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Abstract 
This paper describes the virtual humans developed as part of the 
Mission Rehearsal Exercise project, a virtual reality-based training 
system.   This project is an ambitious exercise in integration, both 
in the sense of integrating technology with entertainment industry 
content, but also in that we have joined a number of component 
technologies that have not been integrated before. This integration 
has not only raised new research issues, but it has also suggested 
some new approaches to difficult problems.  We describe the key 
capabilities of the virtual humans, including task representation 
and reasoning, natural language dialogue, and emotion reasoning, 
and show how these capabilities are integrated to provide more 
human-level intelligence than would otherwise be possible. 

 

Introduction 
Achieving human-level intelligence in cognitive sys-
tems requires a number of core capabilities, including 
planning, belief representation, communication abil-
ity, emotional reasoning, and most importantly, a 
way to integrate these capabilities. And yet, for many 
researchers, software integration is often regarded as 
a kind of necessary evil – something to make sure 
that all the research components of a large system fit 
together and interoperate properly – but not some-
thing that is likely to contribute new research insights 
or suggest new solutions. We have found, on the con-
trary, that the conventional wisdom about integration 
does not hold: as we describe in this paper1, the inte-
gration process has raised new research issues and at 
the same time has suggested new approaches to long-
standing issues.   We begin with a brief description of 
the background behind our work in training and the 
approach we have taken to improving training.  We 
then describe the technology components we have 
developed, the system architecture we use, and we 
conclude with some of the insights we have gained 
from the integration process. 

Virtual Humans for Training 
We have been constructing virtual humans to explore 
research issues in achieving cognitive systems with 
                                                        
1 This paper is based on and expands the discussion of 
issues in integration presented in Swartout et al., 2005 

human-level performance. These issues, which we 
describe in detail below, span a number of technical 
areas in artificial intelligence including speech rec-
ognition, natural language understanding and genera-
tion, dialogue modeling, non-verbal communication, 
task modeling, social reasoning and emotion model-
ing. 

Virtual humans are software artifacts that look 
like, act like and interact with humans but exist in 
virtual environments. We have been exploring the 
use of virtual humans to create social training envi-
ronments, environments where a learner can explore 
stressful social situations in the safety of a virtual 
world. 

We designed the Mission Rehearsal Exercise 
(MRE) system to demonstrate the use of virtual hu-
man technology to teach leadership skills in high–
stakes social situations. MRE places the trainee in an 
environment populated with virtual humans. The 
training scenario we are currently using is situated in 
a small town in Bosnia. It opens with a lieutenant (the 
trainee) in his Humvee. Over the radio, he gets orders 
to proceed to a rendezvous point to meet up with his 
soldiers to plan a mission to assist in quelling a civil 
disturbance. When he arrives at the rendezvous point, 
he discovers a surprise (see Figure 1). One of his 
platoon’s Humvees has been involved in an accident 
with a civilian car. There is a small boy on the 

    

 

 
Figure 1: The Mission Rehearsal Exercise System, 
showing, from the left, the platoon sergeant, the in-
jured boy and his mother, a medic, and a crowd. 



ground with serious injuries, a frantic mother, and a 
crowd is starting to form. A TV camera crew shows 
up and starts taping. What should the lieutenant do? 
Should he stop and render aid? Or should he continue 
on with his mission? Depending on decisions he 
makes, different outcomes will occur. 

Our virtual humans build on prior work in the ar-
eas of embodied conversational agents (Cassell, Sul-
livan, Prevost, & Churchill, 2000) and animated 
pedagogical agents (Johnson, Rickel, & Lester, 
2000), but they integrate a broader set of capabilities 
than any prior work.  For the types of training scenar-
ios we are targeting, the virtual humans must inte-
grate three broad influences on their behavior: they 
must perceive and act in a 3D virtual world, they 
must engage in face-to-face spoken dialogues with 
people and other virtual humans in such worlds, and 
they must exhibit human-like emotions.  Classic 
work on virtual humans in the computer graphics 
community focused on perception and action in 3D 
worlds (Badler, Phillips, & Webber, 1993; Thalmann, 
1993), but largely ignored dialogue and emotions.  
Several systems have carefully modeled the interplay 
between speech and nonverbal behavior in face-to-
face dialogue (Cassell, Bickmore, Campbell, 
Vilhjalmsson, & Yan, 2000; Pelachaud, Badler, & 
Steedman, 1996) but these virtual humans did not 
include emotions and could not participate in physi-
cal tasks in 3D worlds.  Some work has begun to ex-
plore the integration of conversational capabilities 
with emotions (Lester, et al 2000; Marsella, Johnson, 
& LaBore, 2000; Poggi & Pelachaud, 2000), but still 
does not address physical tasks in 3D worlds.  Like-
wise, prior work on Steve addressed the issues of 
integrating face-to-face dialogue with collaboration 
on physical tasks in a 3D virtual world (Rickel & 
Johnson, 2000), but Steve did not include emotions 
and had far less sophisticated dialogue capabilities 
than our current virtual humans.  The tight integration 
of all these capabilities is one of the most novel as-
pects of our current work. 

The virtual humans, including the sergeant, 
medic, and mother in the scenario described in the 
previous section build on the earlier Steve system. 
Their behavior is not scripted; rather, it is driven by a 
set of general, domain-independent capabilities dis-
cussed below. The virtual humans perceive events in 
the simulation, reason about the tasks they are per-
forming, respond verbally through generated speech, 
non-verbally through gestures and facial expressions, 
and react emotionally to events as they unfold. 

Integration Issues 

 
In order for virtual humans to collaborate with 

people and each other in scenarios like the 

peacekeeping mission, they must include a wide vari-
ety of capabilities, such as perception, planning, spo-
ken dialogue, and emotions.  Creating an integrated 
virtual human that could support such a broad range 
of behaviors presented some significant challenges 
both for the integrating architecture and the software 
development process. 

One challenge was that each of the major compo-
nents (such as dialogue management or emotion 
modeling) was developed by a different research 
team.  Since the MRE effort in total involved dozens 
of people, we felt it was necessary to break things 
down in this way to keep each task manageable.  A 
second challenge was that each research team was 
attempting to advance the state of the art for their 
component – to do things that had not been done be-
fore.  Thus, capabilities that had not been available 
when the research started might become available as 
it progressed. 

Taken together, these challenges meant that it was 
not possible to determine in advance what informa-
tion one module might be able to provide to another, 
or even what information would be needed.  This 
meant that a top-down design was not possible, in-
stead the design emerged as the research progressed. 
Another consequence of using separate teams was 
that bugs arising from interdependencies between 
modules were often difficult to track down. 

Another challenge came from the real-time nature 
of the interactive application.  Because the agents 
were reacting to events as they unfolded, small tim-
ing differences between two runs could result in dif-
ferent behaviors, even when the same inputs were 
used for each run.  These behavioral differences 
sometimes made it difficult to duplicate and debug 
problems with the agents.   

In the next two sections, we describe the virtual 
human architecture and the software development 
process we used to help ameliorate these issues.  That 
is followed by an overview of the components in the 

 
Figure 2: Virtual Human architecture 



   

virtual human system.  Finally we conclude with a 
discussion of the synergies that have emerged from 
integration and some of the lessons we have learned 
about system integration on this scale. 

 Architecture 
As we argued in the previous section, a top down 
design was not possible, and it was not possible to 
determine in advance all the inputs and outputs for 
the various components.  To address this, we used a 
blackboard architecture, in which memory is shared, 
and individual components have access to the inter-
mediate and final results of other components by de-
fault, provides such flexibility.  The alternative, in 
which each module would explicitly pass specific 
information to other components, would require con-
stant revision as we made progress understanding the 
interdependencies among components. 

For our integrated architecture, we chose Soar 
(Newell, 1990), because it allows each component to 
be implemented with production rules that read from 
and write to a common working memory, which acts 
as the desired blackboard.  Soar further breaks com-
putation into a sequence of intermediate operators 
that are proposed in parallel but selected sequentially 
via an arbitration mechanism.  This allows for tight 
interleaving of operators from individual components 
and flexible control over their priority. They use the 
Communication Bus (see Figure 2) to send messages 
to one another, to the character bodies, and to the 
audio system. 

All components of the virtual humans are imple-
mented in Soar, with several exceptions: speech rec-
ognition, natural language understanding (syntactic 
and semantic analysis), synchronization of verbal and 
nonverbal components of output utterances, and 
speech synthesis.  It was less practical to implement 
these four components in Soar because each was built 
on top of existing software that would have been dif-
ficult to re-implement. In addition, these modules 
also work roughly as pipe-lines, with well-defined 
inputs and outputs, so the flexibility that Soar pro-
vides was less necessary for these components. 

 

Virtual Human Components 

Task Representation  and Reasoning 

To collaborate with humans and other synthetic 
teammates, virtual humans need to understand how 
past events, present circumstances, and future possi-
bilities impact team tasks and goals.  For example, 
the platoon sergeant agent in Figure 1 must be able to 
brief the trainee on past events that led to the accident 

as well as how the victim’s current injuries impact 
the platoon’s future mission. More generally, agents 
must understand task goals and how to assess 
whether they are currently satisfied, the actions that 
can achieve them, how the team must coordinate the 
selection and execution of those actions, and how to 
adapt execution to unexpected events.   

To provide this understanding, we employed a 
model-based programming approach and constructed 
an explicit model of the tasks, events and goals in the 
domain.  Because this model can be shared among 
system components, it directly addresses some of the 
issues that arise in coordination and knowledge shar-
ing when the components of the virtual human are 
integrated together.   

Agents use domain-independent reasoning algo-
rithms operating over a domain-specific declarative 
representation of team tasks. The representation in-
corporates elements of decision-theoretic plan repre-
sentations (allowing agents to reason about the utility 
and likelihood of future possibilities) with an explicit 
representation of beliefs and intentions (important for 
multi-agent reasoning). This representation is divided 
into explicit representations of past episodes, present 
state and future task-related information:  The causal 
history maintains a sequence of past observed steps 
(including unexpected and non-task events) and in-
terdependencies between past steps and present or 
future states (e.g., causal links). The current world 
description represents the current state of the world 
through a list of propositions. The task description 
includes of a set of possible future steps, each of 
which is either a primitive action (e.g., a physical or 
sensing action in the virtual world) or an abstract 
action which must itself be further decomposed.  Ab-
stract actions give tasks a hierarchical structure. In-
terdependencies are represented as a set of ordering 
constraints, causal links and threat relations. 

In addition to understanding the structure of tasks, 
agents must understand the roles of each team mem-
ber.  Each task step is associated with the team mem-
ber that is responsible for performing it as well as a 
possibly different agent that has authority over its 
execution; that is, the teammate responsible for a task 
step cannot perform it until authorization is given by 
the specified teammate with authority (Traum, 
Rickel, Gratch & Marsella 2003). This is required to 
model the hierarchical organizational structure of 
some teams, such as in the military.     

An agent's task model represents its understand-
ing of the task in general, independent of the current 
scenario conditions (different agents may have dif-
ferent representations of the same task).  Agents con-
tinually monitor the state of the virtual world via 
messages from the simulator that are filtered to re-
flect perceptual limitations (Rickel et al., 2002) and 



update their plans accordingly.  The result of this 
planning algorithm specifies how the agent privately 
believes that the team can collectively complete the 
task, with some causal links specifying the interde-
pendencies among team members' actions.  

A key aspect of collaborative planning is negoti-
ating about alternative ways to achieve team goals 
(Traum, Rickel, Gratch & Marsella, 2003).  To sup-
port such negotiation, the decision-theoretic planner 
can reason about alternative, mutually exclusive 
courses of action (recipes) for achieving tasks, their 
likelihood, and the utility of certain consequences, 
allowing the system to assess the relative strengths 
and weaknesses of different alternatives. These 
courses of action are self-contained hierarchical tasks 
in the sense defined above, and subject to the same 
dynamic task reasoning. For example, one might 
evacuate someone to a hospital by using either a 
medevac helicopter or an ambulance. Depending on 
the circumstances, only one option might be possible 
(e.g., the medevac may be unavailable or the injuries 
may be too severe for an ambulance), but if both are 
valid options, they must be ranked through some rea-
soned analysis of their relative costs and benefits.  

 Natural Language Dialogue 

In many ways, our natural language processing com-
ponents and architecture mirror fairly traditional dia-
logue systems. There is a speech recognizer, semantic 
parser, dialogue manager, NL generator, and speech 
synthesizer. However, the challenges of the MRE 
project, including integration within an immersive 
story environment as well as with the other virtual 
human components required innovations in most ar-
eas. Here we briefly describe the natural language 
processing components and capabilities; we will re-
turn later to some of the specific innovations moti-
vated by this integration. 

The Speech recognizer was built using Sonic 
(Pellom, 2001), with a domain specific n-gram lan-
guage model and with locally trained acoustic models 
(Wang & Narayanan, 2002). Output is currently the 
single best interpretation, as well as indications of 
when the user starts and stops speaking, to manage 
gaze control and turn-taking behavior of agents.  

Speech recognition output is processed by the 
semantic parser module, which produces a semantic 
representation of the utterances.  The parser com-
bines two finite-state transducers and a statistically 
trained processing engine that each produce candi-
date semantic interpretations for the incoming word 
stream, from which a best-guess is then selected 
(Feng & Hovy 2003). In cases in which perfect and 
standard or expected input is received, the finite state 
transducers provide very accurate output; when im-

perfect input is given, the statistical engine will 
robustly produce representations that may possibly be 
incomplete or partially incorrect. The module will 
provide addressee information (if vocatives were 
present), sentence mood, and semantic information 
corresponding to states and actions related to the task 
model (Traum, 2003). 

The output of the speech recognizer and semantic 
parser is passed to the Soar-based dialogue manage-
ment system for each virtual human agent. This in-
formation is then matched against the agent's internal 
representation of the context, including the actions 
and states in the task model, current expectations, and 
focus to determine a set of candidate interpretations. 
These interpretations may be underspecified, due to 
impoverished input, or over-specified in cases of in-
correct input (either an out of domain utterance by 
the user, or an error in the speech recognizer or se-
mantic parser). In some cases, underspecified ele-
ments can be filled in with reference to the agent's 
knowledge; if not, the representation is left under-
specified and processing continues. Each agent’s dia-
logue component also produces a set of dialogue act 
interpretations of the utterance. Some of these are 
traditional speech acts (e.g., assert, request, info-
request) with content being the semantic interpreta-
tion, while others represent other levels of action that 
have been performed, such as turn-taking, grounding, 
and negotiation (Traum & Rickel, 2002). 

Dialogue management follows the approach of 
the TRINDI Project (Larsson & Traum, 2000), and 
specifically the EDIS system (Matheson, Poesio, & 
Traum, 2000). Dialogue acts are used to update an 
Information State that is also used as context for 
other aspects of agent reasoning (Traum & Rickel, 
2002). Decisions of how to act in dialogue are tightly 
coupled with other action selection decisions in the 
agent. The agent can choose to speak, choose to lis-
ten, choose to act related to a task, etc. Aspects of the 
information state provide motivations to speak, in-
cluding answering questions, negotiating with respect 
to a request or order, giving feedback of understand-
ing (acknowledgements, repairs, and repair requests), 
and making suggestions and issuing orders, when 
appropriate according to the task model. 

Once a decision is made to speak, there are sev-
eral phases involved in the language production proc-
ess, including content selection, sentence planning, 
and realization. The final sentence is then augmented 
with communicative gestures and sent to the synthe-
sizer and rendering modules to produce the speech. 
Meanwhile, messages are sent to other agents, letting 
them know what the agent is saying (Fleischman & 
Hovy, 2002). The speech synthesizer uses Festival 
and Festvox, with locally developed unit-selection 
limited-domain voices to provide the emotional ex-



   

pressiveness needed to maintain immersiveness 
(Johnson et al., 2002). 

Figure 3 shows a brief example of how dialogue 
behavior is integrated with task reasoning. The left 
side of the figure shows a small fragment of the task 
model: part of the "Render aid" task involves secur-
ing the assembly area, which requires that the squads 
are in the area; it has a decomposition involving ac-
tions of various squads, and has the effect that the 
area is secure. The figure also shows which agents 
are responsible (R) for seeing that an action is per-
formed (either doing it themselves or acting as team 
leader making sure the subtasks are carried out), and 
which agents have authority (A) to have the action 
performed. With reference to this piece of the task 
model, consider the dialogue fragment on the right. 
Initially the focus is on the render aid task. When the 
lieutenant issues the command to secure the area (ut-
terance U11), the sergeant recognizes the command 
as referring to a sub-action of Render Aid in the cur-
rent task model (Task 2). As a direct effect of the 
lieutenant issuing a command to perform this task, 
the lieutenant has committed himself to the task, the 
sergeant has an obligation to perform the task, and 
the task becomes authorized. Because the sergeant 
already agrees that this is an appropriate next step, he 
is able to accept it with utterance U12, which also 
commits him to perform the action. The sergeant then 
pushes this task into his task model focus and begins 
execution. In this case, because it is a team task re-
quiring actions of other teammates, the sergeant, as 
team leader, must announce the task to the other team 
members.  Thus, the system forms a communicative 
goal to make this announcement. Before the sergeant 

can issue this announcement, he must make sure he 
has the squad leaders' attention and has them engaged 
in conversation. He forms a goal to open a new con-
versation so that he can produce the announcement. 
Then his focus can turn to the individual tasks for 
each squad leader. As each one enters the sergeant's 
focus, he issues the command that commits the ser-
geant and authorizes the troops to carry it out. When 
the sergeant observes the troops move into action, he 
can infer that they have understood his order and 
adopted his plan. When the task completes, the con-
versation between sergeant and squad leaders finishes 
and the sergeant turns his attention to other matters.  

Emotion 

As our agents attempt to realistically model the be-
havior of humans in high-stress scenarios, it is impor-
tant to model the role emotion plays in influencing 
decision-making and behavior.  Our work on model-
ing emotion is motivated by appraisal theory, a psy-
chological theory of emotion that emphasizes the 
relationship between emotion and cognition (Lazarus, 
1991). The theory posits two basic processes: Ap-
praisal generates emotion by assessing the person-
environment relationship (did an event facilitate or 
inhibit the agent’s goals; who deserves blame or 
credit). Coping is the process of dealing with emo-
tion, either by acting externally on the world (prob-
lem-focused coping), or by acting internally to 
change beliefs or attention (emotion-focused coping). 
Coping and appraisal interact and unfold over time, 
modeling the temporal character of emotion noted by 
several emotion researchers (Lazarus, 1991; Scherer, 

1984): an agent may “feel” 
distress for an event (ap-
praisal), which motivates the 
shifting of blame (coping), 
which leads to anger (re-
appraisal). 

In re-casting this theory as a 
computational model, we ex-
ploit the agent’s automated 
reasoning capabilities as prox-
ies for the cognitive mecha-
nisms that emotion (Gratch & 
Marsella, 2004). For example, 
to distinguish joy from distress, 
the agent must assess the va-
lence of an event, something 
supported by the agent’s deci-
sion-theoretic reasoning; to 
distinguish distress from anger 
it must assess if a threatening 
act by another was foreseen 
and intentional, something 

Focus=1

Lt: U11“secure the area”

Commited(lt,2), 2 authorized,Obl(sgt,U11)

Sgt: U12“yes sir”

Committed(sgt,2), Push(2,focus)

Goal7:Announce(2,{1sldr,2sldr,3sldr,4sldr})

Goal8: Start-conversation(sgt, ,{1sldr,2sldr,…},2)

Goal8 -> Sgt: U21 “Squad leaders listen up!”

Goal7 -> U22 “I want 360 degree security”

Push(3, focus)

Goal9:authorize 3

Goal9 -> u23“1st squad take 12-4”

Committed(sgt,3), 3 authorized

Pop(3), Push(4)

Goal10: authorize 4

Goal10 -> u24“2nd squad take 4-8”

Committed(sgt,4), 4 authorized

Pop(4)

…

A10: Squads move

A10: grounds U21-U26,…

       ends conversation about 2, realizes 2

Secure Area

Secure 12-4

Secure 8-12 Secure Accident

Secure 4-8

Squads in area

A=Lt,R=Sgt

A=Sgt,R=1sldr

A=Sgt,R=2sldr

A=Sgt,R=4sldrA=Sgt,R=3sldr

Area Secure

1

2

3

4

5 6

Decomposition

Decomposition

Render Aid

 
 

Figure 3: Sample task model and dialogue interaction 

 



supported by the agent’s ability to reason about be-
liefs and intentions; to assess the potential to cope 
with an emotional event, the agent must be able to 
reason about its ability to plan or seek support from 
other, something supported by the task and dialogue 
reasoning.  

Our approach to appraisal assesses the agent-
environment relationship via features of this explicit 
task representation (Gratch, 2000). Speaking loosely, 
we treat appraisal as a set of feature detectors that 
map features of the task and dialogue state into ap-
praisal variables that characterize the consequences 
of an event from the agent’s perspective. These vari-
ables include the desirability of those consequences, 
the likelihood of them occurring, who deserves credit 
or blame and a measure of the agent’s ability to alter 
those consequences. The result is one or more ap-
praisal frames that characterize the agent's emotional 
reactions to an event.  

Our computational model of coping (Marsella & 
Gratch, 2002) similarly exploits the task and dialogue 
representations to uncover which features led to the 
appraised emotion, and what potential there may be 
for altering these features. In essence, coping is the 
inverse of appraisal. Coping operates on the same 
representations as the appraisals, but while appraisal 
looks at changes in the world and beliefs to determine 
their effect on emotion, coping seeks to reduce (pri-
marily negative) emotions by making changes to the 
world or beliefs. There are two broad classes of cop-
ing strategies.  One works by making changes in the 
world. For example, a person might be driving and 
see an accident.  Feeling upset, he could cope with 
his emotion by making a cell phone call to get help.  
The other broad class of coping strategies operates 
not on the world but internal beliefs.  Using the same 
example, rather than placing a cell call, the driver 
could decide that the accident victim was careless 
and got what he deserved. The driver would still feel 
better, but his coping strategy would only affect his 
own beliefs. Our coping strategies can involve a 
combination of such approaches. This mirrors how 
coping processes are understood to operate in human 
behavior whereby people may employ a mix of prob-
lem-focused coping and emotion-focused coping to 
deal with stress. 

Action and Body Movements 

Internally, the virtual humans are perceiving events, 
understanding utterances, updating their beliefs, for-
mulating and revising plans, generating emotional 
appraisals, and choosing actions.  Agents manifest 
the rich dynamics of their cognitive and emotional 
inner state through external behavior using the same 
verbal and nonverbal cues that people use to under-

stand one another and these behaviors must be seam-
lessly integrated across modality and across time. 

Here we summarize the model discussed in 
(Marsella, Gratch, & Rickel, 2003), which drives 
gaze, facial expressions, and body gestures based on 
features of the agent’s dynamic cognitive state. Gaze 
indicates a character's focus of attention and is syn-
chronized to the character's inner thoughts. For ex-
ample, task-related behaviors (e.g., monitoring for an 
expected effect or action) trigger a corresponding 
gaze shift, and gaze during social interactions is 
driven by the dialogue state and the state of the vir-
tual human's own processing (e.g., gaze at an inter-
locutor who is speaking, gaze aversion during utter-
ance planning to hold the turn). Facial expressions 
both convey emotion and augment verbal communi-
cation. In humans, these behaviors can be used inten-
tionally by an individual to inform or deceive but can 
also unintentionally reveal information about the in-
dividual's mental state and our work integrates these 
aspects: by tying some expressive behavior to emo-
tional appraisal we reveal “true” mental state, 
whereas tying other behaviors to coping strategies, 
we inform intentional displays.  Finally, a wide range 
of body movements emphasize and augment speech. 
Our approach plans the utterance, annotates it with 
nonverbal behavior, then passes it to a text-to-speech 
system that schedules both the verbal and nonverbal 
behavior, using BEAT (Cassell, Vilhjálmsson, & 
Bickmore, 2001), although we augment this to ex-
press not only the syntactic, semantic and pragmatic 
structure of the utterance, emotional appraisal and 
coping information as well.  

Putting it together: the value of integration 
We have described the major technical components 
of the virtual humans. As we pointed out in the intro-
duction, software integration is necessary to make 
sure that all the various pieces in a system work to-
gether properly, but one usually expects that the real 
research takes place in building the individual com-
ponents. One does not expect to learn much from 
integration (except perhaps to find that some compo-
nents do not interface properly). However, in inte-
grating the Mission Rehearsal Exercise system, we 
have been surprised: we have uncovered new re-
search issues and some new approaches to existing 
problems have been suggested. In this section we 
outline some of the things we learned as we brought 
all the pieces together. 

 

The Pervasive Effect of Emotion 

In humans, emotion has a broad effect on behavior.  
It affects how we speak, how we gesture, our posture, 



   

and even how we reason.  And, of course, emotion is 
indispensable for creating good stories and compel-
ling characters. In integrating emotion into our virtual 
humans, we have found that we need to deal with a 
similarly broad range of issues.  Models of emotion 
can both affect the behavior of other components of 
the virtual human, and they can provide additional 
knowledge that the system can use in reasoning.  Be-
low we give an example of each. 
Emotionally Appropriate Natural Language Gen-
eration. A big challenge for Natural Language Gen-
eration in MRE is the generation of emotionally ap-
propriate language, which expresses both the desired 
information and the desired emotional attitude to-
wards that information. Each expressive variant casts 
an emotional shade on each representational item it 
contains (for example, the phrase governed by the 
verb “ram” as in “They rammed into us, sir” casts the 
subject in a negative and the object in a positive 
light).  Prior work on the generation of variation ex-
pressions, such as (Bateman & Paris, 1989; Hovy, 
1990), uses quite simplistic emotional models of the 
speaker and hearer.  In general, these systems simply 
had to choose among a small set of phrases, and 
within the phrase from a small set of lexical fillers for 
certain positions of the phrase, where each alternative 
phrase and lexical item was pre-annotated with an 
affective value such as good or bad.   

The presence in MRE of an emotion model pro-
vides a considerably finer-grain level of control, ena-
bling principled realization decisions over a far more 
nuanced set of expressive alternatives.  Given many 
representational items, a rich set of emotional values 
potentially holding for them, and numerous phrases, 
each with its own combination of positive and nega-
tive fields, the problem was to design a system that 
can reliably and quickly find the optimal phrasing 
without dropping content.    To compute shades of 
connotation more accurately and quickly, we created 
a vector space in which we can represent the desired 
attitudes of the speaker (as specified by the emotion 
model) as well as the overall emotional value of each 
candidate expression (whether noun phrase or whole 
sentence).  Using a standard Euclidean distance 
measure we can then determine which variant expres-
sion most closely matches the desired effect. See 
(Fleischman & Hovy, 2002) for details.  
Using Emotion to Determine Linguistic Focus. In 
natural language, we often refer to things in impre-
cise ways. To correctly interpret such referents in a 
natural language utterance, one needs to understand 
what is in linguistic focus.  Loosely speaking, one 
needs to understand what is the main subject of dis-
cussion.  For example, when the lieutenant trainee 
arrives at the accident scene in the MRE scenario, he 

might ask the sergeant, “What happened here?”  In 
principle many things have happened: the lieutenant 
just drove up, the soldiers assembled at the meeting 
point, an accident occurred, a crowd formed, and so 
forth.  The sergeant could talk about any one of these 
and be factually correct, but not necessarily prag-
matically appropriate. A number of heuristics have 
been developed to model linguistic focus.  One such 
heuristic is based on the idea of recency. It holds that 
the entity that is in linguistic focus is whatever was 
most recently discussed, or occurred most recently.  
In this case, recency does not work, since the Ser-
geant would sound quite silly if he responded: “Well, 
you just drove up, sir.” On the other hand, people are 
often focused most strongly on the things that upset 
them emotionally, which suggests an emotion-based 
heuristic for determining linguistic focus.  Because 
we have modeled the sergeant’s emotions in MRE, 
the dialogue planning modules  have access to the 
fact that he is upset about the accident can use that 
information to give the most appropriate answer: 
describing the accident and how it occurred. 

Integration Lessons Learned 
As we built the MRE system, we found that in 

many ways the process used in constructing the sys-
tem could be just as critical as the system’s architec-
ture to the success of the endeavor.  In this section we 
summarize some of the lessons we learned along the 
way. 

 
Integrate early, and often.  Because a top down 

design was not possible we found that it was impor-
tant to begin integration testing early, even before 
any of the components had reached full functionality.  
In that way, it was possible to identify unanticipated 
conflicts and lacunae earlier in the development 
process, making them easier and less costly to cor-
rect.  In addition, we found that it was important to 
continue to perform integration tests on a regular and 
frequent basis. We performed integration tests 
roughly every two weeks.  Again, the frequent tests 
allowed us to identify and correct problems early on. 

 
Version control software is essential.  While 

many small research projects can be successfully 
executed without the need for version control soft-
ware we found it to be essential due to the fact that 
many semi-independent teams were integrating their 
software results together.  Without some sort of ver-
sion control it would have been easy to inadvertently 
mix incompatible software modules. 

 
It cannot all be research; use existing components 

where possible.  Due to the uncertainty in the design 
and relative immaturity of research components, each 



research module adds to the risk of the integrated 
system.  To reduce risk in MRE, we used existing 
components and frameworks where ever possible, 
and only created research components when the ca-
pabilities we needed were not available. 

 
Move from heterogeneous to homogeneous plat-

forms.  Early on, because we wanted to make use of 
existing software to prototype the MRE system rap-
idly, the MRE system used a broad range of hardware 
platforms, including an SGI IR3, Macs and PCs, re-
flecting which platforms the software had originally 
been written on.  While this allowed us to get a ver-
sion of the system running rapidly, it introduced reli-
ability issues and also meant that running the system 
required considerable expertise on the various plat-
forms.   We have since moved to a more homogene-
ous platform, standardizing on PCs, which has in-
creased reliability.  We believe that the original deci-
sion to adopt a heterogeneous approach was correct, 
but it was also necessary to make the transition as the 
system matured. 

 
Component “stand-ins” are needed.  We found 

that between integration tests, it was often difficult 
for developers to do meaningful tests on their com-
ponents if the components were running independ-
ently.  We found it useful to develop stand-in com-
ponents that mimicked the I/O behavior of real com-
ponents even through simpler methods.  For example, 
we developed a “fake speech recognizer” that al-
lowed a developer to in or load previously recognized 
text, bypassing speech recognition, and we developed 
a simple rule-based simulator that mimicked the 
agent’s interface with the virtual environment.  Such 
”mimicks”  could be hooked up to the rest of the sys-
tem to allow the remaining components to be tested 
in context.  This approach improved productivity 
between integration tests. 

 
Most important: a shared vision.  Building a 

large-scale integrated system that combines a number 
of research components is not easy.  In managing this 
process perhaps the most critical thing is that the 
whole team must have a shared vision: they must see 
the value and expected results of the integration ef-
fort.  It is that shared vision that will keep the team 
working together and making progress during diffi-
cult times. 

MRE Status and Evaluation 
An initial version of the MRE system described in 
this paper has been implemented and applied to the 
peacekeeping training scenario described earlier.  The 
system allows the trainee, playing the role of the lieu-
tenant, to interact freely (through speech) with the 

three virtual humans (sergeant, medic, and mother).    
The trainee takes action in the virtual world through 
commands to the sergeant, who in turn commands the 
squads.  Ultimately, the experience terminates with 
one of four possible endings, depending on the 
trainee's actions.  However, unlike interactive narra-
tive models based on an explicit branching structure, 
the system does not force the trainee through a prede-
termined sequence of decision points, each with a 
limited set of options; the trainee's interactions with 
the characters is unconstrained and limited only by 
the characters' understanding and capabilities. 

The understanding and capabilities of the virtual 
humans is limited by the coverage of their spoken 
dialogue models and their models of the domain 
tasks.  The sergeant's speech recognizer currently has 
a vocabulary of a few hundred words, with a gram-
mar allowing recognition of 16000 distinct utter-
ances.  His natural language understanding module 
can currently produce semantic representation frames 
for all of these sentences as well as providing (some-
times partial) results for different or ill-formed input.  
His natural language generation module currently 
expresses all communicative goals formed by the 
dialog module, modulating some of them for affec-
tive appropriateness.  His speech synthesis module 
currently has a vocabulary of over 1000 words.  The 
sergeant's domain task knowledge, which is the most 
complex among all the virtual humans in the sce-
nario, includes about 40 tasks, and about 150 proper-
ties of the world.  While the tasks represent the full 
range of actions that the sergeant can understand and 
carry out, his ability to talk about these tasks and 
properties (e.g., answer questions and give advice) is 
broad, limited only by the coverage of the spoken 
dialogue modules as described above. 

Despite its complexity, real-time performance of 
the system is good, although we are continuing to 
improve latencies.  Given an utterance by the user, a 
virtual human typically responds within 3 seconds, 
including speech recognition, natural language un-
derstanding, updating dialogue and emotional states, 
choosing how to respond, natural language genera-
tion, planning the voice output and accompanying 
gestures and visemes, and finally producing the 
speech.  As is typical of humans, the virtual humans 
are producing communicative behaviors throughout 
this time delay, including averting gaze from the user 
during the utterance planning phases to indicate that 
they are formulating a response (Kendon 1967).  

We have tested the system with a variety of users 
acting as trainees, including subjects with with and 
without prior knowledge of the military domain.  Not 
surprisingly, subjects with military knowledge were 
substantially more successful, since they understood 
the context and how to proceed. Initial evaluation 



   

results and metrics of dialogue interaction using mili-
tary cadets are presented in (Traum, Robinson, and 
Stephan, 2004) 

 

Negotiation: A New Domain 
Recently, we have ported our virtual humans to a 
new application domain that is intended to teach 
trainees skills in negotiation.  The trainee plays the 
part of an Army captain whose mission is to pursue a 
medical relief doctor to change the location of his 
clinic.  The medical doctor is played by a virtual hu-
man (see Figure 4) and has been designed to resist 
negotiation in the way that psychologists have found 
that people resist negotiation (see Traum et al., 2005).  
An initial version of this new system was imple-
mented in about 90 days, and while the new domain 
naturally required new art assets and new task mod-
els, about 80% of the general purpose virtual human 
code used in MRE was re-used in this new applica-
tion.  We feel that the speed of implementation and 
degree of code re-use provide evidence of the flexi-
bility and robustness provided by our architectural 
designs. 

 

 
Human-level intelligence requires a number of 

core capabilities, including planning, belief represen-
tation, communication ability, emotional reasoning, 
and most importantly, a way to integrate these capa-
bilities. The virtual humans in the MRE project rep-
resent a significant step along this path. 
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Figure 4: Negotiating with a Doctor 
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