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Abstract and Keywords

This chapter is from the forthcoming The Oxford Handbook of Affective Computing edited 
by Rafael Calvo, Sidney K. D'Mello, Jonathan Gratch, and Arvid Kappas. Speech is a key 
communication modality for humans to encode emotion. In this chapter, we address three 
main aspects of speech in affective computing: emotional speech production, acoustic 
feature extraction for emotion analysis, and the design of a speech-based emotion 
recognizer. Specifically we discuss the current understanding of the interplay of speech 
production vocal organs during expressive speech, extracting informative acoustic 
features from speech recording waveforms, and the engineering design of automatic 
emotion recognizers using speech acoustic-based features. The latter includes a 
discussion of emotion labeling for generating ground truth references, acoustic feature 
normalization for controlling signal variability, and choice of computational frameworks 
for emotion recognition. Finally, we present some open challenges and applications of a 
robust emotion recognizer.

Keywords: emotional speech production, acoustic feature extraction for emotion analysis, computational 
frameworks for emotion recognition, acoustic feature normalization

Introduction
Speech is a natural and rich communication medium for humans to interact with one 
another. It encodes both linguistic intent and paralinguistic information (e.g., emotion, 
age, gender, etc.). In this chapter, we focus our discussion on this unique human behavior 
modality, speech, in the context of affective computing, in order to measure and quantify 
the internal emotional state of a person by observing external affective and expressive 
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behaviors. The specific focus is on describing the emotional encoding process in speech 
production—that is,the state-of-the-art computational approaches and future directions 
and applications of computing affect from speech signals.

The human speech signal is a result of complex and integrative movement of various 
speech production organs including the vocal chords, larynx, pharynx, tongue, velum, and 
jaw. With the availability of instrumental technologies—including ultrasound, x-ray 
microbeam, electromagnetic articulography (EMA), and (real time) magnetic resonance 
imaging (MRI)—researchers have begun to investigate various scientific questions in 
order to bring insights into the emotional speech production mechanisms. In this chapter, 
we start by providing some empirical details of how emotional information is encoded at 
the speech production level (Affective Speech Production, p. 171).

Research in understanding the production mechanisms of emotional speech is still 
evolving. However, empirical computational approaches for extracting acoustic signal 
features that characterize emotional speech have emerged from scientific advances both 
in emotion perception and speech signal analysis. In Computation of Affective Speech 
Features (p. 173), we summarize the set of features of vocal cues that have become a de 
facto standard, often termed as the speech low-level descriptors (LLDs), for automatic 
emotion recognition.

In Affect Recognition and Modeling Using Speech (p. 175), we describe three 
essential components of a proper design of an automatic emotion recognition system 
using speech-acoustic features: definition and implementation of emotion labeling that 
serve as the basis for computing (Emotion Labels for Computing, p. 175), acoustic feature 
normalization that helps address issues related to signal variability due to factors other 
than the core emotions being targeted (Robust Acoustic Feature Normalization, p. 176), 
and machine learning algorithms that offer the means for achieving the desired modeling 
goal (Computational Framework for Emotion Recognition, p. 177).

Emotion labeling (or annotation) typically provides a ground truth for training and 
evaluating emotion recognition systems. The specific choice of representations 
(descriptors) used for computing depends on the theoretical underpinnings and the 
application goal. In addition to traditionally used categorical (happy, angry, sad, and 
neutral) and dimensional labels (of arousal, valence, and dominance), researchers have 
made advances in computationally integrating behavior descriptors in the 
characterization of emotion. These advancements can better handle the ambiguity in the 
definition of emotions compared with traditional labeling schemes (Emotion Labels for 
Computing, p. 175).

Normalization of acoustic features aims to minimize unwanted variability due to sources 
other than the construct (i.e., emotion) being modeled. The speech signal is influenced by 
numerous factors including what is being said (linguistic content), who is saying it 
(speaker identity, age, gender), how the signal is being captured and transmitted 
(telephone, cellphone, microphone types), and the context in which the speech signal is 
generated (room acoustics and environment effects including background noise). In 

(p. 171) 
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Robust Acoustic Feature Normalization, p. 176, we discuss several techniques for feature 
normalization that ensure that the features contain more information about emotion and 
less about other nonemotional confounding variability.

Machine learning algorithms are used to train the recognition system to learn a mapping 
between the extracted speech features and the given target emotion labels. Many 
standard pattern recognition techniques used in other engineering applications have 
shown to be appropriate for emotion recognition system with speech features. We also 
describe other recent state-of-the-art emotion recognition frameworks that have been 
proposed to take into account of the various contextual influences in the expression of 
emotions in speech, including the nature of human interactions for obtaining improved 
emotion recognition accuracies (Computational Framework for Emotion Recognition, p. 
177).

There remain many challenges that require further investigation and future research; 
however, potential engineering applications, including new generation of human-machine 
interfaces, have made the development of robust emotion-sensing technology essential. A 
recent research endeavor of the rapidly growing field of behavior signal processing (BSP) 
(Narayanan & Georgiou, 2013) has demonstrated that development can provide analytical 
tools for advancing behavioral analyses desired by domain experts across a wide range of 
disciplines, especially in fields related to mental health (Speech in Affective Computing: 
Future Works and Applications, p. 180).

Affective Speech Production
Often, speech production research is conducted under the “source filter” theory (Fant, 
1970), which views the speech production system as consisting of two components: 
source activities, which generate airflow, and vocal tract shaping filtering, which 
modulates the airflow. Although laryngeal behavior is not fully independent of 
supralaryngeal elements, the modulation of vocal folds, or vocal cords, in the larynx is the 
primary control of source activity. This modulation results in the variation of pitch (the 
frequency of vocal fold vibration), intensity (the pressure of the airflow), and voice quality 
dynamics (degrees of aperiodicity in the resulting glottal cycle). Note that the filter 
affects the variation of intensity and voice quality, too. The air stream passed through the 
vocal fold is modulated by articulatory controls of tongue, velum, lips, and jaw in the 
vocal tract, resulting in dynamic spectral changes in the speech signal. The interaction 
and interplay between voice source activities and articulatory controls also contribute to 
the speech sound modulation.

Most emotional speech studies have focused on the acoustic characteristics of the 
resulting speech signal level—such as the underlying prosodic variation, spectral shape, 
and voice quality change—across various time scales rather than considering the 
underlying production mechanisms directly. In order to understand complex acoustic 
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structure and further the human communication process that involves information 
encoding and decoding, a deeper understanding of orchestrated articulatory activity is 
needed. In this section, we describe scientific findings of emotional speech production in 
terms of articulatory mechanisms, vocal folds actions, and the interplay between voice 
source and articulatory kinematics.

Articulatory Mechanisms in Emotionally Expressive Speech

The number of studies on articulatory mechanisms of expressive speech is limited 
compared with studies in the acoustic domain presumably due to the difficulties in 
obtaining direct articulatory data. Contemporary instrumental methods for collecting 
articulatory data include ultrasound (Stone, 2005), x-ray microbeam (Fujimura, Kiritani, 
& Ishida, 1973), electromagnetic articulography (EMA) (Perkell et al., 1992), and (real 
time) magnetic resonance imaging (MRI) (Narayanan, Alwan, & Haker, 1995; Narayanan, 
Nayak, Lee, Sethy, & Byrd, 2004). While it is often challenging for subjects to express 
emotions naturally in these data collection environments, there have been some 
systematic studies with these data collection technologies showing that articulatory 
patterns of acted emotional speech are different from neutral (nonemotional) speech.

Lee et al. analyzed the 
surface articulatory 
motions by using 
emotional speech data for 
four acted emotions 
(angry, happy, sad, and 
neutral) collected with 
EMA (Lee, Yildirim, 
Kazemzadeh, & 
Narayanan, 2005). The 
study showed that that the 
speech production of 

emotional speech is associated more with peripheral articulatory motions than that of 
neutral speech. For example, the tongue tip (TT), jaw, and lip positioning are more 
advanced (extreme) in emotional speech than in neutral speech (Figure 12.1). 
Furthermore, the results of multiple simple discriminant analyses treating the four 
emotion categories as dependent variable showed that the classification recalls of using 
articulatory features are higher than those of acoustic features. The result implied that 
the articulatory features carry valuable emotion-dependent information.

Lee et al. also found that there was more prominent usage of the pharyngeal region for 
anger than neutral, sadness and happiness in emotional speech (Lee, Bresch, Adams, 
Kazemzadeh, & Narayanan, 2006). It was further observed that happiness is associated 
with greater laryngeal elevation than anger, neutrality, and sadness. This emotional 
variation of the larynx was related to wider pitch and second formant (F2) ranges and 

Click to view larger

Fig. 12.1  Tongue tip horizontal (left) and vertical 
(right) movement velocity plots of four peripheral 
vowels as a function of emotion.

Source: Lee, Yildirim, Kazemzadeh, and Narayanan 
(2005).

(p. 172) 
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higher third formant frequencies (F3) in the acoustic signal. It was also reported that the 
variation of articulatory positions and speed as well as pitch and energy are significantly 
associated with perceptual strength of emotion in general (Kim, Lee, & Narayanan, 
2011).

Most of the emotional speech production studies rely on acted emotion recorded using 
actors/actresses as subjects. Although acted emotional speech could be different from 
spontaneous emotional speech in terms of articulatory positions (Erickson, Menezes, & 
Fujino, 2004), using acted emotional expression remains one of the most effective 
methods for collecting articulatory data in order to carry out studies in emotional speech 
production. A certain degree of ecological validity is achieved by following consistent 
experimental techniques such as those expressed by Busso and Narayanan (Busso & 
Narayanan, 2008).

Vocal Fold Controls in Emotionally Expressive Speech

Vocal fold controls or, more precisely, the controls of the tension and length of vocal fold 
muscles, enable major modulations of voice source activities. Voice source is defined as 
the airflow passing through the glottis in the larynx. The configuration of voice source is 
determined by the actions of opening and closing of vocal folds with different 
levels of tensions in the laryngeal muscles. During speech production, the voice source is 
filtered by supralaryngeal vocal organs. Since the speech waveform is the result of 
complex modulations (filtering) of glottal airflow in the supraglottal structure, it is 
difficult to recover the glottal airflow information from the speech output acoustics. One 
of the most popular techniques to recover voice source is through inverse filtering; 
however, it remains challenging to estimate the voice source information from natural 
spontaneous speech even with little noise and distortion.

Despite these difficulties, there are interesting studies reporting on paralinguistic aspects 
of voice source activities in the domain of emotional speech production. For example, for 
sustained /aa/, Murphy et al. showed that the estimated contacting quotient (i.e., contact 
time of the vocal folds divided by cycle duration) and speed quotient, or velocity of 
closure divided by velocity of opening, from the electroglottogram (EGG), are different 
among five categorical (simulated) emotions (angry, joy, neutrality, sadness, and 
tenderness) (Murphy & Laukkanen, 2009). Gobl et al. also showed that voice qualities—
such as harsh, tense, modal, breathy, whispery, creaky and lax-creaky, and combinations 
of them—are associated with affective states using synthesized speech (Gobl & Chasaide, 
2003).

Interplay Between Voice Source and Articulatory Kinematics

(p. 173) 
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Another essential source of 
emotional information in 
speech production is 
present in the interplay 
between voice source 
activities and articulatory 
kinematics. Kim et al. 
reported that angry speech 
introduces the greatest 
articulatory speed 
modulations, while pitch 
modulations were most 
prominent for happy 
speech (Kim, Lee, & 
Narayanan, 2010) (Figure 

12.2). This study 
underscores the 
complexity and the 
importance of better 
understanding the 
interplay between voice 
source behavior and 
articulatory motion in the 

analysis of emotional speech production.

Open Challenges

One of the biggest challenges and opportunities in studying emotional variation in speech 
production lies in the inter- and intraspeaker variability. Interspeaker variability includes 
heterogeneous display of emotion and differences in individual’s vocal tract structures 
(Lammert, Proctor, & Narayanan, 2013). Intraspeaker variability results from the fact 
that a speaker can express an emotion in a number of ways and is influenced by the 
context. The invariant nature of controls of speech production components still remains 
elusive, making comprehensive modeling of emotional speech challenging and largely 
open.

Computation of Affective Speech Features
As described in Affective Speech Production (p. 171), the analysis of speech production 
data suggests that a complex interaction between vocal source activities and vocal tract 
modulations likely underlies how emotional information is encoded in speech waveform. 

Click to view larger

Fig. 12. 2  Example plots of the maximum tangential 
speed of critical articulators and the maximum pitch. 
A circle indicates that Gaussian contour with 2 sigma 
standard deviation for each emotion (red-Ang, green-
Hap, black-Neu, blue-Sad). Different emotions show 
distinctive variation patterns in the articulatory 
speed dimension and the pitch dimension.

Source: Kim, Lee, and Narayanan (2010).
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While an understanding of this complex emotional speech production mechanism is 
emerging only as more research is being carried out, many studies have examined the 
relationship between the perceptual quality of emotional content and acoustic signal 
characteristics.

Bachorowski has summarized a wide range of results from various psychological 
perceptual tests indicating that humans are significantly more accurate at judging 
emotional content than merely guessing at chance level while listening to speech 
recordings (Bachorowski, 1999). Furthermore, Scherer described a comprehensive 
theoretical production-perception model of vocal communication of emotion and provided 
a detailed review on how each acoustic parameter (e.g., pitch, intensity, speech rate, etc.) 
covaries with different intensities of emotion perception (Scherer, 2003); this classic 
study was further expanded upon in the handbook for nonverbal behavior research 
focusing on the vocal expression of affect (Juslin & Scherer, 2005). These studies of the 
processing of emotional speech by humans have formed the bases for affective computing 
using speech owing to its extensive scientific grounding. They have also served as an 
initial foundation for developing engineering applications of affective computing (e.g., 
emotion recognition using speech and emotional speech synthesis).

Acoustic Feature Extraction for Emotion Recognition

Computing affect from speech signals has benefited greatly from the perceptual 
understanding and, to a smaller extent, the production details of vocal expressions and 
affect. A list of commonly used acoustic low-level descriptors (LLDs), extracted from 
speech recordings that can be used in emotion recognition tasks is given below.

Prosody-related signal measures

• Fundamental frequency (f )

• Short-term energy

• Speech rate: syllable/phoneme rate

Spectral characteristics measures

• Mel-frequency cepstral coefficients (MFCCs)

• Mel-filter bank energy coefficients (MFBs)

Voice quality–related measures

• Jitter

• Shimmer

• Harmonic-to-noise ratio

(p. 174) 

(p. 175) 
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Prosody relates to characteristics such as rhythm, stress, and intonation of speech; 
spectral characteristics are related to the harmonic/resonant structures resulting as the 
airflow is modulated by dynamic vocal tract configurations; and voice quality measures 
are related to the characteristics of vocal fold vibrations (e.g., degrees of aperiodicity in 
the resulting speech waveform).

Many publicly available toolboxes are capable of performing such acoustic feature 
computation. OpenSmile (Eyben, Wöllmer, & Schuller, 2010) is one such toolbox designed 
specifically for emotion recognition tasks; other generic audio/speech processing 
toolboxes—such as Praat (Boersma, 2001), Wavesurfer,  and Voicebox —are all capable of 
extracting relevant acoustic features.

In practice, after extracting these LLDs, researchers frequently further apply a data 
processing approach, often computed at a time-scale of 10 to 25 milliseconds, in order to 
capture the rich dynamics. The approach first involves computing various statistical 
functionals (i.e., mean, standard deviation, range, interquartile range, regression 
residuals, etc.) on these LLDs at different time scale granularities (e.g., at 0.1, 0.5, 1, and 
10 seconds, etc.). Furthermore, in order to measure the dynamics at multilevel time 
scales, statistical functional operators can also be stacked on top of each other; for 
example, one can compute the mean of pitch LLDs (i.e., fundamental frequency) for every 
0.1 second, then compute the mean of “the mean of pitch (at 0.1s)” for every 0.5 second, 
and repeat this process with increasing time scales across different statistical functional 
operators.

This data processing technique has been applied successfully in tasks such as emotion 
recognition (Lee, Mower, Busso, Lee, & Narayanan, 2011; Schuller, Arsic, Wallhoff, & 
Rigoll, 2006; Schuller, Batliner, et al., 2007), paralinguistic prediction (Bone, Li, Black, & 
Narayanan, 2012; Björn Schuller et al., 2013), and other behavioral modeling (Black et 
al., 2013; Black, Georgiou, Katsamanis, Baucom, & Narayanan, 2011). This approach can 
often result in a very high-dimensional feature vector—for example, depending on the 
length of audio segment, it can range from hundreds of features to thousands or more. 
Feature selection techniques—stand-alone (e.g., correlation-based) (Hall, 1999) and 
mutual information based (Peng, Long, & Ding, 2005) or wrapper selection techniques 
(e.g., sequential forward feature selection, sequential floating forward feature selection) 
(Jain & Zongker, 1997)—can be carried out to reduce the dimension appropriately for the 
set of emotion classes of interest.

Open Challenges

While the aforementioned data processing approach has been shown to be effective in 
various emotion prediction tasks, it remains unclear why the large number of acoustic 
LLDs work well and what aspects of emotional production-perception mechanisms are 
captured with this technique. From a computational point of view, since it is an 
exhaustive and computationally expensive approach, an efficient and reliable real-life 

1 2
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emotional recognizer built upon this approach may be impractical. Future works lie in 
designing better-informed features based on the understanding of emotional speech 
production-perception mechanisms while maintaining reliable prediction accuracies 
compared with the current approach.

Affect Recognition and Modeling Using Speech
Recognizing and tracking emotional states in human interactions based on spoken 
utterances requires a series of appropriate engineering design including the following: 
specifying an annotation scheme of appropriate emotion labels, implementing a feature 
normalization technique for robust recognition, and designing context-aware machine 
learning frameworks to model the temporal and interaction aspect of emotion evolution in 
dialogs.

Emotion Labels for Computing

Annotating (coding) data with appropriate emotion labels is a crucial first step in 
providing the basis for implementing and evaluating the computational modeling 
approaches. Traditionally, behavioral assessment of one’s emotional state can be 
done in two different ways: self-reports or perceived ratings. Self-reported emotion 
assessment instruments are designed to ask the subjects to recall his or her experience 
and memory about how he or she has felt during a particular interaction (e.g., the 
positive and negative affect schedule (PANAS) (Watson, Clark, & Tellegen, 1988). 
Perceived-ratings are often carried out by asking external (trained) observers to assign 
labels of emotion as they watch a given audiovideo recording. Tools such as ELAN 
(Wittenburg, Brugman, Russel, Klassmann, & Sloetjes, 2006) and Anvil (Kipp, 2001) are 
commonly used software for carrying out such annotations.

Many studies of emotion in behavioral science rely on self-assessment of emotional states 
to approximate the true underlying emotional states of the subject. This method of 
emotion labeling is often used to clarify the role of human affective process under 
different scientific hypotheses. In affective computing, recognizing emotion automatically 
from recorded behavioral data often adopts annotation based on perceived emotion. The 
perceived emotional states can be coded either as categorical emotional states (e.g., 
angry, happy, sad, neutral) or as dimensional representations (e.g., valence, activation, 
and dominance). This method of labeling emotion is motivated by the premise that 
automatic emotion recognition systems are often designed with an aim of recognizing 
emotions through perceiving/sensing other humans’ behaviors.

Depending on the applications, one can take an approach of labeling behavioral data with 
self-reported assessment instrument or perceived emotional states. The design of labeling 
serves as ground truth for training and testing machine learning algorithms and the 

(p. 176) 
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choice of different labeling schemes also often comes with a distinct interpretation of 
whether the model is capturing the underlying human affective production or perception 
process.

Recent Advances in Emotion Labeling
Many of the traditional emotion labels can be seen as a compact representation of a large 
emotion space. Individual differences in internalizing what constitutes a specific emotion 
label often arise from the variation of an integrative process of cognitive evaluation of 
personal experience and spontaneous behavioral reaction to affective stimuli. There are 
some recent computational works aimed at advancing representations of emotions by 
incorporating signal-based behavior descriptors that are more conducive to capture the 
nonprototypical blended nature in real life (Mower et al., 2009). A recent work 
demonstrated the representation of emotion as emotion profile (i.e., a mixture of 
categorical emotional labels based on models built with visual-acoustic descriptors). This 
approach can model the inherent ambiguity and subtle nature of emotional expressions 
(Mower, Mataric, & Narayanan, 2011). Another recent representation in exploring 
computational method to better represent this large emotion space is through the use of 
natural language (Kazamzadeh, Lee, Georgiou, & Narayanan, 2011). This approach aims 
at representing any emotion word in terms of humans’ natural language either describing 
a past event, a memorable experience, or simply closely related traditionally used 
categorical emotional states.

Robust Acoustic Feature Normalization

Speech is a rich communication medium conveying emotional, lexical, cultural, and 
idiosyncratic information, among others, and it is often affected by the environment (e.g., 
noise, reverberation) and recording and signal transmission setup (e.g., microphone 
quality, sampling rate, wireless/VoIP channels, etc.).

Previous studies have indicated the importance of speaker normalization in recognizing 
paralinguistic information (Bone, Li, et al., 2012; Busso, Lee, & Narayanan, 2009; 
Rahman & Busso, 2012). For example, the structure and the size of the larynx and the 
vocal folds determine the values of the fundamental frequency (f ), which span the range 
of 50 to 250Hz for men, 120 to 500Hz for women, and even higher for children (Deller, 
Hansen, & Proakis, 2000). Therefore, although angry speech has a higher f  values than 
neutral speech (Yildirim et al., 2004), the emotional differences can be blurred by 
interspeaker differences—the difference between the mean values of the fundamental 
frequency of neutral and anger speech during spontaneous interaction (e.g., the USC 
IEMOCAP database (Busso et al., 2008) is merely a 68-Hz shift.

A common approach to normalize the data is to estimate global acoustic parameters 
across speakers and utterances. For example, the z-normalization approach transforms 
the features by subtracting their mean and dividing by their standard deviation (i.e., each 
feature will have zero mean and unit variance across all data) (Lee & Narayanan, 

0

0

(p. 177) 



Speech in Affective Computing

Page 11 of 23

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

Subscriber: University of Southern California; date: 31 October 2018

2005; Lee et al., 2011; Metallinou, Katsamanis, & Narayanan, 2012; Schuller, Rigoll, & 
Lang, 2003). The min-max approach scales the feature to a predefined range (Clavel, 
Vasilescu, Devillers, Richard, & Ehrette, 2008; Pao, Yeh, Chen, Cheng, & Lin, 2007; 
Wöllmer et al., 2008). Other nonlinear normalization approaches aim to convert the 
features’ distributions into normal distributions (Yan, Li, Cairong, & Yinhua, 2008). 
Studies have applied these approaches in speaker-dependent conditions in which the 
normalization parameters are separately estimated for each individual (Bitouk, Verma, & 
Nenkova, 2010; Le, Quénot, & Castelli, 2004; Schuller, Vlasenko, Minguez, Rigoll, & 
Wendemuth, 2007; Sethu, Ambikairajah, & Epps, 2007; Vlasenko, Schuller, Wendemuth, 
& Rigoll, 2007; Wöllmer et al., 2008).

Iterative Feature Normalization (IFN)
Busso et al. demonstrated that global normalization is not always effective in increasing 
the performance of an emotion recognition system (Busso, Metallinou, & Narayanan, 
2011). This is because applying a single normalization scheme across the entire corpus 
can adversely affect the emotional discrimination of the features (e.g., all features having 
the same mean and range across sentences). A new transformation is done by 
normalizing features by estimating the parameters of an affine transformation (e.g., z-
normalization) using only neutral (nonemotional) samples.

Multiple studies have 
consistently observed 
statistically significant 
improvements in 
performance (Busso et al., 
2009, 2011; Rahman & 
Busso, 2012) when this 
approach is separately 
applied for each subject. 
Given that neutral samples 
may not be available for 
each of the target 
individual, Busso et al. 

proposed the iterative feature normalization (IFN) scheme (Figure 12.3) (Busso et al., 
2011). This unsupervised front-end scheme implements the aforementioned ideas by 
estimating the neutral subset of the data iteratively and using this partition to estimate 
the normalization parameters. As the features are better normalized, the emotion 
detection system provides more reliable estimation, which, in turn, produces better 
normalization parameters. The IFN approach is also robust against different recording 
conditions, achieving over 19% improvement in unweighted accuracy (Rahman & Busso, 
2012).

Computational Framework for Emotion Recognition

Click to view larger

Fig. 12.3  Iterative feature normalization. This 
unsupervised front end uses an automatic emotional 
speech detector to identify neutral samples, which 
are used to estimate the normalization parameters. 
The process is iteratively repeated until the labels 
are not modified.

Source: Busso, Metallinou, and Narayanan (2011).
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Supervised machine learning algorithms are at the heart of many emotion recognition 
efforts. These machine learning algorithms map input behavioral descriptions 
(automatically derived acoustic features, Acoustic Feature Extraction for Emotion 
Recognition, p. 173) through normalization (Robust Acoustic Feature Normalization, p. 
176) to desired emotion representations (emotional labeling, Emotion Labels for 
Computing, p. 175).

An excellent survey of the various machine learning methodologies of affective modeling 
can be found in Zeng, Pantic, Roisman, and Huang (2009). If an input signal is given an 
emotion label using categorical attributes, many state-of-the-art static classifiers (e.g., 
support vector machine, decision tree, naive Bayes, hidden Markov model, etc.) can be 
implemented directly as the basic classifier. Furthermore, when an utterance is evaluated 
based on dimensional representation (i.e., valence, activation, and dominance), various 
well-established regression techniques such as ordinary/robust least square regression 
and support vector regression, can be utilized. Publicly available machine learning 
toolboxes such as WEKA (Hall et al., 2009), LIBSVM (Chang & Lin, 2011), and HTK 
(Young et al., 2006) have implemented the above-mentioned classification/
regression techniques and are widely used.

In this section, we discuss three different exemplary, recently developed novel emotion 
recognition frameworks for automatically recognizing emotional attributes from speech: 
The first is a static emotion attributes classification system based on a binary decision 
hierarchical tree structure, the second comprises two context-sensitive frameworks for 
emotion recognition in dialogues, and the third is a framework for continuous evaluation 
of emotion flow in human interactions.

Static Emotion Recognition for Single Utterance
In order to map an individual input utterance to a predefined set of categorical emotion 
classes given acoustic features, an exemplary approach is a hierarchical tree-based 
approach (Lee et al., 2011). It is a method that is loosely motivated by the appraisal 
theory of emotion (i.e., emotion is a result of an individual’s cognitive assessment), which 
is theorized to be in stages, of a stimulus. This theory inspires a computational framework 
of emotion recognition in which the method is based on first processing the clear 
perceptual differences of emotion information in the acoustic features at the top (root) of 
the tree, and highly ambiguous emotions are recognized at the leaves of the tree.

(p. 178) 
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The key idea is that the 
levels in the tree are 
designed to solve the 
easiest classification tasks 
first, allowing us to 
mitigate error propagation 
(Figure 12.4). Each node of 
a tree can be a binary 
classifier in which the top 
level is designed to classify 
between sets of emotion 
classes that are most 
easily discriminated 
through modeling acoustic 
behaviors (e.g., angry 
versus sad). The leaves of 
the tree can be used to 
identify the most 

ambiguous emotion class, which often is the class of neutral. The framework was 
evaluated on two different emotional databases using audio-only features, the FAU AIBO 
database and the USC IEMOCAP database. In the FAU AIBO database, it obtained a 
balanced recall on each of the individual emotion classes, and the performance measure 
improves by 3.37% absolute (8.82% relative) over using a standard support vector 
machine baseline model. In the USC IEMOCAP database, it achieved an absolute 

improvement of 7.44% (14.58%) also over a baseline support vector machine modeling.

Context-Sensitive Emotion Recognition in Spoken Dialogues
In human-human interaction, the emotion of each interaction participant is temporally 
smooth and conditioned on the emotion state on the other speaker. Such conditional 
dependency between the two interacting partners’ emotion states and their own temporal 
dynamics in a dialogue has been explicitly modeled, for example, using a dynamic 
Bayesian network (Lee, Busso, Lee, & Narayanan, 2009). Lee et al. applied the 
framework to recognizing emotion attributes described using a valence-activation 
dimension with speech acoustic features. Results showed improvements in classification 
accuracy by 3.67% absolute and 7.12% relative over the Gaussian mixture model (GMM) 
baseline on isolated turn-by-turn (static) emotion classification for the USC IEMOCAP 
database.

Click to view larger

Fig. 12.4  Hierarchical tree structure for multiclass 
emotion recognition proposed by Lee et al. (2011). 
The tree is composed of a binary classifier at each 
node; the design of the tree takes into account of 
emotionally relevant discrimination given acoustic 
behavioral cues to optimize prediction accuracy.

(p. 179) 
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Other studies have 
examined different 
modeling techniques in a 
more general setup of 
context-sensitive 
framework (i.e., modeling 
emotions between 
interlocutors’ emotion in a 

given dialogue (Mariooryad & Busso, 2013; Metallinou, Katsamanis, et al., 2012; 
Metallinou, Wöllmer, et al., 2012; Wöllmer et al., 2008; Wöllmer, Kaiser, Eyben, Schuller, 
& Rigoll, 2012). In particular, Metallinou et al. (Metallinou, Katsamanis, et al., 2012; 
Metallinou, Wöllmer, et al., 2012) have proposed a context-sensitive emotion recognition 
framework (see Figure 12.5). The idea was centered on the fact that emotional content of 
past and future observations can offer additional contextual information benefiting the 
emotion classification accuracy of the current utterances. Techniques such as 
bidirectional long short-term memory (BLSTM) neural networks, hierarchical hidden 
Markov model classifiers (HMMs) and hybrid HMM/BLSTM classifiers were used for 
modeling emotional flow within an utterance and between utterances over the course of a 
dialogue. Results from these studies further underscore the importance and usefulness of 
jointly model interlocutors and incorporating surrounding contexts to improve 
recognition accuracies.

Tracking of Continuously Rated Emotion Attributes
Another line of work that has emerged recently aims at describing emotion as a 
continuous flow instead of a sequence of discrete-states (i.e., a time-continuous profile 
instead of one decision per speech turn). In real life, many expressive behaviors and 
emotion manifestations are often subtle and difficult to be assigned into discrete 
categories. Metallinou et al. have addressed this issue by tracking continuous levels of a 
participant’s activation, valence, and dominance during the entire course of dyadic 
interactions without restriction on assigning a label just for each speaking turn (Angeliki 
Metallinou, Katsamanis, & Narayanan, 2012).

The computational technique is based on a Gaussian mixture model–based approach that 
computes a mapping from a set of observed audiovisual cues to an underlying emotional 
state—that is, given by annotators rating over time on a continuous scale (values range 
from –1 to 1) along the axis of valence, activation, and dominance. The continuous 
emotion annotation tool is based on Feeltrace (Cowie et al., 2000). Promising results were 
obtained in tracking trends of participant’ activation and dominance values with the 
GMM-based approach compared to other regression-based approaches in a 
database of two actors’ improvisations (Angeliki Metallinou, Lee, Busso, Carnicke, & 
Narayanan, 2010). The tracking of continuously rated emotion attributes is an area of 
research still in its formative stages, and attempts to complement the standard approach 

Click to view larger

Fig. 12.5  Context sensitive emotion recognition. 
Metallinou et al. proposed a flexible context-sensitive 
emotion recognition framework that captures both 
the utterance-level emotional dynamics and the long-
range context dependencies of emotional flow in 
dialogues.

Sources: Metallinou, Katsamanis, et al. (2012) and 
Metallinou, Wöllmer, et al. (2012).

(p. 180) 
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of assigning a specific segment of data to predefined discrete categorical emotional 
attributes.

Open Challenges

Each of the aforementioned three components in the design of a reliable emotion 
recognizer remains an active research direction. The inherent ambiguity in emotion 
categorizations, the variability of acoustic features in different conditions, the complex 
nature of the interplay between the linguistic and paralinguistic aspects manifested in 
speech as well as the interplay between the speech signal and signals of visual 
nonbehavior, and the nature of human coupling and interaction in emotional expression 
and perception are some of the key issues that need deeper investigation and further 
advance in the related computational frameworks.

Speech in Affective Computing: Future Works 
and Applications
Future challenges in the area of affective computing with speech lie in both improving 
our understanding of emotional speech production mechanisms and in designing 
generalizable cross-domain robust emotion recognition systems. In summary, on the 
acoustic feature extraction side, while the common data processing approach of feature 
extraction has been able to provide the state-of-art emotion recognition accuracy, it 
remains unclear how exactly emotional information is encoded in these acoustic 
waveforms. Also, the current approaches of feature computation are often difficult to be 
generalized across and scaled-up to real-life applications. With growing knowledge and 
insights into articulatory and voice source movements and their interplay in the emotion 
encoding process, the related acoustic feature extraction procedure in the acoustic 
domain can be further advanced. This holds promises to a more robust and principled 
ways for speech emotion processing.

Another hurdle in affective computing is the ability to obtain reliable cross-domain (and 
cross-corpora) recognition results. Until now, most of the emotion recognition efforts 
have concentrated on optimizing recognition accuracy for an individual database. Few 
works have started to examine the technique to achieve higher accuracy across corpora 
(Bone, Lee, & Narayanan, 2012; Schuller et al., 2010). It is inherently a much more 
difficult modeling task on top of the issues that one has to solve related to the subjectivity 
in the design of the emotional attributes, the lack of solid understanding on which 
acoustic features are robust across databases, and the issue of modeling the interactive 
nature of human affective dynamics. All of these remain as open questions to be 
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investigated in paving the way for robust real-life emotion recognition engineering 
systems of the future.

Having the ability to infer a person’s emotional state from speech is of great importance 
to many scientific domains. This is because emotion is a fundamental attribute governing 
the generation of human expressive behavior and a key indicator in developing human 
behavior analytics and in designing novel user interfaces for a wide range of disciplines. 
Exemplary domains for such applications include commerce (e.g., measuring user 
frustration and satisfaction), medicine (e.g., diagnosis and treatment), psychotherapy 
(e.g., tracking in distressed couples research, addiction, autism spectrum disorder, 
depression, posttraumatic stress disorder), and educational settings (e.g., measuring 
engagement). Affective computing is indeed an integral component and a key building 
block in the field of behavioral signal processing.
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