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Introduction
The face conveys information about a person’s 

age, sex, background, and identity as well as what 
they are feeling or thinking ((Bruce  & Young, 
1998; Darwin, 1872/1998; Ekman  & Rosenberg, 
2005). Facial expression regulates face-to-face inter-
actions, indicates reciprocity and interpersonal 
attraction or repulsion, and communicates subjec-
tive feelings between members of different cultures 
(Bråten, 2006; Fridlund, 1994; Tronick, 1989). 
Facial expression reveals comparative evolution, 
social and emotional development, neurological 
and psychiatric functioning, and personality pro-
cesses (Burrows & Cohn, In press; Campos, Barrett, 
Lamb, Goldsmith,  & Stenberg, 1983; Girard, 
Cohn, Mahoor, Mavadati, & Rosenwald, In press; 
Schmidt & Cohn, 2001). Not surprisingly, the face 
has been of keen interest to behavioral scientists.

Beginning in the 1970s, computer scientists 
became interested in the face as a potential biometric 

(Kanade, 1973). Later, in the 1990s, they became 
interested in use of computer vision and graphics to 
automatically analyze and synthesize facial expres-
sion (Ekman, Huang, & Sejnowski, 1992; Parke & 
Waters, 1996). This effort was made possible in 
part by the development in behavioral science of 
detailed annotation schemes for use in studying 
human emotion, cognition, and related processes. 
The most detailed of these systems, the facial action 
coding system (Ekman  & Friesen, 1978; Ekman, 
Friesen,  & Hager, 2002), informed the develop-
ment of the MPEG-4 facial animation parameters 
(Pandzic & Forchheimer, 2002) for video transmis-
sion and enabled progress toward automated mea-
surement and synthesis of facial actions for research 
in affective computing, social signal processing, and 
behavioral science.

Early work focused on expression recognition 
between mutually exclusive posed facial actions. 
More recently, investigators have focused on the 
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twin challenges of expression detection in natu-
ralistic settings in which low base rates, partial 
occlusion, pose variation, rigid head motion, and 
lip movements associated with speech complicate 
detection, and, real-time synthesis of photorealis-
tic avatars that are accepted as live video by naïve 
participants.

With advances, automated face analysis (AFA) is 
beginning to realize the goal of advancing human 
understanding (Ekman et al., 1992). AFA is lead-
ing to discoveries in areas that include detection of 
pain, frustration, emotion intensity, depression and 
psychological distress, and reciprocity. New appli-
cations are emerging in instructional technology, 
marketing, mental health, and entertainment. This 
chapter reviews methodological advances that have 
made these developments possible, surveys their 
scope, and addresses outstanding issues.

Human Observer–Based Approaches 
to Measurement

Supervised learning of facial expression requires 
well-coded video. What are the major approaches 
to manually coding behavior? At least three can 
be distinguished:  message-based, sign-based, and 
dimensional.

Approaches
MESSAGE-BASED MEASUREMENT

In message-based measurment (Cohn & Ekman, 
2005), observers make inferences about emotion or 
affective state. Darwin (1872/1998) described facial 
expressions for more than 30 emotions. Ekman 
and others (Ekman & Friesen, 1975; Izard, 1977; 
Keltner & Ekman, 2000; Plutchik, 1979) narrowed 
the list to a smaller number that they refer to as 
“basic” (see Figure 10.1) (Ekman, 1992; Keltner & 
Ekman, 2000). Ekman’s criteria for “basic emo-
tions” include evidence of univeral signals across all 
human groups, physiologic specificity, homologous 
expressions in other primates, and unbidden occur-
rence (Ekman, 1992; Keltner  & Ekman, 2000). 
Baron-Cohen and colleagues proposed a much 
larger set of cognitive-emotional states that are 

less tied to an evolutionary perspective. Examples 
include concentration, worry, playfulness, and 
kindness (Baron-Cohen, 2003).

An appealing assumption of message-based 
approaches is that the face provides a direct “read-
out” of emotion (Buck, 1984). This assumption 
is problematic. The meaning of an expression is 
context dependent. The same expression can con-
note anger or triumph depending on where, with 
what, and how it occurs. The exaltation of win-
ning a hard-fought match and the rage of losing 
can be difficult to distinguish without knowing 
context (Feldman Barrett, Mesquita,  & Gendron, 
2011). Similarly, smiles accompanied by cheek 
raising convey enjoyment; the same smiles accom-
panied by head lowering and turning to the side 
convey embarrassment (Cohn  & Schmidt, 2004; 
Keltner & Buswell, 1997). Smiles of short duration 
and with a single peak are more likely to be per-
ceived as polite (Ambadar, Cohn, & Reed, 2009). 
Too, expressions may be posed or faked. In the lat-
ter case, there is a dissociation between the assumed 
and the actual subjective emotion. For these reasons 
and others, there is reason to be dubious of one-to-
one correspondences between expression and emo-
tion (Cacioppo & Tassinary, 1990).

SIGN-BASED MEASUREMENT
An alternative to message-based measurement is 

to use a purely descriptive, sign-based approach and 
then use experimental or observational methods to 
discover the relation between such signs and emo-
tion. The most widely used method is the facial 
action coding system (FACS) (Cohn, Ambadar, & 
Ekman, 2007; Ekman et al., 2002). FACS describes 
facial activity in terms of anatomically based action 
units (AUs) (Figure 10.2). The FACS taxonomy was 
developed by manually observing gray-level varia-
tion between expressions in images, recording the 
electrical activity of facial muscles, and observing 
the effects of electrically stimulating facial muscles 
(Cohn  & Ekman, 2005). Depending on the ver-
sion of FACS, there are 33 to 44 AUs and a large 
number of additional “action descriptors” and other 

Fig. 10.1 Basic emotions. from left to right: amusement, sadness, anger, fear, surprise, disgust, contempt, and embarrassment
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movements. AUs may be coded using either binary 
(presence versus absence) or ordinal (intensity) 
labels. Figures 10.2 and 10.3 show examples of each.

While FACS itself includes no emotion labels, 
empirically based guidelines for emotion interpre-
tation have been proposed. The FACS investiga-
tor’s guide and other sources hypothesize mappings 
between AU and emotion (Ambadar et  al., 2009; 
Ekman & Rosenberg, 2005; Knapp & Hall, 2010). 
Sign-based approaches in addition to FACS, are 
reviewed in Cohn and Ekman (2005).

DIMENSIONAL MEASUREMENT
Both message- and sign-based approaches 

emphasize differences between emotions. An 

alternative emphasizes their similarities. Schlosberg 
(1952, 1954) proposed that the range of facial 
expressions conforms to a circular surface with 
pleasantness-unpleastness (i.e., valence) and 
attention-rejection as the principal axes (activ-
ity was proposed as a possible third). Russell 
and Bullock (1985), like Schlosberg, proposed 
that emotion conforms to a circumplex struc-
ture with pleasantness-unpleasantness (valence) 
as one axis, but they replaced attention-rejection 
with arousal-sleepiness. Watson and Tellegen 
(1985) proposed an orthogonal rotation of the 
axes to yield positive and negative affect (PA 
and NA, respectively, each ranging in intensity 
from low to high). More complex structures have 

Lip droop Slit Eyes closed Squint Blink Wink

*AU41 *AU42 *AU43 AU44 AU45 AU46

Inner brow raiser Outer brow raiser Brow lowerer Upper lid raiser Cheek raiser Lid tightener

AU1 AU2 AU4
Upper face action units

AU5 AU6 AU7

Lip tightener Lip pressor Lips parts Jaw drop Mouth stretch Lip suck

AU23 AU24 *AU25 *AU26 *AU27 AU28

Lip corner
depressor

Lower lip
depressor Chin raiser Lip puckerer Lip stretcher Lip funneler

Nose wrinkler Upper lip
raiser

Nasolabial
deepener

Lip corner
puller Cheek puffer Dimpler

Lower face action units

AU15 AU16 AU17 AU18 AU20 AU22

AU9 AU10 AU11 AU12 AU13 AU14

Fig. 10.2 Action units (AUs), facial action coding system.
Sources: Ekman & Friesen (1978); Ekman et al., (2002). Images from C-K database, Kanade et al. (2000).

Neutral 12 A 12 B 12 C 12 D 12 E

Fig. 10.3 Intensity variation in AU 12.
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been proposed. Mehrabian (1998) proposed that 
dominance-submissiveness be included as a third 
dimension. Tellegen, Watson, and Clark (1999) 
proposed hierarchical dimensions.

Dimensional approaches have several advan-
tages. They are well studied as indices of emotion 
(Fox, 2008). They are parsimonious, representing 
any given emotion in terms of two or three underly-
ing dimensions. They lend themselves to continuous 
representations of intensity. Positive and negative 
affect (PA and NA), for instance, can be measured 
over intensity ranges of hundreds of points. Last, 
they often require relatively little expertise. As long 
as multiple independent and unbiased ratings are 
obtained, scores may be aggregated across multiple 
raters to yield highly reliable measures. This is the 
case even when pairwise ratings of individual raters 
are noisy (Rosenthal, 2005). Such is the power of 
aggregating.

Some disadvantages may be noted. One, because 
they are parsiomonious, they are not well suited to 
representing discrete emotions. Pride and joy, for 
instance could be difficult to distinguish. Two, like 
the message-based approach, dimensional repre-
sentations implicitly assume that emotion may be 
inferred directly from facial expression, which, as 
noted above, is problematic. And three, the actual 
signals involved in communicating emotion are 
unspecified.

Reliability
Reliabilility concerns the extent to which mea-

surement is repeatable and consistent—that is, free 
from random error (Martin  & Bateson, 2007). 
Whether facial expression is measured using a 
message, sign, or dimensional approach, we wish 
to know to what extent variability in the measure-
ments represents true variation in facial expression 
rather than error. In general, reliability between 
observers can be considered in at least two ways 
(Tinsley  & Weiss, 1975). One is whether cod-
ers make exactly the same judgments (i.e., Do 
they agree?). The other is whether their judg-
ments are consistent. When judgments are made 
on a nomimal scale, agreement means that each 
coder assigns the same score. When judgments are 
made on an ordinal or interval scale, consistency 
refers to the degree to which ratings from different 
sources are proportional when expressed as devia-
tions from their means. Accordingly, agreement 
and consistency may show disassociations. If two 
coders always differ by x points in the same direc-
tion on an ordinal or interval scale, they have low 

agreement but high consistency. Depending on the 
application, consistency between observers may be 
sufficient. Using a dimensional approach to assess 
intensity of positve affect, for instance, it is unlikely 
that coders will agree exactly. What matters is that 
they are consistent relative to each other.

In general, message- and sign-based approaches 
are evaluated in terms of agreement and dimensional 
approaches are evaluated in terms of consistency. 
Because base rates can bias uncorrected measures of 
agreement, statistics such as kappa and F1 (Fleiss, 
1981) afford some protection against this source of 
bias. When measuring consistency, intraclass cor-
relation (Shrout  & Fleiss, 1979) is preferable to 
Pearson correlation when mean differences in level 
are a concern. The choice of reliability type (agree-
ment or consistency) and metric should depend on 
how measurements are obtained and how they will 
be used.

Automated Face Analysis
Automated face analysis (AFA) seeks to detect 

one or more of the measurement types discussed 
in Section 2. This goal requires multiple steps 
that include face detection and tracking, feature 
extraction, registration, and learning. Regardless 
of approach, there are numerous challenges. These 
include (1) non-frontal pose and moderate to large 
head motion make facial image registration diffi-
cult; (2) many facial actions are inherently subtle, 
making them difficult to model; (3)  the temporal 
dynamics of actions can be highly variable; (4) dis-
crete AUs can modify each other’s appearance (i.e., 
nonadditive combinations); (5)  individual dif-
ferences in face shape and appearance undermine 
generalization across subjects; and (6) classifiers can 
suffer from overfitting when trained with insuffi-
cient examples.

To address these and other issues, a large num-
ber of facial expression and AU recognition/detec-
tion systems have been proposed. The pipeline 
depicted in Figure 10.4 is common to many. Key 
differences among them include types of two- or 
three-dimensional (2D or 3D) input images, face 
detection and tracking, types of features, registra-
tion, dimensionality reduction, classifiers, and data-
bases. The number of possible combinations that 
have been considered is exponential and beyond the 
bounds of what can be considered here. With this 
in mind, we review essential aspects. We then review 
recent advances in expression transfer (also referred 
to as automated face synthesis, or AFS) and applica-
tions made possible by advances in AFA.
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Face and Facial Feature Detection 
and Tracking

AFA begins with face detection. In the case of 
relatively frontal pose, the Viola and Jones (2004) 
face detector may be the most widely used. This and 
others are reviewed in Zhang and Zhang (2010). 
Following face detection, either a sparse (e.g., eyes 
or eye corners) or dense set of facial features (e.g., 
the contours of the eyes and other permanent facial 
features) is detected and tracked in the video. An 
advantage of the latter is that it affords informa-
tion from which to infer a 3D pose (especially yaw, 
pitch, and roll) and viewpoint-registered representa-
tions (e.g., warp face image to a frontal view).

To track a dense set of facial features, active 
appearance models (AAMs) (Cootes, Edwards,  & 
Taylor, 2001) are often used. AAMs decouple the 
shape and appearance of a face image. Given a pre-
defined linear shape model with linear appearance 
variation, AAMs align the shape model to an unseen 
image containing the face and facial expression of 
interest. The shape of an AAM is described by a 2D 
triangulated mesh. In particular, the coordinates of 
the mesh vertices define the shape (Ashraf et  al., 
2009). The vertex locations correspond to a source 
appearance image, from which the shape is aligned. 
Since AAMs allow linear shape variation, the shape 
can be expressed as a base shape s0 plus a linear com-
bination of m shape vectors si. Because AAMs are 
invertible, they can be used both for analysis and for 
synthesizing new images and video. Theobald and 
Matthews (Boker et al., 2011; Theobald, Matthews, 

Cohn, & Boker, 2007) used this approach to gener-
ate real-time near videorealistic avatars, which we 
discuss below.

The precision of AAMs comes at a price. Prior 
to use they must be trained for each person. That is, 
they are “person-dependent” (as well as camera- and 
illumination-dependent). To overcome this limita-
tion, Saragih, Lucey, and Cohn (2011a) extended 
the work of Cristinacce and Cootes (2006) and oth-
ers to develop what is referred to as a constrained 
local model (CLM). Compared with AAMs, CLMs 
generalize well to unseen appearance variation and 
offer greater invariance to global illumination varia-
tion and occlusion (Lucey Wang, Saragih, & Cohn, 
2009, 2010). They are sufficiently fast to support 
real-time tracking and synthesis (Lucey, Wang, 
Saragih, & Cohn, 2010). A disadvantage of CLMs 
relative to AAMs is that they detect shape less pre-
cisely. For this reason, there has been much effort to 
identify ways to compensate for their reduced preci-
sion (Chew et al., 2012).

Registration
To remove the effects of spatial variation in face 

position, rotation, and facial proportions, images 
must be registered to a canonical size and orien-
tation. Three-dimensional rotation is especially 
challenging because the face looks different from 
different orientations. Three-dimensional transfor-
mations can be estimated from monocular (up to 
a scale factor) or multiple cameras using structure 
from motion algorithms (Matthews, Xiao, & Baker, 

(a) Input image
(or video)

(b) Facial landmark
detection/tracking

(c) Face alignment

(d) Feature extraction(e) Dimensionality
reduction

(f) Action unit
classification

SIFT

Gabor

Fig. 10.4 Example of the facial action unit recognition system.
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2007; Xiao, Baker, Matthews, & Kanade, 2004) or 
head trackers (Morency, 2008; Xiao, Kanade,  & 
Cohn, 2003). For small to moderate out-of-plane 
rotation a moderate distance from the camera 
(assume orthographic projection), the 2D projected 
motion field of a 3D planar surface can be recovered 
with an affine model of six parameters.

Feature Extraction
Several types of features have been used. These 

include geometry (also referred to as shape), appear-
ance, and motion.

GEOMETRIC FEATURES
Geometric features refer to facial landmarks such 

as the eyes or brows. They can be represented as 
fiducial points, a connected face mesh, active shape 
model, or face component shape parameterization 
(Tian, Cohn, & Kanade, 2005). To detect actions 
such as brow raise (AU 1 + 2); changes in displace-
ment between points around the eyes and those 
on the brows can be discriminative. While most 
approaches model shape as 2D features, a more 
powerful approach is to use structure from motion 
to model them as 3D features (Saragih et al., 2011a) 
(Xiao et  al., 2004). Jeni (2012) found that this 
approach improves AU detection.

Shape or geometric features alone are insufficient 
for some AUs. Both AU 6 and AU 7 narrow the 
eye aperture. The addition of appearance or texture 
information aids in discriminating between them. 
AU 6 but not AU 7, for instance, causes wrinkles 
lateral to the eye corners. Other AUs, such as AU 
11 (nasolabial furrow deepener) and AU 14 (mouth 
corner dimpler) may be undetectable without refer-
ence to appearance because they occasion minimal 
changes in shape. AU 11 causes a deepening of the 
middle portion of the nasolabial furrow. AU 14 and 
AU 15 each cause distinctive pouching around the 
lip corners.

APPEARANCE FEATURES
Appearance features represent changes in skin 

texture such as wrinkling and deepening of facial 
furrows and pouching of the skin. Many techniques 
for describing local image texture have been pro-
posed. The simplest is a vector of raw pixel-intensity 
values. However, if an unknown error in registration 
occurs, there is an inherent variability associated 
with the true (i.e., correctly registered) local image 
appearance. Another problem is that lightning con-
ditions affect texture in gray-scale representations. 
Biologically inspired appearance features, such as 

Gabor wavelets or magnitudes (Jones  & Palmer, 
1987), (Movellan, n.d.), HOG (Dalal  & Triggs, 
2005), and SIFT (Mikolajczyk  & Schmid, 2005) 
have proven more robust than pixel intensity to reg-
istration error (Chew et al., 2012). These and other 
appearance features are reviewed in De la Torre and 
Cohn (2011) and Mikolajczyk and Schmid (2005).

MOTION FEATURES
For humans, motion is an important cue to 

expression recognition, especially for subtle expres-
sions (Ambadar, Schooler, & Cohn, 2005). No less 
is true for AFA. Motion features include optical 
flow (Mase, 1991) and dynamic textures or motion 
history images (MHI) (Chetverikov  & Peteri, 
2005). In early work, Mase (1991) used optical 
flow to estimate activity in a subset of the facial 
muscles. Essa and Pentland (1997) extended this 
approach, using optic flow to estimate activity in a 
detailed anatomical and physical model of the face. 
Yacoob and Davis (1997) bypassed the physical 
model and constructed a midlevel representation of 
facial motion directly from the optic flow. Cohen 
and colleagues (2003) implicitly recovered motion 
representations by building features such that each 
feature motion corresponds to a simple deforma-
tion on the face. Motion history images (MHIs) 
were first proposed by Bobick and Davis (2001). 
MHIs compress into one frame the motion over 
a number of consecutive ones. Valstar, Pantic, and 
Patras (2004) encoded face motion into motion 
history images. Zhao and Pietikainen (2007) used 
volume local binary patterns (LBPs), a temporal 
extension of local binary patterns often used in 2D 
texture analysis. These methods all encode motion 
in a video sequence.

DATA REDUCTION/SELECTION
Features typically have high dimensionality, 

especially so for appearance. To reduce dimen-
sionality, several approaches have been proposed. 
Widely used linear techniques are principal com-
ponents analysis (PCA) (Hotelling, 1933), Kernel 
PCA (Schokopf, Smola,  & Muller, 1997), and 
independent components analysis (Comon, 1994). 
Nonlinear techniques include Laplacian eigenmaps 
(Belkin  & Niyogi, 2001), local linear embedding 
(LLE) (Roweis & Saul, 2000), and locality preserv-
ing projections (LPPs) (Cai, He, Zhou, Han,  & 
Bao, 2007; Chang, Hu, Feris,  & Turk, 2006)). 
Supervised methods include linear discriminant 
analysis, AdaBoost, kernel LDA, and locally sensi-
tive LDA.
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Learning
Most approaches use supervised learning. In 

supervised learning, event categories (e.g., emotion 
labels or AU) or dimensions are defined in advance 
in labeled training data. In unsupervised learning, 
labeled training data are not used. Here, we consider 
supervised approaches. For a review of unsupervised 
approaches, see De la Torre and Cohn (2011).

Two approaches to supervised learning are: 
(1) static modeling—typically posed as a discrimi-
native classification problem in which each video 
frame is evaluated independently; (2)  temporal 
modeling—frames are segmented into sequences 
and typically modeled with a variant of dynamic 
Bayesian networks (e.g., hidden Markov models, 
conditional random fields).

In static modeling, early work used neural 
networks (Tian, Kanade,  & Cohn, 2001). More 
recently, support vector machine classifiers (SVMs) 
have predominated. Boosting has been used to 
a lesser extent both for classification as well as 
for feature selection (Littlewort, Bartlett, Fasel, 
Susskind, & Movellan, 2006; Y. Zhu, De la Torre, 
Cohn,  & Zhang, 2011). Others have explored 
rule-based systems (Pantic & Rothkrantz, 2000).

In temporal modeling, recent work has focused 
on incorporating motion features to improve per-
formance. A  popular strategy uses HMMs to 
temporally segment actions by establishing a cor-
respondence between the action’s onset, peak, and 
offset and an underlying latent state. Valstar and 
Pantic (Valstar & Pantic, 2007) used a combination 
of SVM and HMM to temporally segment and rec-
ognize AUs. Koelstra and Pantic (Koelstra & Pantic, 
2008) used Gentle-Boost classifiers on motion from 
a nonrigid registration combined with an HMM. 
Similar approaches include a nonparametric dis-
criminant HMM (Shang & Chan, 2009) and par-
tially observed hidden conditional random fields 
(Chang, Liu, & Lai, 2009). In related work, Cohen 
and colleagues (2003) used Bayesian networks to 
classify the six universal expressions from video. 
Naive-Bayes classifiers and Gaussian tree-augmented 
naïve Bayes (TAN) classifiers learned dependencies 
among different facial motion features. In a series of 
papers, Qiang and colleagues (Li, Chen, Zhao, & 
Ji, 2013; Tong, Chen, & Ji, 2010; Tong, Liao, & 
Ji, 2007) used dynamic Bayesian networks to detect 
facial action units.

Databases
Data drives research. Development and valida-

tion of supervised and unsupervised algorithms 

requires access to large video databases that span 
the range of variation expected in target applica-
tions. Relevant variation in video includes pose, 
illumination, resolution, occlusion, facial expres-
sion, actions, and their intensity and timing, and 
individual differences in subjects. An algorithm that 
performs well for frontal, high-resolution, well-lit 
video with few occlusions may perform rather dif-
ferently when such factors vary (Cohn & Sayette, 
2010).

Most face expression databases have used directed 
facial action tasks; subjects are asked to pose dis-
crete facial actions or holistic expressions. Posed 
expressions, however, often differ in appearance 
and timing from those that occur spontaneously. 
Two reliable signals of sadness, AU 15 (lip corners 
pulled down) and AU 1 + 4 (raising and narrowing 
the inner corners of the brow) are difficult for most 
people to perform on command. Even when such 
actions can be performed deliberately, they may 
differ markedly in timing from what occurs spon-
taneously (Cohn  & Schmidt, 2004). Differences 
in the timing of spontaneous and deliberate facial 
actions are particularly important in that many 
pattern recognition approaches, such as hidden 
Markov models (HMMs), are highly dependent on 
the timing of the appearance change. Unless a data-
base includes both deliberate and spontaneous facial 
actions, it will likely prove inadequate for develop-
ing face expression methods that are robust to these 
differences.

Variability within and among coders is an impor-
tant source of error that too often is overlooked by 
database users. Human performance is inherently 
variable. An individual coder may assign different 
AUs to the same segment on different occasions 
(“test-retest” unreliability); and different coders 
may assign different AU (“alternate-form” unreli-
ability). Although FACS coders are (or should be) 
certified in its use, they can vary markedly in their 
expertise and in how they operationalize FACS cri-
teria. An additional source of error relates to manual 
data entry. Software for computer-assisted behav-
ioral coding can lessen but not eliminate this error 
source. All of these types of error in “ground truth” 
can adversely affect classifier training and perfor-
mance. Differences in manual coding between data-
bases may and do occur as well and can contribute 
to impaired generalizability of classifiers from one 
database to another.

Section 4 of this handbook and earlier reviews 
(Zeng, Pantic, Roisman, & Huang, 2009) detail rel-
evant databases. Several very recent databases merit 
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mention. DISFA (Mavadati, Mahoor, Bartlett, 
Trinh,  & Cohn, 2013) consists of FACS-coded 
high-resolution facial behavior in response to 
emotion-inducing videos. AU are coded on a 6-point 
intensity scale (0 to 5). The Binghamton-Pittsburgh 
4D database (BP4D) is a high-resolution 4D (3D 
* time) AU-coded database of facial behavior in 
response to varied emotion inductions (Zhang et al., 
2013). Several databases include participants with 
depression or related disorders (Girard et al., 2014; 
Scherer et al., 2013; Valstar et al., 2013; Wang et al., 
2008). Human use restrictions limit access to some 
of these. Two other large AU-coded databases not 
yet publically are the Sayette group formation task 
(GFT) (Sayette et al., 2012) and the AMFED facial 
expression database (McDuff, Kaliouby, Senechal 
et al., 2013). GFT includes manually FACS-coded 
video of 720 participants in 240 three-person 
groups (approximately 30 minutes each). AMFED 
includes manually FACS-coded video of thousands 
of participants recorded via webcam while viewing 
commercials for television.

Applications
AU detection and, to a lesser extent, detection 

of emotion expressions, has been a major focus of 
research. Action units of interest have been those 
strongly related to emotion expression and that 
occur sufficiently often in naturalistic settings. As 
automated face analysis and synthesis has matured, 
many additional applications have emerged.

AU Detection
There is a large, vigorous literature on AU detec-

tion (De la Torre & Cohn, 2011; Tian et al., 2005; 
Zeng et  al., 2009). Many algorithms and systems 
have been bench-marked on posed facial databases, 
such as Cohn-Kanade (Kanade, Cohn,  & Tian, 
2000; Lucey, Cohn, Kanade, Saragih, Ambadar & 
Matthews,, 2010), MMI (Pantic, Valstar, 
Rademaker, & Maat, 2005), and the UNBC Pain 
Archive (Lucey, Cohn, Prkachin, Solomon,  & 
Matthews, 2011). Benchmarking on spontane-
ous facial behavior has occurred more recently. 
The FERA 2011 Facial Expression Recognition 
Challenge enrolled 20 teams to compete in AU and 
emotion detection (Valstar, Mehu, Jiang, Pantic, & 
Scherer, 2012). Of these 20 teams, 15 participated in 
the challenge and submitted papers. Eleven papers 
were accepted for publication in a double-blind 
review. On the AU detection sub-challenge, the 
winning group achieved an F1 score of 0.63 across 
12 AUs at the frame level. On the less difficult 

emotion detection sub-challenge, the top alogrithm 
classified 84% correctly at the sequence level.

The FERA organizers noted that the scores for 
AU were well above baseline but still far from per-
fect. Without knowing the F1 score for interobserver 
agreement (see Section 2.2, above), it is difficult to 
know to what extent this score may have been atten-
uated by measurement error in the ground truth 
AU. An additional caveat is that results were for 
a single database of rather modest size (10 trained 
actors portraying emotions). Further opportunities 
for comparative testing on spontaneous behavior 
are planned for the 3rd International Audio/Visual 
Emotion Challenge (http://sspnet.eu/avec2013/) 
(and the Emotion Recognition in the Wild 
Challenge and Workshop (EmotiW 2013) (http:// 
cs.anu.edu.au/few/emotiw.html) (Dhall, Goecke, 
Joshi, Wagner, & Gedeon, 2013). Because database 
sizes in these two tests will be larger than in FERA, 
more informed comparisons between alternative 
approaches will be possible.

In comparing AU detection results within and 
between studies, AU base rate is a potential con-
found. Some AU occur more frequently than others 
within and between databases. AU 12 is relatively 
common; AU 11 or AU 16 much less so. With 
exception of area under the ROC, performance 
metrics are confounded by such differences (Jeni, 
Cohn,  & De la Torre, 2013). A  classifier that 
appears to perform better for one AU than another 
may do so because of differences in base rate 
between them. Skew-normalized metrics have been 
proposed to address this problem (Jeni et al., 2013). 
When metrics are skew-normalized, detection met-
rics are independent of differences in base rate and 
thus directly comparable.

Intensity
Message-based and dimensional measurement 

may be performed on both ordinal and continu-
ous scales. Sign-based measurement, such as FACS, 
conventionally use an ordinal scale (0 to 3 points in 
the 1978 edition of FACS; 0 to 5 in the 2002 edi-
tion). Action unit intensity has been of particular 
interest. AU unfold over time. Initial efforts focused 
on estimating their maximum, or “peak,” intensity 
(Bartlett et al., 2006). More recent work has sought 
to measure intensity for each video frame (Girard, 
2013; Mavadati et  al., 2013; Messinger, Mahoor, 
Chow, & Cohn, 2009).

Early work suggested that AU intensity could be 
estimated by computing distance from the hyper-
plane of a binary classifier. For posed action units 
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in Cohn-Kanade, distance from the hyperplane and 
(manually coded) AU intensity were moderately 
correlated for maximum AU intensity (r  =  .60) 
(Bartlett et al., 2006b). Theory and some data, how-
ever, suggest that distance from the hyperplane may 
be a poor proxy for intensity in spontaneous facial 
behavior. In RU-FACS, in which facial expression is 
unposed (also referred to as spontaneous), the cor-
relation between distance from the hyperplane and 
AU intensity for maximum intensity was r = .35 or 
less (Bartlett et al., 2006a). Yang, Liu, and Metaxas 
(2009) proposed that supervised training from 
intensity-labeled training data is a better option 
than training from distance from the hyperplane of 
a binary classifier.

Recent findings in AU-coded spontaneous 
facial expression support this hypothesis. All esti-
mated intensity on a frame-by-frame basis, which 
is more challenging than measuring AU intensity 
only at its maximum. In the DISFA database, 
intraclass correlation (ICC) between manual 
and automatic coding of intensity (0 to 5 ordi-
nal scale) was 0.77 for Gabor features (Mavadati 
et al., 2013). Using support vector regression in 
the UNBC Pain Archive, Kaltwang and colleagues 
(Kaltwang, Rudovic, & Pantic, 2012) achieved a 
correlation of about 0.5. In the BP4D database, a 
multiclass SVM achieved an ICC of 0.92 for AU 
12 intensity (Girard, 2013), far greater than what 
was achieved using distance from the hyperplane 
of a binary SVM. These findings suggest that for 
spontaneous facial expression at the frame level, 
it is essential to train on intensity-coded AU and 
a classifier that directly measures intensity (e.g., 
multiclass SVM or support vector regression).

Physical Pain
Pain assessment and management are impor-

tant across a wide range of disorders and 
treatment interventions. Pain measurement is fun-
damentally subjective and is typically measured by 
patient self-report, which has notable limitations. 
Self-report is idiosyncratic; susceptible to sugges-
tion, impression management, and deception; 
and lacks utility with young children, individu-
als with certain types of neurological impairment, 
many patients in postoperative care or transient 
states of consciousness, and those with severe dis-
orders requiring assisted breathing, among other 
conditions.

Using behavioral measures, pain researchers 
have made significant progress toward identifying 
reliable and valid facial indicators of pain. In these 

studies pain is widely characterized by brow lower-
ing (AU 4), orbital tightening (AU 6 and 7), eye 
closure (AU 43), nose wrinkling, and lip raise (AU 
9 and 10) (Prkachin & Solomon, 2008). This devel-
opment led investigators from the affective com-
puting community to ask whether pain and pain 
intensity could be detected automatically. Several 
groups working on different datasets have found 
the answer to be yes. Littlewort and colleagues 
(Littlewort, Bartlett, & Lee) discriminated between 
actual and feigned pain. Hammal and Kunz (2012) 
discriminated pain from the six basic facial expres-
sions and neutral. We and others detected occur-
rence and intensity of shoulder pain in a clinical 
sample (Ashraf et  al., 2009; Hammal  & Cohn, 
2012; Kaltwang et al., 2012; Lucey, Cohn, Howlett, 
Lucey, & Sridharan, 2011).

From these studies, two findings that have 
more general implications emerged. One, pain 
could be detected with comparable accuracy 
whether features were fed directly to a classifier 
or by a two-step classification in which action 
units were first detected and AU then were input 
to a classifier to detect pain. The comparabil-
ity of results suggests that the AU recognition 
step may be unnecessary when detecting holistic 
expressions, such as pain. Two, good results could 
be achieved even when training and testing on 
coarse (sequence level) ground truth in place of 
frame-by-frame behavioral coding (Ashraf et  al., 
2009). Future research will be needed to test these 
suggestions.

Depression and Psychological Distress
Diagnosis and assessment of symptom severity 

in psychopathology are almost entirely informed by 
what patients, their families, or caregivers report. 
Standardized procedures for incorporating facial 
and related nonverbal expression are lacking. This 
is especially salient for depression, for which there 
are strong indications that facial expression and 
other nonverbal communication may be power-
ful indicators of disorder severity and response to 
treatment. In comparison with nondepressed indi-
viduals, depressed individuals have been observed 
to look less at conversation partners, gesture less, 
show fewer Duchenne smiles, more smile sup-
pressor movements, and less facial animation. 
Human-observer based findings such as these have 
now been replicated using automated analyses of 
facial and multimodal expression (Joshi, Dhall, 
Goecke, Breakspear,  & Parker, 2012; Scherer 
et al., 2013). An exciting implication is that facial 
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expression could prove useful for screening efforts 
in mental health.

To investigate possible functions of depression, 
we (Girard et al., 2014)  recorded serial interviews 
over multiple weeks in a clinical sample that was 
undergoing treatment for major depressive disorder. 
We found high congruence between automated and 
manual measurement of facial expression in testing 
hypotheses about change over time in depression 
severity.

The results provided theoretical support for 
the hypothesis that depression functions to reduce 
social risk. When symptoms were highest, subjects 
showed fewer displays intended to seek interper-
sonal engagement (i.e., less smiling as well as fewer 
sadness displays) and more displays that commu-
nicate rejection of others (i.e., disgust and con-
tempt). These findings underscore the importance 
of accounting for individual differences (All subjects 
were compared with themselves over the course of 
depressive disorder); provide further evidence in 
support of AFA’s readiness for hypothesis testing 
about psychological mechanisms; and suggest that 
automated measurement may be useful in detect-
ing recovery and relapse as well as in contributing 
to public health efforts to screen for depression and 
psychological distress.

Deception Detection
Theory and some data suggest that deception 

and hostile intent can be inferred in part from facial 
expression (Ekman, 2009). The RU-FACS database 
(Bartlett et al., 2006a), which has been extensively 
used for AU detection, was originally collected for 
the purpose of learning to detect deception. While 
no deception results to our knowledge have yet been 
reported, others using different databases have real-
ized some success in detecting deception from facial 
expression and other modalities. Metaxas, Burgoon, 
and their colleagues (Michael, Dilsizian, Metaxas, & 
Burgoon, 2010; Yu et al., 2013) proposed an auto-
mated approach that uses head motion, facial 
expression, and body motion to detect deception. 
Tsiamyrtzis (2006) and others achieved close to 
90% accuracy using thermal cameras to image the 
face (Tsiamyrtzis et al.). Further progress in this area 
will require ecologically valid training and testing 
data. Too often, laboratory studies of deception 
have lacked verisimilatude or failed to include the 
kinds of people most likely to attempt deception or 
hostile actions. While the need for good data is well 
recognized, barriers to its use have been difficult 
to overcome. Recent work in deception detection 

was presented at FG 2013: Visions on Deception 
and Non-cooperation Workshop (http://hmi.
ewi. utwente.nl/vdnc-workshop/) (Vinciarelli, 
Nijholt, & Aghajan. 2013).

Interpersonal Coordination
Facial expression of emotion most often occurs 

in an interpersonal context. Breakthroughs in auto-
mated facial expression analysis make possible to 
model patterns of interpersonal coordination in this 
context. With Messinger and colleagues (Hammal, 
Cohn, & Messinger, 2013; Messinger et al., 2009), 
we modeled mother and infant synchrony in action 
unit intensity and head motion. For both action 
unit intensity and head motion we found strong 
evidence of synchrony with frequent changes in 
phase, or direction of influence, between mother 
and infant. Figure 10.5 shows an example for 
mother and infant head nod amplitude. A  related 
example for mother-infant action unit intensity is 
presented in Chapter 42 of this volume.

The pattern of association we observed for head 
motion and action units between mothers and 
infants was nonstationary with frequent changes 
in which partner is leading the other. Hammal 
and Cohn (2013) found similar nonstationarity in 
the head pose coordination of distressed intimate 
adults. Head amplitude and velocity for pitch (nod) 
and yaw (turn) was strongly correlated between 
them, with alternating periods of instability (low 
correlation) followed by brief stability in which one 
or the other partner led the other. Until recently, 
most research in affective computing has focused 
on individuals. Attention to temporal coordination 
expands the scope of affective computing and has 
implications for robot-human communication as 
well. To achieve more human like capabilities and 
make robot-human interaction feel more natural, 
designers might broaden their attention to consider 
the dynamics of communicative behavior.

Expression Transfer
Many approaches to automated face analysis 

are invertible. That is, their parameters can be used 
to synthesize images that closely resemble or are 
nearly identical to the originals. This capability 
makes possible expression transfer from an image 
of one person’s face to that of another (Theobald & 
Cohn, 2009). Theobald, Matthews, and their col-
leagues developed an early prototype for expres-
sion transfer using AAM (Theobald, Bangham, 
Matthews,  & Cawley, 2004). This was followed 
by a real-time system implemented over an 
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audiovisual link in which naïve participants inter-
acted with realistic avatars animated by an actual 
person (Theobald et  al., 2009) (Figure 10.6). 
Similar though less realistic approaches have been 
developed using CLM (Saragih, Lucey, & Cohn, 
2011b). Expression transfer has been applied in 
computational behavioral science and media arts.

EXPRESSION TRANSFER IN COMPUTATIONAL 
BEHAVIORAL SCIENCE

In conversation, expectations about another per-
son’s identity are closely involved with his or her 
actions. Even over the telephone, when visual infor-
mation is unavailable, we make inferences from the 
sound of the voice about the other person’s gender, 
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Fig. 10.5 Top panel: Windowed cross-correlation within a 130-frame sliding window between mother and infant head-pitch ampli-
tude. The area above the midline (Lag > 0) represents the relative magnitude of correlations for which the mother’s head amplitude 
predicts her infant’s; the corresponding area below the midline (Lag < 0) represents the converse. The midline (Lag = 0) indicates that 
both partners are changing their head amplitudes at the same time. Positive correlations (red) convey that the head amplitudes of both 
partners are changing in the same way (i.e., increasing together or decreasing together). Negative correlation (blue) conveys that the head 
amplitudes of both partners are changing in the opposite way (e.g., head amplitude of one partner increases as that of the other partner 
decreases). Note that the direction of the correlations changes dynamically over time. Bottom panel: Peaks (r > .40) in the windowed 
cross-correlations as found using an algorithm proposed by Boker (Boker, Rotondo, Xu, & King, 2002).

(a) (b)

(c) (d)

Fig. 10.6 Illustration of video-conference paradigm. Clockwise from upper left: Video of the source person; AAM tracking of the 
source person; their partner; and the AAM reconstruction that is viewed by the partner.
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age, and background. To what extent do we respond 
to whom we think we are talking rather than to 
the dynamics of their behavior? This question had 
been unanswered because it is difficult to separately 
manipulate expectations about a person’s identity 
from their actions. An individual has a characteristic 
and unified appearance, head motions, facial expres-
sions, and vocal inflection. For this reason, most 
studies of person perception and social expectation 
are naturalistic or manipulations in which behavior 
is artificially scripted and acted. But scripted and 
natural conversations have different dynamics. AFA 
provides a way out of this dilemma. For the first 
time, static and dynamic cues become separable 
(Boker et al., 2011).

Pairs of participants had conversations in a 
video-conference paradigm (Figure 10.6). One was 
a confederate for whom an AAM had previously 
been trained. Unbeknownst to the other partici-
pant, a resynthetized avatar was substituted for the 
live video of the confederate (Figure 10.7). The ava-
tar had the face of the confederate or another person 
of same or opposite sex. All were animated by the 
actual motion parameters of the confederate.

The apparent identity and gender of a confeder-
ate was randomly assigned and the confederate was 
blind to the identity and gender that they appeared 

to have in any particular conversation. The manipu-
lation was believable in that, when given an oppor-
tunity to guess the manipulation at the end of 
experiment, none of the naïve participants was able 
to do so. Significantly, the amplitude and velocity of 
head movements were influenced by the dynamics 
(head and facial movement and vocal timing) but 
not the perceived gender of the partner.

These findings suggest that gender-based social 
expectations are unlikely to be the source of reported 
gender differences in head nodding between part-
ners. Although men and women adapt to each 
other’s head movement amplitudes it appears that 
adaptation may simply be a case of people (indepen-
dent of gender) adapting to each other’s head move-
ment amplitude. A  shared equilibrium is formed 
when two people interact.

EXPRESSION TRANSFER IN MEDIA ARTS
Expression transfer has been widely used in the 

entertainment industry where there is an increasing 
synnergy between computer vision and computer 
graphics. Well-known examples in film include 
Avatar and the Hobbit (http://www.iainm.com/ 
iainm/Home.html). Emotion transfer has made sig-
nificant inroads in gaming and other applications 
as well. Sony’s Everquest II, as but one example, 

      

      

Fig. 10.7 Applying expressions of a male to the appearances of other persons. In (a), the avatar has the appearance of the person whose 
motions were tracked. In (b) and (c), the avatars have the same-sex appearance. Parts (d) through (f ) show avatars with opposite-sex 
appearances.
Source: Images courtesy of the American Psychological Association.
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enables users to animate avatars in multiperson 
games (Hutchings, 2012).

Other Applications
DISCRIMINATING BETWEEN SUBTLE 
DIFFERENCES IN RELATED EXPRESSIONS

Most efforts to detect emotion expressions 
have focused on the basic emotions defined by 
Ekman. Others have discriminated between posed 
and unposed smiles (Cohn  & Schmidt, 2004; 
Valstar, Gunes,  & Pantic, 2007) and between 
smiles of delight and actual and feigned frustra-
tion (Hoque  & Picard, 2011). Ambadar and col-
leagues (2009) found that smiles perceived as polite, 
embarrassed, or amused varied in both the occur-
rence of specific facial actions and in their timing. 
Whitehill and colleagues (Whitehill, Littlewort, 
Fasel, Bartlett,  & Movellan) developed an auto-
matic smile detector based on appearance features. 
Gratch (Gratch, 2013) used automated analysis of 
smiles and smile controls in testing the hypothesis 
of Hess that smiling is determined by both social 
context and appraisal. Together, these studies high-
light the potential of automated measurement to 
make fine-grained discrimination among emotion 
signals.

MARKETING
Until a few years ago, self-report and focus 

groups were the primary means of gauging reac-
tion to new products. With the advent of AFA, 
more revealing approaches have become possible. 
Using web-cam technology, companies are able to 
record thousands of viewers in dozens of countries 
and proces their facial expression to infer liking or 
disliking of commercials and products (McDuff, 
Kaliouby,  & Picard, 2013; Szirtes, Szolgay, Utasi, 
Takacs, Petras, & Fodor, 2013). The methodology is 
well suited to the current state of the art. Participants 
are seated in front of a monitor, which limits out-of-
plane head motion and facial expression is detected 
in part by knowledge of context (i.e., strong priors).

DROWSY-DRIVER DETECTION
Falling asleep while driving contributes to as 

many as 15% of fatal crashes. A number of systems 
to detect drowsy driving and take preventive actions 
have been proposed and are in various stages of 
development. Using either normal or infrared cam-
eras, some monitor eyeblink patterns (Danisman, 
Bilasco, Djeraba, & Ihaddadene, 2010), while oth-
ers incorporate additional behaviors, such as yawn-
ing and face touching (Matsuo  & Khiat, 2012; 

Vural et  al., 2010), head movements (Lee, Oh, 
Heo, & Hahn, 2008), and pupil detection (Deng, 
Xiong, Zhou, Gan, & Deng, 2010).

INSTRUCTIONAL TECHNOLOGY
Interest, confusion, rapport, frustration, and 

other emotion and cognitive-emotional states are 
important process variables in the classroom and 
in tutoring (Craig, D’Mello, Witherspoon,  & 
Graesser, 2007). Until recently, they could be mea-
sured reliably only offline, which limited their use-
fulness. Recent work by Whitehill and Littlewort 
(Whitehill et al., 2011) evaluates the feasibility of 
realtime recognition. Initial results are promising. 
In the course of demonstrating feasibility, they 
found that in some contexts smiles are indica-
tive of frustration or embarrassment rather than 
achievement. This finding suggests that automated 
methods have sufficient precision to distinguish in 
realtime between closely related facial actions that 
signal student cognitive-emotional states.

User in the Loop
While fully automated systems are desir-

able, significant advantages exist in systems that 
integrate user and machine input. With respect 
to tracking, person-specific AAMs and manu-
ally initialized head tracking are two examples. 
Person-specific AAMs that have been trained 
using manually labeled video achieve higher preci-
sion than fully automatic generic AAMs or CLMs. 
Some head trackers (Jang  & Kanade, 2008) 
achieve higher precision when users first manually 
initialize them on one or more frames. User-in-
the-loop approaches have been applied in several 
studies to reveal the dynamics of different types 
smiles. In an early application, (Cohn & Schmidt, 
2004; Schmidt, Ambadar, Cohn, & Reed, 2006) 
and also (Valstar, Pantic, Ambadar,  & Cohn, 
2006) found that manually coded spontaneous 
and deliberate smiles systematically differed in 
their timing as measured using AFA. Extending 
this approach, (Ambadar et al., 2009) used a com-
bination of manual FACS coding and automated 
measurement to discover variation between smiles 
perceived as embarrassed, amused, and polite. 
FACS coders first detected the onset and offset of 
smiles (AU 12 along with AU 6 and smile con-
trols, e.g., AU 14). Amplitude and velocity then 
were measured using AFA. They found that the 
three types of smiles systematically varied in both 
shape and timing. These findings would not have 
been possible with only manual measurement.
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Manual FACS coding is highly labor inten-
sive. Several groups have explored the potential of 
AFA to reduce that burden (Simon, De la Torre, 
Ambadar,  & Cohn, 2011; Zhang, Tong,  & Ji, 
2008). In one, referred to as Fast-FACS, manual 
FACS coders first detect AU peaks. An algorithm 
then automatically detects their onsets and offsets. 
Simon, De la Torre,  & Cohn (2011) found that 
Fast-FACS achieved more than 50% reduction in 
the time required for manual FACS coding. Zhang, 
Tong, and Ji (Zhang et  al., 2008) developed an 
alternative approach that uses active learning. The 
system performs initial labeling automatically; a 
FACS coder manualy makes any corrections that 
are needed; and the result is fed back to the system 
to further train the classifier. In this way, system 
performance is iteratively improved with a manual 
FACS coder in the loop. In other work, Hammal 
(Hammal, 2011) proposed an automatic method 
for successive detection of onsets, apexes, and offsets 
of consecutive facial expressions. All of these efforts 
combine manual and automated methods with the 
aim of achieving synergistic increases in efficiency.

Discussion
Automated facial analysis and synthesis is pro-

gressing rapidly with numerous initial applications 
in affective computing. Its vitality is evident in the 
breadth of approaches (in types of features, dimen-
sionality reduction, and classifiers) and emerging 
uses (e.g., AU, valence, pain intensity, depression or 
stress, marketing, and expression transfer). Even as 
new applications come online, open research ques-
tions remain.

Challenges include more robust real-time sys-
tems for face acquisition, facial data extraction and 
representation, and facial expression recognition. 
Most systems perform within a range of only 15 to 
20 degrees of frontal pose. Other challenges include 
illumination, occlusion, subtle facial expressions, 
and individual differences in subjects. Current sys-
tems are limited to indoors. Systems that would 
work in outdoor environments or with dynamic 
changes in illumination would greatly expand the 
range of possible applications. Occlusion is a prob-
lem in any context. Self-occlusion from head turns 
or face touching and occlusion by other persons 
passing in front of the camera are common. In a 
three-person social interaction in which partici-
pants have drinks, occlusion occurred about 10% 
of the time (Cohn & Sayette, 2010). Occlusion can 
spoil tracking, especially for holistic methods such 
as AAM and accuracy of AU detection. Approaches 

to recovery of tracking following occlusion and esti-
mation of facial actions in presence of occlusion are 
research topics.

Zhu, Ramanan, and their colleagues (Zhu, 
Vondrick, Ramanan,  & Fowlkes, 2012) in object 
recognition raised the critical question: Do we need 
better features and classifiers or more data? The 
question applies as well to expression detection. 
Because most datasets to date are relatively small, 
the answer so far is unknown. The FERA GEMEP 
corpus (Valstar, Mehu, Jiang, Maja Pantic,  & 
Scherer, 2012) consisted of emotion portrayals 
from only 10 actors. The widely used Cohn-Kanade 
(Kanade et  al., 2000; Lucey, Wang, Saragih,  & 
Cohn, 2010) and MMI (Pantic et  al., 2005) cor-
puses have more subjects but relatively brief behav-
ioral samples from each. To what extent is classifier 
performance attenuated by the relative paucity of 
training data? Humans are pre-adapted to perceive 
faces and facial expressions (i.e. strong priors) and 
have thousands of hours or more of experience in 
that task. To achieve humanlike accuracy, both 
access to big data and learning approaches that 
can scale to it may be necessary. Initial evidence 
from object recognition (Zhu et al., 2012), gesture 
recognition (Sutton, 2011), and smile detection 
(Whitehill et al., 2009) suggest that datasets orders 
of magnitude larger than those available to date will 
be needed to achieve optimal AFA.

As AFA is increasingly applied to real-world 
problems, the ability to apply trackers and classi-
fiers across different contexts will become increas-
ingly important. Success will require solutions to 
multiple sources of database specific biases. For one, 
approaches that appeal to domain-specific knowl-
edge may transfer poorly to domains in which 
that knowledge fails to apply. Consider the HMM 
approach of Li and colleagues (Li et  al., 2013). 
They improved upon detection of AU 12 (oblique 
lip-corner raise) and AU 15 (lip corners pulled 
down) by incorporating a constraint that these AU 
are mutually inhibiting. While this constraint may 
apply in the posed and enacted portrayals of amuse-
ment that they considered, in other contexts this 
dependency may be troublesome. In situations in 
which embarrassment (Keltner  & Buswell, 1997) 
or depressed mood (Girard et al., 2014) are likely, 
AU 12 and AU 15 have been found to be positively 
correlated. AU 15 is a “smile control,” defined as an 
action that counteracts the upward pull of AU 12. 
In both embarrassment and depression, occurrence 
of AU 12 increases the likelihood of AU 15. Use of 
HMM to encode spatial and temporal dependencies 
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requires thoughtful application. Context (watch-
ing amusing videos versus clinical interview with 
depressed patients) may be especially important for 
HMM approaches.

Individual differences among persons affect both 
feature extraction and learning. Facial geometry 
and appearance change markedly over the course 
of development (Bruce  & Young, 1998). Infants 
have larger eyes, greater fatty tissue in their cheeks, 
larger heads relative to their bodies, and smoother 
skin than adults. In adulthood, permanent lines 
and wrinkles become more common, and changes 
in fatty tissue and cartilage alter appearance. Large 
differences exist both between and within males 
and females and different ethnic groups. One of 
the most challenging factors may be skin color. 
Experience suggests that face tracking more often 
fails in persons that have very dark skin. Use of 
depth cameras, such as the Leap (Leap Motion) 
and Microsoft Kinect (Sutton, 2011), or infrared 
cameras (Buddharaju et  al., 2005), may sidestep 
this problem. Other individual differences include 
characteristic patterns of emotion expression. Facial 
expression encodes person identity (Cohn, Schmidt, 
Gross, & Ekman, 2002; Peleg et al., 2006).

Individual differences affect learning, as well. 
Person-specific classifiers perform better than ones 
that are generic. Recent work by Chu and colleagues 
(Chu, Torre,  & Cohn, 2013) proposed a method 
to narrow the distance between person-specific 
and generic classifiers. Their approach, referred to 
as a selective transfer machine (STM), simultane-
ously learns the parameters of a classifier and selec-
tively minimizes the mismatch between training 
and test distributions. By attenuating the influence 
of inherent biases in appearance, STM achieved 
results that surpass nonpersonalized generic clas-
sifiers and approach the performance of classifiers 
that have been trained for individual persons (i.e., 
person-dependent classifiers).

At present taxonomies of facial expression are 
based on observer-based schemes, such as FACS. 
Consequently approaches to automatic facial 
expression recognition are dependent on access 
to corpuses of well-labeled video. An open ques-
tion in facial analysis is whether facial actions can 
be learned directly from video in an unsupervised 
manner. That is, can the taxonomy be learned 
directly from video? And unlike FACS and similar 
systems that were initially developed to label static 
expressions, can we learn dynamic trajectories of 
facial actions? In our preliminary findings on unsu-
pervised learning using RU-FACS database (Zhou, 

De la Torre, & Cohn, 2010), moderate agreement 
between facial actions identified by unsupervised 
analysis of face dynamics and FACS approached 
the level of agreement that has been found between 
independent FACS coders. These findings suggest 
that unsupervised learning of facial expression is 
a promising alternative to supervised learning of 
FACS-based actions.

Because unsupervised learning is fully empiri-
cal, it potentially can identify regularities in video 
that have not been anticipated by the top-down 
approaches such as FACS. New discoveries become 
possible. Recent efforts by Guerra-Filho and 
Aloimonos (2007) to develop vocabularies and 
grammars of human actions suggest that this may 
be a fruitful approach.

Facial expression is one of several modes of 
nonverbal communication. The contribution of 
different modalities may well vary with context. 
In mother-infant interaction, touch appears to be 
especially important and tightly integrated with 
facial expression and head motion (Messinger 
et al., 2009). In depression, vocal prosody is highly 
related to severity of symptoms. We found that over 
60% of the variance in depression severity could 
be accounted for by vocal prosody. Multimodal 
approaches that combine face, body language, and 
vocal prosody represent upcoming areas of research. 
Interdisciplinary efforts will be needed to progress 
in this direction.

While much basic research still is needed, AFA is 
becoming sufficiently mature to address real-world 
problems in behavioral science, biomedicine, affec-
tive computing, and entertainment. The range and 
depth of applications is just beginning.
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