, designed to evaluate how well these models could
make accurate predications about the next events in a
narrative sequence. In this task, the model is asked to
decide which of two story sequences is correct. The first is
an unmodified sequence from the test corpus, but the
second replaces the last event in the sequence with a
different event selected at random from the entire corpus.
As an illustration, the example story presented earlier in
this paper would be presented to our primary model as the
following two options:

1. (correct) got-tire, thought-was, pointed-tire, wish-
had, blew-dollars

2. (incorrect) got-tire, thought-was, pointed-tire,
wish-had, add-dimension

Here “blew-dollars” is replaced with a random event
picked from the corpus, “add-dimension”. This evaluation
approximates the task of predicting the next event (the last
event in the sequence) when an event sequence is given
(the preceding events). As with the first evaluation, a
random choice baseline would yield an accuracy of 50%.

Table 2 shows the comparative results for the second
evaluation.

Model Percent
correct

Main verb + patient word 52.5%
a1: Lemmatized verb + patient 52.3%
a2: Main verb only 53.2%
a3: Random verb only 51.5%
a4: Random verb + random patient 50.3%
a5: all verbs only 51.8%

Table 2. Evaluation on event prediction task

 The results presented in Figure 2 show that the event
prediction task is much more difficult than the event
ordering task. However, the relative performance of the
models on these two tasks is very similar. Again, our
primary model (main verb + patient word) is outperformed
by the model consisting of the main verb only (a2),
although in this task there is no advantage to be gained by
applying a dictionary (a1). As in the previous task,
selecting random verbs or patients (a3 and a4) or all verbs
(a5) yields lower performance, validating the utility of our
main verb extraction module.
 Overall, these two evaluations demonstrate that
language modeling is an appropriate technology for
modeling event sequences, but only for the task of event
ordering. Using only our main verb extraction module to
represent events, we achieve performance that is 14.7%
above a random baseline. In contrast, performance on the
task of event prediction is much lower, only a few
percentage points above the random baseline. For this task,
it is clear that incremental improvements and alternative
approaches will need to be explored in future work.

Discussion
In this paper we have explored a novel approach to the
development of broad-coverage knowledge resources for
use in automated story-understanding systems. We focused
specifically on the development of an event model, a
resource for encoding expectations about event sequences
in everyday narrative contexts. Our approach was to
develop a means of extracting event sequences from
narrative text documents, apply this technology to an
extremely large corpus of Internet weblog text, and use
language modeling techniques to build a probabilistic
model. Our evaluation of this model, and several
alternative models, demonstrated some utility of our
approach for the task of ordering narrative events, but not
for the task of event prediction.
 As a first effort in the research area of event model
extraction from story corpora, we are encouraged by our
results. However, there are a number of challenges that
must be addressed in future work in order to achieve levels
of performance that have practical utility.
 First, we expect that significant improvements could be
obtained if the story corpus was preprocessed with more

care. Compared to the newswire text on which the
extraction models were trained, the story corpus suffers
from ungrammatical sentences, fragments, and spelling
errors. These problems hinder the performance of the
automated sentence delimitation, part-of-speech tagging,
and word extraction modules that we employ. Also, the
corpus was created using automated story extraction
algorithms, favoring high recall over high precision.
Although this decision might be appropriate for the task of
story retrieval from Internet weblogs (its original purpose),
an approach that favored precision over recall would be
preferable for the purpose of event modeling.
 Second, our approaches to main verb and patient word
extraction could be significantly improved. Certainly, some
advanced natural language processing techniques (e.g.
anaphora resolution) could be appropriately applied to this
corpus to aid in argument extraction. However, we expect
that the most significant gains could be achieved by
working with a large amount of annotated Internet weblog
text. Having annotated weblog data would allow us to train
new sentence delimiters, part-of-speech taggers, main verb
extractors, and patient word extractors that were
specifically tuned to this genre of data. More importantly,
an annotated corpus would allow us to evaluate the
performance of each of these components on the test data,
giving us a better idea of which modules most need
improvement. At the very least, it would be good to have
an annotated corpus of weblog text where the main verb
and patient words were tagged. This would be
comparatively less expensive to produce than a corpus of
full syntactic parses and semantic role labels.
 Third, we believe that there are suitable alternatives to
language modeling as a framework for modeling event
sequences. One of the problems with this type of n-gram
model is that it does not optimally handle missing events in
a sequence. The nature of storytelling is about the selective
description of events to compose an effective narrative, not
simply the reporting of all events in an episode. Statistical
models that more robustly handle missing events (e.g.
Hidden Markov Models) may be more suitable for this
task, if challenges of scalability could be overcome.
 Finally, we believe that future work in this area must be
conducted in the context of a specific story understanding
task in order to evaluate the utility of different approaches.
A system that achieves 70% or 80% on either the event
ordering or event prediction task may be a remarkable
technical achievement, but if practical automated story
understanding systems require accuracy of 90% or more,
then alternatives to learning these models from data will
need to be pursued.

Acknowledgments
The project or effort described here has been sponsored by
the U.S. Army Research, Development, and Engineering
Command (RDECOM). Statements and opinions expressed
do not necessarily reflect the position or the policy of the

United States Government, and no official endorsement
should be inferred.

References
Collins, M. (1999). Head-Driven Statistical Models for
Natural Language Parsing. PhD thesis, University of
Pennsylvania.
Courtois, B. (2004) Dictionnaires électroniques DELAF
anglais et français. In Leclère, Laporte, Piot & Silberztein
(eds.) Syntax, Lexis and Lexicon-Grammar: Papers in
Honour of Maurice Gross. Amsterdam: John Benjamins.
Gildea, D. & Jurafsky, D. (2002). Automatic labeling of
semantic roles. Computational Linguistics, 28(3):245-288.
Gordon, A., Cao, Q, & Swanson, R. (2007) Automated
story capture from Internet weblogs. 4th International
Conference on Knowledge Capture, Whistler, Canada.
Gordon, A. (2001) Browsing image collections with
representations of commonsense activities. Journal of the
American Society for Information Science and
Technology, 52(11):925-929.
Joachims, T. (1999) Making large-Scale SVM Learning
Practical. In Schölkopf, Burges, & Smola (eds.) Advances
in Kernel Methods: Support Vector Learning. Cambridge,
MA: MIT Press.
Moschitti, A., Pighin, D. & Basili, R. (2006) Semantic role
labeling via tree kernel joint inference. Proc. of
Computational Language Learning, New York.
Mueller, E. (2002) Story understanding. In Nadel (ed),
Encyclopedia of Cognitive Science, vol. 4. London: Nature
Publishing Group, pp. 238–46.
Mueller, E. (2007) Modelling space and time in narratives
about restaurants. Literary and Linguistics Computing
22(1):67-84.
Palmer, M., Gildea, D., & Kingsbury, P. (2005) The
Proposition Bank: An Annotated Corpus of Semantic
Roles. Computational Linguistics 31(1):71-106.
Ratnaparkhi, A. (1996) A maximum entropy model for
part-of-speech tagging. Proc. of Empirical Methods for
Natural Language Processing, University of Pennsylvania.
Reynar, J. & Ratnaparkhi, A. (1997) A maximum entropy
approach to identifying sentence boundaries. Proc. of
Applied Natural Language Processing, Washington, D.C.
Singh, P. & Barry, B (2003) Collecting commonsense
experiences. 2nd International Conference on Knowledge
Capture, Sanibel Island, FL.
Stolcke, A. (2002) SRILM: An Extensible Language
Modeling Toolkit, International Conference on Spoken
Language Processing, Denver, Colorado.
Technorati (2007) State of the Blogosphere / State of the
Live Web. Retrieved August 2007 from
http://www.sifry.com/stateoftheliveweb.

