Machine Recognition of Music Emotion: A Review

YI-HSUAN YANG and HOMER H. CHEN, National Taiwan University

The proliferation of MP3 players and the exploding amount of digital music content call for novel ways of
music organization and retrieval to meet the ever-increasing demand for easy and effective information ac-
cess. As almost every music piece is created to convey emotion, music organization and retrieval by emotion
is a reasonable way of accessing music information. A good deal of effort has been made in the music infor-
mation retrieval community to train a machine to automatically recognize the emotion of a music signal. A
central issue of machine recognition of music emotion is the conceptualization of emotion and the associated
emotion taxonomy. Different viewpoints on this issue have led to the proposal of different ways of emotion
annotation, model training, and result visualization. This article provides a comprehensive review of the
methods that have been proposed for music emotion recognition. Moreover, as music emotion recognition is
still in its infancy, there are many open issues. We review the solutions that have been proposed to address
these issues and conclude with suggestions for further research.
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1. INTRODUCTION

Music plays an important role in human history, even more so in the digital age. Never
before has such a large collection of music been created and accessed daily. The popu-
larity of the Internet and the use of compact audio formats with near-CD quality, such
as MP3 (MPEG-1 Audio Layer 3), have expedited the growth of digital music libraries
[Wieczorkowska et al. 2006]. The prevailing context in which we encounter music is
now ubiquitous, including those contexts in which the most routine activities of life
take place: waking up, eating, housekeeping, shopping, studying, exercising, driving,
and so forth [Juslin and Sloboda 2001]. Music is everywhere. As the amount of con-
tent continues to explode, conventional approaches that manage music pieces based
on catalogue metadata, such as artist name, album name, and song title, are longer
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sufficient. The way that music information is organized and retrieved has to evolve
in order to meet the ever-increasing demand for easy and effective information access
[Casey et al. 2008].

In response to this demand, music organization and retrieval by emotion has re-
ceived growing attention in the past few years. Since the preeminent functions of mu-
sic are social and psychological, and since almost every music piece is created to convey
emotion, music organization and retrieval by emotion has been considered a reason-
able way of accessing music information [Feng et al. 2003; Huron 2000]. It is generally
believed that music cannot be composed, performed, or listened to without affection in-
volvement [Sloboda and Juslin 2001]. Music can bring us to tears, console us when we
are in grief, or drive us to love. Music information behavior studies have also identified
emotion as an important criterion used by people in music seeking and organization.
According to a study of social tagging on Last.fm!, a popular commercial music website,
emotion tag is the third most frequent type of tag (second to genre and locale) assigned
to music pieces by online users [Lamere 2008]. Despite the idea of emotion-based mu-
sic retrieval being new at the time, a survey conducted in 2004 showed that about
28.2% of participants identified emotion as an important criterion in music seeking
and organization [Laurier et al. 2004; Lee and Downie 2004]. Consequently, emotion-
based music retrieval has received increasing attention in both academia and the in-
dustry [Hugq et al. 2009; Lu et al. 2006; Yang et al. 2008; Yang and Chen 2011c].

In academia, more and more multimedia systems that involve emotion analysis
of music signals have been developed, such as Moodtrack [Vercoe 2006], LyQ [Hsu
and Hsu 2006], MusicSense [Cai et al. 2007], Mood Cloud [Laurier and Herrera 2008;
Laurier et al. 2009], Moody [Hu et al. 2008], and ;. MTV [Zhang et al. 2008, 2009],
just to name a few. In the industry, many music companies, such as AMG, Gracenote,
MoodLogic, Musicovery, Syntonetic, and Sourcetone? use emotion as a cue for music
retrieval. For example, the Gracenote mood taxonomy consists of over 300 highly spe-
cific mood categories, which are organized hierarchically with broader mood categories
at the top-level that are made up of several more-specific sub-mood categories. Mood
metadata is automatically derived by using Gracenote’s proprietary content analysis
and machine learning technologies, without any manual labeling or user input. This
mood metadata provides an additional criterion by which users can organize and re-
trieve music in a content-based fashion. A user is able to organize their music collec-
tions by various mood categories represented by affective adjectives such as “peaceful,”
“romantic,” “sentimental,” “defiant,” “fiery,” and “easygoing.”

Making computers capable of recognizing the emotion of music also enhances the
way humans and computers interacts. It is possible to playback music that matches
the user’s moods detected from physiological, prosodic, or facial cues [Anderson and
McOwan 2006; Jonghwa and Ande 2008; Lee and Narayanan 2005; Lin et al. 2009;
Picard et al. 2001]. A portable device, such as an MP3 player or a cellular phone
equipped with an automatic music emotion recognition (MER) function, can then play
a song best suited to the emotional state of the user [Dornbush et al. 2005; Reddy and
Mascia 2006]. A smart space (e.g., restaurant, conference room, residence) can play
background music best suited to the people inside it [Jaimes and Sebe 2005; Lew et al.
2006]. For example, Wu et al. [2008] proposed an interactive content presenter based
on the perceived emotion of multimedia content and the physiological feedback of the
user. Multimedia content (photos, music, and Web blog articles) are automatically clas-
sified into eight emotion classes (happy, light, easy, touching, sad, sublime, grand, and

Ihttp://www.last.fm/
2http://www.allmusic.com/, http: //www.gracenote.com/, http://www.moodlogic.com,
http://www.musicovery.com/, http://www.syntonetic.com/, http://www.sourcetone.com/
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exciting) [Wu and Jeng 2008] and then organized in a tiling slideshow fashion [Chen
et al. 2006] to create music videos (MVs) [Chen et al. 2008]. The user’s preference
of these MVs is detected from physiological signals, such as blood pressure and skin
conductance, and then utilized to recommend the next MV. This retrieval paradigm
is functionally powerful since people’s criteria for music selection are often related to
the emotional state at the moment of music selection [Juslin and Sloboda 2001].

A considerable amount of work has been done in the music information retrieval
(MIR) community for automatic recognition of the perceived emotion of music.® A
typical approach to MER categorizes emotions into a number of classes (such as happy,
angry, sad, and relaxed) and applies machine learning techniques to train a classifier
[Katayose et al. 1998; Kim et al. 2010; Laar 2006; Liu et al. 2006; Lu et al. 2006;
Schuller et al. 2010]. Usually, timbre, rhythm, and harmony features of music are
extracted to represent the acoustic property of a music piece. Typically, a subjective
test is conducted to collect the ground truth needed for training the computational
model of emotion prediction. Several machine learning algorithms have been applied
to learn the relationship between music features and emotion labels, such as support
vector machines [Bischoff et al. 2009; Li and Ogihara 2003; Hu et al. 2008; Wang et al.
2004], Gaussian mixture models [Liu et al. 2003], neural networks [Feng et al. 2003],
boosting [Lu et al. 2010], and k-nearest neighbor [Wieczorkowska 2004; Yang et al.
2006]. After training, the automatic model can be applied to recognize the emotion of
an input music piece.

Because of the multidisciplinary nature of MER and the wide variety of approaches
that have been developed for MER, it is often difficult for a researcher to identify the
structure of this field and gain insight into the state-of-the-art. The goal of this article
is therefore to provide a comprehensive review of the MER literature and to discuss
some possible directions of future research.

A central issue of MER is the conceptualization of emotion and the associated
emotion taxonomy. There is still no consensus on which emotion model or how many
emotion categories should be used. In addition, there is debate over whether emotions
should be conceptualized as categories or continua. Different viewpoints on this issue
have led to proposals of different ways of emotion annotation, model training, and
result visualization.* As shown in Table I, existing work on MER can be classified
into three approaches. The categorical approach to MER categorizes emotions into
a number of discrete classes and applies machine learning techniques to train a
classifier. The predicted emotion labels can be incorporated into a text-based or
metadata-based music retrieval system. The dimensional approach to MER defines
emotions as numerical values over a number of emotion dimensions (e.g., valence and
arousal [Russell 1980]). A regression model is trained to predict the emotion values
that represent the affective content of a song, thereby representing the song as a point
in an emotion space. Users can then organize, browse, and retrieve music pieces in the

3In psychological studies, emotions are often divided into three categories: expressed emotion, perceived
emotion, and felt (or evoked) emotion [Gabrielsson 2002]. The first one refers to the emotion the performer
tries to communicate with the listeners, while the latter two refer to the emotional responses of the listeners.
We may simply perceive an emotion being expressed in a song (emotion perception) or actually feel an
emotion in response to the song (emotion induction). Both perceived emotion and felt emotion, especially the
latter, are dependent on an interplay between the musical, personal, and situational factors [Gabrielsson
2002]. MIR researchers tend to focus on the perceived emotion, for it is relatively less influenced by the
situational factors (environment, mood, etc.) of listening [Yang et al. 2008].

4While MIR researchers tend to use the terms “emotion” and “mood” interchangeably, a clear distinction
of the two terms is often made by psychologists. Emotion is usually understood as a short experience in
response to an object (here, music), whereas mood is a longer experience without specific object connec-
tion [Sloboda and Juslin 2001]. We fix our term of emotion according to the definition of the psychologists.
Moreover, we use “music emotion” as a short term for “emotions that were perceived in music.”
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Table I. Comparison of Existing Work on Automatic Music Emotion Recognition

Emotion con-

Methodology ceptualization

Description

Predicting the discrete emotion labels of music
pieces [Hu et al. 2008; Lu et al. 2006]

Predicting the numerical emotion values of music
pieces [Eerola et al. 2009; Yang et al. 2008]

Predicting the continuous emotion variation within a
music piece [Korhonen et al. 2006; Schmidt et al. 2010]

Categorical MER Categorical

Dimensional MER Dimensional

MEVD Dimensional

emotion space, which provides a simple means for user interface. Finally, instead of
predicting an emotion label or value that represents a song, music emotion variation
detection (MEVD) focuses on the dynamic process of music emotion and makes emotion
predictions for every short-time segment of a song, resulting in a series of emotion pre-
dictions. Users can then track the emotion variation of a song as time unfolds. To give
the readers a sense of how emotions are usually conceptualized, we first discuss the
emotion models that have been proposed by psychologists in Section 2. Section 3 is ded-
icated to music features that are often utilized to model music emotion. We then review
existing works on the three methodologies of MER in Sections 4, 5, and 6, respectively.

Regardless of the approach taken, MER is a challenging task because of the follow-
ing reasons. First, emotion perception is by nature subjective, and people can perceive
different emotions for the same song. This subjectivity makes performance evaluation
of an MER system fundamentally difficult because a common agreement on the recog-
nition result is hard to obtain. Second, emotion annotations are usually difficult to
obtain, especially when there is still no consensus on emotion taxonomy. Third, it is
still inexplicable how music represents emotion. What intrinsic element of music, if
any, creates a specific emotional response in the listener is still far from being well-
understood. We discuss these challenges in detail and review the solutions that have
been proposed to address these issues in Section 7. We conclude the article in Section
8 with suggestions for future research.

2. EMOTION CONCEPTUALIZATION

In the study of emotion conceptualization, psychologists often utilize people’s verbal
reports of emotion responses [Juslin and Sloboda 2001]. For example, the celebrated
paper of Hevner [1935] studied the relationship between music and emotion through
experiments in which subjects were asked to report the adjectives that came to their
minds as the most representative part of a music piece played. From these empirical
studies, a great variety of emotion models have been proposed, most of which belong
to one of the following two approaches to emotion conceptualization: the categorical
approach and the dimensional approach.

2.1. Categorical Conceptualization of Emotion

According to the categorical approach, people experience emotions as categories that
are distinct from each other. Essential to this approach is the concept of basic emotions,
that is, the idea that there is a limited number of universal and primary emotion
classes, such as happiness, sadness, anger, fear, disgust, and surprise, from which
all other secondary emotion classes can be derived [Ekman 1992; Picard et al. 2001].
Each basic emotion can be defined functionally in terms of a key appraisal of goal-
relevant events that have occurred frequently during evolution. The basic emotions
can be found in all cultures, and they are often associated with distinct patterns of
physiological changes or emotional expressions. The notion of basic emotions, however,
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Fig. 1. Hevner’s eight clusters of affective terms [Hevner 1935].

has been criticized on a number of grounds, most notably because different researchers
have come up with different sets of basic emotions [Sloboda and Juslin 2001].

Another famous categorical approach to emotion conceptualization is Hevner’s ad-
jective checklist [Hevner 1935]. Through experiments, she discovered eight clusters of
affective adjectives and laid them out in a circle, as shown in Figure 1. The adjectives
within each cluster are similar, and the meaning of neighboring clusters varies in a
cumulative way until reaching a contrast in the opposite position. The Hevner adjec-
tives (proposed in 1935) were later refined and regrouped into ten adjective groups by
Farnsworth [1954] and into nine adjective groups by Schubert [2003].

The major drawback of the categorical approach is that the number of primary emo-
tion classes is too small in comparison with the richness of music emotion perceived by
humans. Using a finer granularity, on other hand, does not necessarily solve the prob-
lem, because the language for describing emotions is inherently ambiguous and varies
from person to person [Juslin and Laukka 2004]. Moreover, using a large number
of emotion classes could overwhelm the subjects and is impractical for psychological
studies [Sloboda and Juslin 2001].

2.2. Dimensional Conceptualization of Emotion

While the categorical approach focuses mainly on the characteristics that distinguish
emotions from one another, the dimensional approach focuses on identifying emotions
based on their placement on a small number of emotion dimensions with named axes,
which are intended to correspond to internal human representations of emotion. These
internal emotion dimensions are found by analyzing the correlation between affective
terms. Subjects are asked to use a large number of rating scales of affective terms to
describe the emotion of music stimulus. Factor analysis techniques are then employed
to obtain a small number of fundamental factors (dimensions) from the correlations
between the scales. Although differing in names, existing psychological studies give
very similar interpretations of the resulting factors. Most of them correspond to the
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Fig. 2. The 2D valence-arousal emotion space [Russell 1980] (the position of the affective terms are only
approximated, not exact).

following three dimensions of emotion: valence (or pleasantness; positive and negative
affective states), arousal (or activation; energy and stimulation level), and potency (or
dominance; a sense of control or freedom to act) [Osgood et al. 1957; Plutchik 1980;
Remington et al. 2000; Thayer 1989; Whissell et al. 1986].

In the seminal work of Russell [1980], the circumplex model of emotion is proposed.
The model consists of a two-dimensional, circular structure involving the dimensions
of valence and arousal, as shown in Figure 2. Within this structure, emotions that are
inversely correlated are placed across the circle from one another. Supportive evidence
was obtained by scaling 28 affective terms in four different ways: Ross’ technique
[Ross 1938] for a circular ordering of variables, a multidimensional scaling procedure
based on perceived similarity among the terms, a unidimensional scaling on hypothe-
sized pleasure-displeasure and degree-of-arousal dimensions, and a principal compo-
nent analysis [Duda et al. 2000] of 343 subjects’ self-reports of their current affective
states [Russell 1980]. All these methods result in a valence-arousal, circular-structure
arrangement of the 28 terms. The circumplex model is also referred to as the two-
dimensional emotion space (2DES).

One of the strengths of the circumplex model is that it suggests a simple yet pow-
erful way of organizing different emotions in terms of their affect appraisals (valence)
and physiological reactions (arousal), and it allows for direct comparison of different
emotions on two standard and important dimensions. Juslin and Sloboda [2001] note
the following.

From a theoretical point of view one can argue that activation or arousal
variation is one of the major distinctive features of emotion, and the valence
dimension, the pervasive pleasant-unpleasant quality of experience, maps
directly into the classic approach-avoidance action tendencies that have di-
rect relevance for behavior. Recently, Russell even went as far as claiming
that valence and arousal are the “core processes” of affect, constituting the
raw material or primitive of emotional experience [Russell 2003].

Describing emotions by the two-dimensional model, however, is not free of criticism.
It has been argued that it blurs important psychological distinctions and consequently
obscures important aspects of the emotion process [Lazarus 1991]. For example, anger
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and fear are placed close to each other in the valence-arousal plane (both in the sec-
ond quadrant), but they are very different in terms of their implications for the or-
ganism. In response to this deficiency, some researchers have advocated the use of
potency (dominant—submissive) as the third dimension in order to obtain a more com-
plete picture of emotion [Bigand et al. 2005; Collier 2007]. Following this idea, Eerola
et al. [2009] build a regression-based computational model to predict the perceived
emotion of movie soundtracks over the three-dimensional emotion space (3DES). This
approach, however, requires subjects to annotate emotion in 3D, which is difficult to
perform. It is also more difficult to visualize music in 3D rather than in 2D, especially
on mobile devices. A two-dimensional model appears to offer a better balance between
a parsimonious definition of emotion and limiting the complexity of the task [Sloboda
and Juslin 2001].

3. MUSIC FEATURES

The experience of music listening is multidimensional. Different emotion perceptions
of music are usually associated with different patterns of acoustic cues [Juslin 2000;
Krumhansl 2002]. For example, while arousal is related to tempo (fast/slow), pitch
(high/low), loudness level (high/low), and timbre (bright/soft), valence is related to
mode (major/minor) and harmony (consonant/dissonant) [Gabrielsson and Lindstréom
2001]. It is also noted that emotion perception is rarely dependent on a single music
factor but a combination of them [Hevner 1935; Rigg 1964]. For example, loud chords
and high-pitched chords may suggest more positive valence than soft chords and low-
pitched chords, irrespective of mode. See Gabrielsson and Lindstrom [2001] for an
overview of the empirical research concerning the influence of different music factors
on emotion perception. Next, we briefly review some features that have been utilized
in MER.

3.1. Energy

The energy of a song is highly correlated to arousal perception [Gabrielsson and Lind-
strom 2001]. The sound description toolbox can be employed to extract a number of
energy-related features, including audio power, total loudness, and specific loudness
sensation coefficients (SONE) [Benetos et al. 2007]. Audio power is simply the power
of the audio signal. The extraction of total loudness and SONE is based on the percep-
tual models implemented in the MA Toolbox [Pampalk 2004], including an outer-ear
model, the Bark critical-band rate scale (psycho-acoustically motivated critical bands),
and spectral masking (by applying spreading functions). The resulting power spec-
trum, which better reflects human loudness sensation, is called the sonogram. SONE
is the coefficients computed from the sonogram, which consists up to 24 Bark critical
bands (the actual number of critical bands depends on the sampling frequency of the
audio signal). Energy features have been utilized in Lu et al. [2006] to classify arousal.

3.2. Rhythm

Rhythm is the pattern of pulses/notes of varying strength. It is often described in
terms of tempo, meter, or phrasing. A song with a fast tempo is often perceived as
having high arousal. Besides, flowing/fluent rhythm is usually associated with positive
valence, while firm rhythms with negative valence [Gabrielsson and Lindstrom 2001].
To describe the rhythmic property of music, the following five features are proposed
in Lu et al. [2006]: rhythm strength, rhythm regularity, rhythm clarity, average
onset frequency, and average tempo. Rhythm strength is the average onset strength
in the onset detection curve, which can be computed based on the algorithm de-
scribed in Klapuri [1999]. Rhythm regularity and clarity are computed by performing
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autocorrelation on the onset detection curve. If a music segment has an obvious and
regular rhythm, the peaks of the corresponding autocorrelation curve will be obvious
and strong as well. Onset frequency, or event density, is calculated as the number of
note onsets per second, while tempo is estimated by detecting periodicity from the
onset detection curve [Lartillot and Toiviainen 2007].

3.3. Melody

The MIR toolbox [Lartillot and Toiviainen 2007] can be employed to generate two
pitch features (salient pitch and chromagram center) and three tonality features (key
clarity, mode, harmonic change). MIR toolbox estimates the pitch, or the perceived
fundamental frequency, of each short time frame (50 ms, 1/2 overlapping) based on
the multipitch detection algorithm described in Tolonen and Karjalainen [2000]. The
algorithm decomposes an audio waveform into two frequency bands (below and above
1 kHz), computes the autocorrelation function of the envelop in each subband, and
finally produces pitch estimates by picking the peaks from the sum of the two autocor-
relation functions. The pitch estimate corresponding to the highest peak is returned
as the salient pitch. MIR toolbox also computes the wrapped chromagram, or the pitch
class profile, for each frame (100 ms, 1/8 overlapping) and uses the centroid (center
of gravity) of the chromagram as another estimate of the fundamental frequency.
This feature is called the chromagram centroid. A wrapped chromagram projects the
frequency spectrum onto 12 bins representing the 12 distinct semitones (or chroma) of
the musical octave. For example, frequency bins of the spectrum around 440 Hz (C4)
and 880 Hz (C5) are all mapped to chroma C. Therefore, chromagram centroid may
be regarded as a pitch estimate that does not consider absolute frequency. Each bin
of the chromagram corresponds to one of the twelve semitone classes in the Western
twelve-tone equal-temperament scale. By comparing a chromagram with the 24 major
and minor key profiles [Gomez 2006], the strength of the frame in association with
each key (e.g., C major) is estimated. The strength associated with the best key, that
is, the one with the highest strength, is returned as the key clarity. The difference
between the best major key and the best minor key in key strength is returned as
the estimate of the musical mode. The PsySound toolbox [Cabrera 1999] can also be
employed to compute pitch features estimated by the sawtooth waveform inspired
pitch (SWIPE) estimator [Camacho 2007].

3.4. Timbre

A commonly used timbre feature is Mel-frequency cepstral coefficients (MFCC), the
coefficients of the discrete cosine transform of each short-term log power spectrum
expressed on a nonlinear perceptual-related Mel-frequency scale [Casey et al. 2008;
Davis and Mermelstein 1980]. It represents the formant peaks of the spectrum. MFCC
can be extracted by the MA toolbox [Pampalk 2004] or Marsyas [Tzanetakis and Cook
2002]. A drawback of MFCC, however, is that it averages the spectral distribution
in each subband and therefore loses the relative spectral information. Octave-based
spectral contrast is proposed in Jiang et al. [2002] to capture the relative energy distri-
bution of the harmonic components in the spectrum . The feature considers the spectral
peak, spectral valley, and their dynamics in each subband and roughly reflects the
relative distribution of the harmonic and nonharmonic components in the spectrum.

Another timbre feature that is often used in previous MER work is DWCH, or the
Daubechies wavelets coefficient histogram, which better ability in representing both
the local and global information of the spectrum [Li and Ogihara 2003, 2004]. It is com-
puted from the histograms of Daubechies wavelet coefficients at different frequency
subbands with different resolutions.
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One can also use the MIR toolbox [Lartillot and Toiviainen 2007] to extract three
features related to the sensory dissonance of music (roughness, irregularity, inhar-
monicity). Roughness, or spectral dissonance, measures the noisiness of the spectrum;
any peak of the spectrum that does not fall within the prevailing harmony is con-
sidered dissonant. The irregularity measures the degree of variation of the succes-
sive peaks of the spectrum. The inharmonicity estimates the amount of partials that
departs from multiples of the fundamental frequency. The coefficient ranges from 0
(purely harmonic signal) to 1 (inharmonic signal).

The Marsyas software [Tzanetakis and Cook 2002] can also be employed to extract
spectral flatness measures (SFM) and spectral crest factors (SCF), which are both re-
lated to the noisiness of audio signal [Allamanche et al. 2001]. SFM is the ratio be-
tween the geometric mean of the power spectrum and its arithmetic mean, whereas
SCF is the ratio between the peak amplitude and the root-mean-square amplitude.
They are extracted by computing the values in 12 subbands for each short time frame
(23 ms, 1/2 overlapping) and then taking the means and standard deviations over a
sliding texture window of one second. The sequence of feature vectors is then col-
lapsed into a single vector representing the entire signal by taking again the mean
and standard deviation [Tzanetakis and Cook 2002].

4. CATEGORICAL MUSIC EMOTION RECOGNITION

A great many efforts have been made by MIR researchers to automate MER, and the
type of music under study has gradually shifted over the past few years from symbolic
music [Katayose et al. 1998; Livingstone and Brown 2005; Wang et al. 2004; Yeh et al.
2006] to raw audio signals and from Western classical music [Korhonen et al. 2006;
Li and Ogihara 2003; Livingstone and Brown 2005; Lu et al. 2006; Wang et al. 2004]
to popular music. Western classical music is often chosen in the early studies partly
because of the rich literature in musicology and psychology on classical music, and
partly because it seems to be easier to gain agreement on the perceived emotion of
a classical music selection. However, since the purpose of MER is to facilitate music
retrieval and management in everyday music listening, and since it is popular music
that dominates everyday music listening, analyzing the affective content of popular
music has gained increasing attention lately.

The categorical approach to MER adopts the categorical conceptualization of emo-
tions and categorizes music pieces by emotion classes. The major advantage of this
approach is that it is easy to be incorporated into a text-based or metadata-based re-
trieval system. Similar to other music metadata, such as genres and instrumentations,
emotion labels provide an atomic description of music that allows users to retrieve
music through a few keywords. Many works have followed this direction and trained
classifiers that predict the emotion class that best represent the affective content of a
music signal [Dunker et al. 2008; Hu et al. 2008; Lu et al. 2006].

The major drawback of the categorical approach to MER is that the small number of
primary emotion classes is too small in comparison with the richness of music emotion
perceived by humans. Using a finer granularity, on other hand, does not necessarily
solve the whole problem, because the language for categorizing emotion is inherently
ambiguous and varies from person to person [Juslin and Laukka 2004]. Moreover,
using a large number of emotion classes could overwhelm the subjects, so it is also not
considered practical for psychological studies [Sloboda and Juslin 2001]. For example,
for the affective terms calm /peaceful, carefree, laid-back / mellow, relaxed, and soft, we
cannot simply quantify their similarity as zero just because they are different words or
as one because they are synonyms [Shao et al. 2008]. This ambiguity and granularity
issue of emotion description gives rise to the proposal of the dimensional approach to
MER, as described in Section 5.
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Table Il. Comparison of Selected Work on MER

Y.-H. Yang and H. H. Chen

Approach em(iion so#:lg Genre #Ii:: sg)icgt
[Feng et al. 2003] 4 223 pop N/A
[Li and Ogihara 2003] 13 499 pop 1

[Li and Ogihara 2004] 3 235 jazz 2
[Wang et al. 2004] 6 N/A classical 20
[Wieczorkowska 2004] 13 303 pop 1
[Leman et al. 2005] 15 60 pop 40
[Tolos et al. 2005] 3 30 pop 10
[Wieczorkowska et al. 2006] 13 875 pop 1
[Yang et al. 2006] 4 195 pop >10
[Lu et al. 2006] 4 250 classical 3

[Wu and Jeng 2006] 4 75 pop 60
[Skowronek et al. 2007] 12 1059 pop 6

[Hu et al. 2008] 5 1250 pop <8
[Laurier et al. 2008] 4 1000 pop from Last.fm
[Wu and Jeng 2008] 8 1200 pop 28.2
[Trohidis et al. 2008] 6 593 pop 3

[Lin et al. 2009] 12 1535 pop from AMG
[Han et al. 2009] 11 165 pop from AMG
[Hu et al. 2009] 18 4578 pop from Last.fm
[Korhonen et al. 2006] 2DES 6 classical 35
[MacDorman and Ho 2007] 2DES 100 pop 85
[Yang et al. 2007, 2009] 2DES 60 pop 40
[Yang et al. 2008] 2DES 195 pop >10
[Schmidt and Kim 2009] 2DES 120 pop >20
[Eerola et al. 2009] 3DES 110 | soundtrack 116
[Yang and Chen 2011b] 2DES 1240 pop 4.3

Next we review the methods of data preparation, subjective annotation, and model
training of existing categorical MER works.

4.1. Data Collection

For lack of a common database, most existing works compile their own database
[Skowronek et al. 2007; Yang and Lee 2004]. Because manual annotation is labor
intensive, the size of the database of early works is usually less than 1,000. To make
the database as general as possible, it is favorable to have a larger database that covers
all sorts of music types, genres, or even songs of different languages.

There are many factors that impede the construction of a common database. First,
there is still no consensus on which emotion model or how many emotion categories
should be used. As Table II shows, the emotion taxonomy of existing work consist of
three classes [Tolos et al. 2005], four classes [Feng et al. 2003], six classes [Wang et al.
2004], eight classes [Wu and Jeng 2007], and 13 classes [Li and Ogihara 2003], to
name a few. Some taxonomy is based on the basic emotions proposed by psychologists,
while some is derived from clustering affective terms or tags (e.g., Hu and Downie
[2007] and Laurier et al. [2009]). Making comparisons with previous works which use
different emotion categories and different datasets is virtually impossible. Second, due
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Table Ill. Emotion Taxonomy Adopted in MIREX [Hu and Downie 2007]

| Cluster | Description |
1 passionate, rousing, confident, boisterous, rowdy
2 rollicking, cheerful, fun, sweet, amiable/good-natured
3 literate, poignant, wistful, bittersweet, autumnal, brooding
4 humorous, silly, campy, quirky, whimsical, witty, wry
5 aggressive, fiery, tense/anxious, intense, volatile, visceral

to copyright issues, the audio files cannot be distributed as freely as text documents or
images [Goto et al. 2003; McKay et al. 2006]. Although the emotion annotations can
be made publicly available, this is not the case for the audio files. The audio files are
needed if a researcher wants to extract new music features that may be relevant to
emotion perception.

In response to this need, the annual MIREX (music information retrieval evaluation
exchange) Audio Mood Classification (AMC) task has been held since 2007, aiming at
promoting MER research and providing benchmark comparisons [Hu et al. 2008].5 The
audio files are available to participants of the task who have agreed not to distribute
the files for commercial purpose in order to get rid of the copyright issues. Being the
only benchmark in the field of MER so far, this contest draws many participants every
year. For example, six teams participated in AMC 2007 and 16 teams participated in
AMC 2010. However, MIREX uses an emotion taxonomy that consists of five emotion
clusters (see Table III) [Hu and Downie 2007]¢, which have not been frequently
used in existing MER works (cf. Table II). A more popular emotion taxonomy is to
categorize emotions into four emotion classes, happy, angry, sad, and relaxed, partly
because they are related to basic emotions studied in psychological theories and partly
because they cover the four quadrants of the two-dimensional valence-arousal plane
[Laurier et al. 2008]. Moreover, it has been pointed out that there is a semantic overlap
(ambiguity) between clusters 2 and 4, and an acoustic overlap between clusters 1
and 5 [Laurier and Herrera 2007]. The issue on emotion taxonomy seems to remain
open.

4.2. Data Preprocessing

To compare the music samples fairly, music pieces are normally converted to a stan-
dard format (e.g., 22,050 Hz sampling frequency, 16-bits precision, and mono channel).
Moreover, since complete music pieces can contain sections with different emotions,
a 20-30 second segment that is representative of the whole song is often selected to
reduce the emotion variation within the segment and to lessen the burden of emo-
tion annotation on the subjects [Hu et al. 2008; Lu et al. 2006]. This can be done
by manually selecting the most representative part [Leman et al. 2005; Skowronek
et al. 2006; Yang et al. 2008], by conducting music structure analysis to extract the
chorus section [Cheng et al. 2009; Maddage et al. 2004], or simply by selecting the
middle 30-second [Hu et al. 2008] or the 30-second segment starting from the 30th
second of a song [Scaringella et al. 2006; Yang et al. 2007]. Few studies, if any,
have been conducted to investigate the influence of music segmentation on emotion
recognition.

Shttp://music-ir.org/mirexwiki
6The five-emotion taxonomy is determined via a statistical examination of the emotion tags obtained from
AMG: http://www.allmusic.com/. See Hu and Downie [2007].
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Regarding the length of the music segment, a good remark can be found in MacDor-
man and Ho [2007].

In principle, we would like the segment to be as short as possible so that our
analysis of the song’s dynamics can likewise be as fine grained as possible.
The expression of a shorter segment will also tend to be more homogeneous,
resulting in higher consistency in an individual listener’s ratings. Unfortu-
nately, if the segment is too short, the listener cannot hear enough of it to
make an accurate determination of its emotional content. In addition, rat-
ings of very short segments lack ecological validity because the segment is
stripped of its surrounding context.

Our literature survey reveals that using a 30-second segment seems to be common,
perhaps because that corresponds to the typical length of a chorus section of popular
music. As for classical music, Xiao et al. have empirically studied which length of
music segments best presents the stable mood states of classical music and found that
the use of a six-second or eight-second segment seems to be a good idea [Xiao et al.
2008].

4.3. Subjective Annotation

Because emotion is a subjective matter, collection of the ground truth data should be
conducted carefully. Existing annotation methods can be grouped into two categories:
expert-based or subject-based. The expert-based method employs only a few musical
experts (often less than five) to annotate emotion (e.g., Li and Ogihara [2003]; Lu et al.
[2006]; Trohidis et al. [2008]; Wieczorkowska [2004]). Music pieces whose emotions
cannot gain consensus among experts are often simply abandoned. The subject-based
method conducts a subjective test and employs a large number of untrained subjects
to annotate emotion. The ground truth is often set by averaging the opinions of all
subjects. Typically a song is annotated by more than ten subjects [Korhonen et al.
2006; MacDorman and Ho 2007; Wu and Jeng 2006; Yang et al. 2006].

As the annotation process can be very time consuming and labor costly, one needs
to pay attention to the experiment design to reduce the human fatigue problem. Some
common practices include:

—reducing the length of the music pieces [Skowronek et al. 2006; Yang et al. 2008];

— providing synonyms to reduce the ambiguity of the affective terms [Skowronek et al.
2006];

— using exemplar songs to better articulate what each emotion class means [Hu et al.
2008]. These exemplar songs are often selected as the songs whose emotion assign-
ments are unanimously judged by a number of people.

— allowing the user to skip a song when none of the candidate emotion classes is
appropriate to describe the affective content of the song [Hu et al. 2008];

— designing a user-friendly annotation interface [Yang et al. 2007].

Moreover, to enhance the reliability of the emotion annotations, the subjective annota-
tion is rarely longer than an hour. The number of songs a subject is asked to annotate
is accordingly limited. For example, in Yang et al. [2008] a subject is asked to annotate
15 songs.

Some lectures may also be needed to ensure the quality of the annotations, as MER
may be new to the subjects. For example, in Yang et al. [2007] instructions regarding
the purpose of MER, the meaning of valence and arousal, and the difference between
perceived emotion and felt emotion are given to the subjects before annotation. In
our empirical experience we also found that subjects are prone to misunderstand
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positive/negative valence as preferred/not preferred. A clear set of instructions is
indeed important.

Because the perception of music emotion is multi-dimensional, the following ques-
tions may also deserve attention: Should we ask subjects to deliberatively ignore the
Iyrics? Should we use songs of a foreign language to the subjects to eliminate the
influence of lyrics? Should we ask subjects to annotate songs they are familiar, or
unfamiliar with? There seems to be no consensus on these issues so far.

To mitigate the difficulty of subjective annotation, a recent trend is to obtain emo-
tion tags directly from music websites such as AMG and Last.fm. Typically, this can be
done by a simple script-based URL lookup. The advantage of this approach is that it
is easy to obtain the annotation of a great number of songs (e.g., Bischoff et al. [2009];
Hu et al. [2009]; Laurier et al. [2009]; Lin et al. [2009]). However, the weakness is
that the quality of such annotations is relatively lower than those collected through
subjective annotation. For example, in AMG, the emotion labels are applied to artists
and albums, not songs. In Last.fm, the tags may be incorrect because they are typi-
cally assigned by online users for their own personal use. An extensive study on social
tagging of music pieces can be found in Lamere [2008].

The other trend is to harness so-called human computation to turn annotation into
an entertaining task [Morton et al. 2010]. More specifically, the idea is to make users
contribute emotion annotations as a by-product of playing Web-based games [Law et al.
2007; Mandel and Ellis 2007]. Such games are often designed as a collaborative game;
that is, multiple users are playing the game at the same time to compete against
one another. This practice could usually ensure the quality of the annotations. A
famous example of such an online, multiplayer game is Turnbull et al.’s Listen Game
[2007]. When playing the game, a player sees a list of semantically related words (e.g.,
instruments, emotions, usages, genres) and is asked to pick both the best and worst
word to describe a song. Each player’s score is determined by the amount of agreement
between the player’s choices and the choices of all other players and shown to each
user immediately. Such games require little administration effort and typically obtain
high-quality (and free) annotations.

4.4. Model Training

After obtaining the ground truth labeling and the musical features, the next step is
to train a machine learning model to learn the relationship between emotion labels
and music features. Music emotion classification is often carried out by existing clas-
sification algorithms, such as neural network, k-nearest neighbor (£2-NN), maximum
likelihood, decision tree, or support vector machine (SVM) [Cortes and Vapnik 1995].
For example, the best performing systems of MIREX AMC 2007-2009 are based on
support vector machines [Chang and Lin 2001; Hu et al. 2008; Tzanetakis 2007], Gaus-
sian mixture models [Peeters 2008], and the combination of SVM and GMM [Campbell
et al. 2006; Cao and Li 2009], respectively. Many existing MER works also report that
SVM tends to give the superior performance [Han et al. 2009; Laurier and Herrera
2007].

Considering the fact that a song may express more than one emotion, multilabel
classification algorithms, such as multilabel SVM [Lewis et al. 2004] and MLANN
[Zhang and Zhou 2007], have been applied to assign multiple emotion labels to a song
[Li and Ogihara 2003; Trohidis et al. 2008; Wieczorkowska et al. 2006]. Motivated by
the fact that emotion perception is influenced by personal factors such as cultural back-
ground, generation, sex, and personality [Huron 2006], Yang et al. proposed a fuzzy
approach that measures the strength of each emotion in association with the song un-
der classification and provides a more objective measurement of emotion [Yang et al.
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Fig. 3. In Yang et al. [2008], each song is represented as a point in the 2DES. A user can retrieve music of
a certain emotion by simply specifying a point or a path in the plane.

2006]. Wu et al. also proposed a probabilistic approach that predicts the probability
distribution of a music piece over the Hevner’s eight emotion classes [Wu and Jeng
2008], using the probabilistic estimate of SVM [Platt 1999].

5. DIMENSIONAL MUSIC EMOTION RECOGNITION

The circumplex model is first adopted by MER researchers to track the emotion vari-
ation of a classical song (i.e., MEVD). The idea of representing the overall emotion of
a popular song as a point in the emotion plane for music retrieval is studied in Yang
et al. [2008] and MacDorman et al. [2007], under the assumption that the dominant
emotion of a popular song undergoes less change than a classical song (this assump-
tion is also made in the MIREX AMC contest [Hu et al. 2008]). The authors formulated
MER as a regression problem [Sen and Srivastava 1990] and trained two independent
regression models (regressors) to predict the valence and arousal (VA) values of a mu-
sic piece. Associated with the VA values, each music piece is visualized as a point in
the emotion plane, and the similarity between music samples can be estimated by com-
puting the Euclidean distance in the emotion plane. This regression approach has a
sound theoretical foundation and exhibits promising prediction accuracy. See Table II
for a comparison of selected works on dimensional MER.

The attractions of this approach are the two-dimensional user interface and the as-
sociated emotion-based retrieval methods that can be created for mobile devices that
have small display areas. For example, a user can specify a point in the plane to
retrieve songs of a certain emotion or draw a trajectory to create a playlist of songs
with various emotions corresponding to points on the trajectory (see Figure 3 for an
illustration) [Yang et al. 2008]. In addition, because the emotion plane implicitly of-
fers an infinite number of emotion descriptions, the granularity and ambiguity issue
associated with emotion classes is alleviated.

Note that the use of valence and arousal as the two emotion dimensions, though
largely inspired from the psychology domain, has also been empirically validated by
MIR researchers. In Levy and Sandler [2007] and Laurier et al. [2009], researchers
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have investigated the semantic emotion space spanned from social music tags and
found that the derived semantic space conforms to the valence-arousal emotion space.
In another study [Leman et al. 2005], by applying factor analysis on emotion annota-
tions of 15 bipolar affective terms, it was also found that the underlying 3D space is
characterized by valence, activity, and interest (exciting—boring), which is fairly close
to the valence-arousal-potency model.

Next we review the methods of subjective annotation, model training, and result
visualization of existing dimensional MER works. The data preparation part of di-
mensional MER is skipped because it is similar to that of categorical MER.

5.1. Model Training

Dimensional MER is usually formulated as a regression problem [Sen and Srivastava
1990] by viewing the emotion values (i.e., VA values) as real values in [-1, 1]. Then a
regression model can be trained to predict the emotion values. More specifically, given
N inputs (x;,y;),1 < i < N, where x; is a feature vector of the ith input sample and
y; is the real value to be predicted, a regression model (regressor) f(-) is created by
minimizing the mismatch (i.e., mean squared difference) between the predicted and
the ground truth values. Many good regression algorithms, such as support vector re-
gression (SVR) [Scholkopf et al. 2000], Gaussian process regression [Rasmussen and
Williams 2006], or AdaBoost.RT [Solomatine and Shrestha 2004] are readily avail-
able. Most existing works train two regressors for valence and arousal independently
[MacDorman et al. 2007; Yang et al. 2008].

A standard metric for evaluating regressors [Sen and Srivastava 1990] is the R2
statistics, or the coefficient of determination. It measures the proportion of the un-
derlying data variation that is explained by the fitted regression model [Montgomery
et al. 1998],

cov(y, f(x))?

2  covly, f@)?
By, f0) = o rar(F)

(D

R? = 1 means the model perfectly fits the data, while R? = 0 indicates no linear re-
lationship between the ground truth and the estimate. It is generally observed that
valence recognition is much more challenging than arousal recognition [Fornari and
Eerola 2008; Korhonen et al. 2006; Lu et al. 2006]. For example, the R? reported in
Yang et al. [2008] is 0.28 for valence and 0.58 for arousal, while that reported in Yang
et al. [2007] is 0.17 for valence and 0.80 for arousal. This is partly because valence
perception is more subjective and partly because it is computationally more difficult
to reliably extract features relevant to valence perception, such as musical mode and
articulation [Lu et al. 2006; Repp 1998].

Next we briefly describe SVR for its superior performance for dimensional MER
[Huq et al. 2010; Schmidt and Kim 2009; Schmidt et al. 2010; Yang et al. 2008]. Since
the nineties, support vector machines (SVMs) have been widely used in different clas-
sification and regression tasks [Cortes and Vapnik 1995]. SVM nonlinearly maps an
input feature vector x to a higher dimensional feature space ¢(x) by the so-called “ker-
nel trick” and learns a nonlinear function by a linear learning machine in the kernel-
induced feature space, where data are more separable [Cortes and Vapnik 1995]. For
classification, we look for the optimal separating hyperplane that has the largest dis-
tance to the nearest training data points of any class. For regression, we look for a
function f(x,) = m'¢(x,) + b that has at most ¢ deviation from the ground truth y;
for all the training data and, meanwhile, is as flat as possible (i.e., m"m is small)
[Scholkopf et al. 2000]. In other words, we do not care about errors as long as they
are less than ¢ but will not accept any deviation larger than this. Moreover, under the
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soft margin principle [Boyd and Vandenberghe 2004], we introduce slack variables &
and & to allow the error to be greater than ¢. Consequently, we have the following
optimization problem,

1 1< .
argmin cm'm + Clve + N Z(és +&7)),

m,b.¢.¢* e s=1

subject to (m'p(x;) +b) —ys < e +&, 2)

ys — (mTp(xs) +b) < & + &7,
58553* 2(),8:1,...,N, & 20}

where C controls the trade-off between the flatness of f(.) and the amount up to which
deviations larger than ¢ are tolerated and v € [0, 1] controls the number of support
vectors (the points lying on the boundaries). A common kernel function is the radial
basis function (RBF): K(x,, x,) = ¢(x,) " ¢(x,) = exp(—y ||X, — X,4]|?), where y is a scale
parameter. Typically, the parameters of SVR are determined empirically by a grid
search. The preceding quadratic optimization problem can be efficiently solved by
known techniques [Boyd and Vandenberghe 2004]. A popular implementation of SVR
is the LIBMSVM library [Chang and Lin 2001].

5.2. Subjective Annotation

Unlike its categorical counterpart, dimensional MER requires subjects to annotate
the numerical VA values. This can be done using either a standard rating scale
[MacDorman and Ho 2007; Yang et al. 2008] or a graphic rating scale [Cowie et al.
2000; Schubert 1999; Yang et al. 2007]. For example, in Yang et al. [2008], sub-
jects were asked to rate the VA values from —1.0 to 1.0 in eleven ordinal levels. In
MacDorman and Ho [2007], a seven-point scale was used, implemented as a radio
button that consisted of a row of seven circles with an opposing semantic differential
item appearing at each end. In Yang et al. [2007], subjects were asked to rate the VA
values using a graphic interface called “AnnoEmo.” The VA values are annotated by
clicking on the emotion plane displayed by computer. A rectangle is formed on the
specified point so that the subject can directly compare the annotations of different
music pieces. The subject can click on the rectangle to listen to the piece again or
drag and drop the rectangle to modify the annotations. Regardless of the annotation
method employed, each music piece is often annotated by multiple subjects, and
the ground truth is set to the average rating as emotion perception is subjective.
Algorithms such as the one described in Grubbs [1969] may be employed to remove
outliers (annotations that are significantly different from others).

5.3. Result Visualization

Given the trained regressors, the VA values of a song are automatically predicted with-
out further manual labeling. Associated with VA values, each music piece is visualized
as a point in the emotion plane. Many novel retrieval methods can be realized in the
emotion plane, making music information access much easier and more effective. For
example, one can easily retrieve music pieces of a certain emotion without knowing
the titles or browse personal collections in the emotion plane on mobile devices. One
can also couple emotion-based retrieval with traditional keyword- or artist-based ones
to retrieve songs similar (in the sense of perceived emotion) to a favorite piece or to
select the songs of an artist according to emotion. We can also generate a playlist by
drawing a free trajectory representing a sequence of emotions in the emotion plane.
As the trajectory goes from one quadrant to another, the emotions of the songs in the
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playlist would vary accordingly, as shown in Figure 3. See Yang et al. [2008] for a
technical demonstration.

Whether the emotions should be modeled as categories or continua has been a long
debate in psychology [Collier 2007; Ekman 1992; Hevner 1935; Thayer 1989]. From an
engineering perspective, the categorical approach and the dimensional approach offer
different advantages that are complementary to each other. We can imagine a mobile
device that employs both approaches to facilitate music retrieval.

6. MUSIC EMOTION VARIATION DETECTION

An important aspect of music that has thus far been neglected in this article is its tem-
poral dynamics. Most research has focused on musical excerpts that are homogeneous
with respect to emotional expression. However, as many styles of music (in particular
classical music) also express or evoke different emotions as time unfolds, it is impor-
tant to investigate the time-varying relationship between music and emotion. Tech-
niques for continuous recording, sometimes combined with nonverbal responses, have
been used to study emotion perception as a dynamic process since the seminal work
of Nielsen [1986]. According to Schubert [1999], “Continuous response tools measure
self-reported affective responses during the listening process and help researchers to
better understand the moment-to-moment fluctuations in responses. The approach
means that the music does not need to be broken into small portions to enable lucid
response, nor does the listener have to compress their response by giving an overall
impression at the end of the excerpt. A more realistic listening experience is possible.
This realism [Hargreaves 1986] contributes to the ecological validity of experimental
design at the expense of experimental control.”

Because categorical responses require the subjects to choose an emotion term
constantly, the dimensional approach to emotion conceptualization is found more
useful for capturing the continuous changes of emotional expression [Gabrielsson
2002]. Usually subjects are asked to rate the VA values (typically by clicking a point
in the emotion plane) every one second in response to the stimulus [Cowie et al.
2000; Lang 1995; Russell et al. 1989]. Psychologists then analyze the continuous
recording to investigate the relationship between music and emotion [Eerola et al.
2002; Schubert 2001; Toiviainen and Krumhansl 2003].

Attempts have been made to automatically detect the music emotion variation, or
music emotion variation detection (MEVD) [Schmidt et al. 2010]. Two approaches can
be found in the literature. The first approach, such as the time series analysis method
[Schubert 1999] and the system identification method [Korhonen et al. 2006], exploits
the temporal information among the music segments while computing the VA values.
For example, in Korhonen et al. [2006], system identification techniques [Ljung 1999]
are utilized to model music emotion as a function of a number of musical features.
The ground truth data are collected for every second of the music pieces, so the music
pieces are also segmented every second for feature extraction. The dataset consists
of six Western classical music pieces of various emotions. Results demonstrate that
system identification provides a means to the generalization of the affective content of
Western classical music.

The second approach neglects the temporal information underlying the music sig-
nals and makes a prediction for each music segment independently. For example, in
Yang et al. [2006] a sliding window of ten seconds and 1/3 overlap is used to segment
a music piece, whereas in Lu et al. [2006], the potential emotion change boundaries
are identified first and then utilized to segment the music piece. The emotion of each
segment is then predicted independently.

Besides music, the dimensional approach has been adopted to track the emotion
variation within video sequences [Arifin and Cheng 2008; Dietz and Lang 1999;
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Fig. 4. With emotion variation detection, we can combine the valence and arousal curves (left) to form the
affective curve (right), which represents the dynamic changes of the affective content of a video sequence or
a music piece.

Hanjalic and Xu 2005; Wang and Cheong 2006] and speech signals [Giannakopoulos
et al. 2009]. For example, VA modeling is proposed in Hanjalic and Xu [2005] to
detect the emotion variation in movie sequences. The VA values are computed by the
weighted sums of some component functions that are computed along the timeline.
The component functions used for arousal are the motion vectors between consecutive
video frames, the changes in shot lengths, and the energy of sound, whereas the com-
ponent function used for valence is the sound pitch. The resulting valence and arousal
curves are then combined to form an affective curve which makes it easy to trace the
emotion variation of the video sequence and to identify the segments with high affec-
tive content [Hanjalic and Xu 2005]. See Figure 4 for an illustration. This work is later
extended by Zhang et al. [2008, 2009], who modeled the emotion of music videos (MVs)
and movies using 22 audio features (intensity, timbre, rhythm) and five visual features
(motion intensity, shot switch rate, frame brightness, frame saturation, and color en-
ergy) and proposed an interface for affective visualization on time axis. They took the
approach described in the previous paragraph and predicted the VA values for each
short-time video clip independently. In their system, a movie sequence is segmented
every 14 seconds, with an overlap of two seconds between consecutive segments.

Though both MEVD and dimensional MER view emotions from the dimensional per-
spective, they are different in the ways the computational problem is formulated and
approached. MEVD computes the VA values of each short-time segment and repre-
sents a song as a series of VA values (points), whereas the dimensional MER computes
the VA values of a representative segment (often 30 seconds) of the song and repre-
sents the song as a single point. However, it should be noted that a dimensional MER
system can also be applied to MEVD if we neglect the temporal information and com-
pute the VA values of each segment independently.

7. CHALLENGES

As MER is still in its infancy, there are many open issues. Some major issues and
proposed solutions are discussed in this section.
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Fig. 5. The ranking-based emotion annotation method proposed in Yang and Chen [2011b], which groups
eight randomly chosen music pieces in a tournament of seven matches. Users are asked to rank (by making
pairwise comparisons) instead of rate music emotion with respect to emotion dimension, such as valence or
arousal.

7.1. Difficulty of Emotion Annotation

To collect the ground truth needed for training an automatic model, a subjective test is
typically conducted to invite human subjects to annotate the emotion of music pieces.
Since the MER system is expected to be used in the everyday context, the emotion
annotation should better be carried out by common people. The psychology literature
suggests that each stimulus be annotated by more than 30 annotators for the annota-
tion to be reliable [Cohen and Swerdlik 2002]. This requires a great many annotations
to develop a large-scale dataset.

The difficulty of collecting emotion labels for training a categorical MER system has
recently been alleviated with the surge of online tagging websites, such as AMG and
Last.fm, as reviewed in Section 4.3. The emotion annotation process of dimensional
MER, however, requires numerical emotion ratings that are not readily available from
the online repository. Moreover, it has been found that rating emotion in a continuum
usually imposes a heavy cognitive load on the subjects [Yang and Lee 2004]. It is also
difficult to ensure a consistent rating scale between different subjects and within the
same subject [Ovadia 2004]. As a result, the quality of the ground truth varies, which
in turn degrades the accuracy of MER.

To address this issue, ranking-based emotion annotation is proposed [Yang and
Chen 2011b]. A subject is asked to compare the affective content of two songs and
determine, for example, which song has a higher arousal value, instead of the exact
emotion values. Since it is a lengthy process to determine the straight order of n mu-
sic pieces (requiring n(n — 1)/2 comparisons), a music emotion tournament scheme is
proposed to reduce the burden on subjects. As Figure 5 shows, the n music pieces
can be grouped into n — 1 matches, which form a hierarchy of log, n levels. A subject
compares the emotion values of two music pieces in each match and decides whose
emotion value is larger. The rankings of music emotion are then converted to numeri-
cal values by a greedy algorithm [Cohen et al. 1999]. Empirical evaluation shows that
this scheme relieves the burden of emotion annotation on the subjects and enhances
the quality of the ground truth. It is also possible to use an online game to harness the
so-called human computation and make the annotation process more engaging [Kim
et al. 2008].

7.2. Subjectivity of Emotional Perception

Music perception is intrinsically subjective and is under the influence of many factors,
such as cultural background, age, gender, personality, training, and so forth [Huron
2006]. The interactions between music and listener may also involve the listener’s fa-
miliarity with the music and his/her musical preferences [Jargreaves and North 1997].
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Fig. 6. Emotion annotations in the 2DES for four songs: (a) Smells Like Teen Spirit by Nirvana, (b) A Whole
New World by Peabo Bryson and Regina Belle, (¢) The Rose by Janis Joplin, (d) Tell Laura I Love Her by
Ritchie Valens. Each circle corresponds to a subject’s annotation of the song [Yang et al. 2007]. It can be
observed that emotion perception is indeed subjective.

Because of this subjectivity issue, it is difficult to gain common consensus on which af-
fective term best characterizes the affective content of a music piece. Therefore, typical
categorical approaches that simply assign one emotion class to each music piece in a
deterministic manner does not perform well in practice. The dimensional approach to
MER also faces the subjectivity issue that people can response differently to the same
song. For example, each circle in Figure 6 corresponds to a subject’s annotation of the
perceived emotion of a song [Yang et al. 2007]. We see that people often have different
emotion perceptions, and the annotations of a music piece are sometimes fairly sparse.

Despite that the subjectivity nature of emotion perception is well recognized, little
effort has been made to take the subjectivity into account. Most works either assume a
common consensus can be achieved (particularly for classic music) [Wang et al. 2004],
discard those songs upon which a common consensus cannot be achieved [Lu et al.
2006], or simply leave this as future work [Li and Ogihara 2003].

To address this issue, a fuzzy approach is proposed [Yang et al. 2006] to measure
the strength of each emotion class in association with the song under classification.
By assigning each music piece a soft label that indicates how likely a certain emotion
would be perceived when listening to the piece, the prediction result becomes less
deterministic. For example, a song could be 70% likely to be relaxed and 30% likely to
be sad.

A different methodology that addresses the subjectivity issue is needed for the di-
mensional approach to MER, as emotions are not conceptualized as discrete classes but
numerical values (e.g., VA values). In Yang et al. [2007], two personalization methods
are proposed; the first trains a personalized MER systems for each individual specifi-
cally, whereas the second groups users according to some personal factors (e.g., gender,
music experience, and personality) and then trains group-wise MER systems for each
user group. Another two-stage personalization scheme is also studied [Yang et al.
2009]. In this approach, two models are created: one for predicting the general per-
ception of a music piece, the other for predicting the difference (coined as perceptual
residual) between general perception and the personal perception of a user. This sim-
ple method is effective because the music content and the individuality of the user are
treated separately. These methods show that personalization is feasible, but they lack
a solid computational framework.

Motivated by the observation that the perceived emotions of a song in fact consti-
tute an emotion distribution in the emotion plane (cf. Figure 6), Yang and Chen [2011a]
proposed a computational model to model the perceived emotions of a song as a prob-
abilistic distribution in the emotion plane and to compute the probability of perceived
emotion of a song—somewhat similar to the idea of soft labeling of the fuzzy approach
[Yang et al. 2006]. More specifically, the computational model aims at predicting its
emotion mass at discrete samples in the 2DES, with the values summed to one. Here,
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Table IV. Top Three Performance of Audio
Mood Classification (AMC) of MIREX
(2007-2010)

Contest | Top Three Accuracy

AMC 2007 | 65.67%, 65.50%, 63.67%
AMC 2008 | 63.67%, 56.00%, 55.00%
AMC 2009 | 61.50%, 60.50%, 59.67%
AMC 2010 | 64.17%, 63.83%, 63.17%

Note: Retrieved from the website of
MIREX.

the term emotion mass refers to the probability of the perceived emotion of a song
being a specific point (discrete sample) in the 2DES. This computational framework
provides a new basis for personalized emotion-based retrieval. An emotion distribu-
tion can be regarded as a collection of users’ perceived emotions of a song, and the
perceived emotion of a specific user can be regarded as a sample of the distribution.

7.3. Semantic Gap Between Low-Level Music Feature and High-Level Human Perception

The viability of an MER system largely lies in the accuracy of emotion recognition.
However, due to the so-called semantic gap between the object feature level and the
human cognitive level of emotion perception, it is difficult to accurately predict the
emotion labels or values [Lu et al. 2006; Tolos et al. 2005; Yang et al. 2008]. What
intrinsic element of music, if any, causes a listener to create a specific emotional per-
ception is still far from being well-understood. Consequently, the performance of con-
ventional methods that exploit only the low-level audio features seems to have reached
a limit. For example, Table IV shows the top three performances (in terms of raw mean
classification accuracy) of the MIREX AMC contest from 2007 to 2010. It can be ob-
served that despite various low-level audio features and their combinations having
been used [Hu et al. 2008], the classification accuracy seems to be bounded by 66%.”

Available data for MER are not limited to the raw audio signal. Complementary to
music signal, lyrics are semantically rich and have profound impacts on human per-
ception of music [Ali and Peynirciogu 2006]. It is often easy for us to tell from the lyrics
whether a song expresses sadness or happiness. Incorporating lyrics into MER is fea-
sible because most popular songs sold in the market come with lyrics [Fornés 2006].
One can analyze lyrics using natural language processing to generate text feature de-
scriptions of music, such as bag-of-words, part-of-speech [Sebastiani 2002], and latent
semantic vectors [Hofmann 1999]. Several attempts have been made to augment the
MER system with features extracted from the lyrics [Hu et al. 2009; Laurier et al.
2008; Lu et al. 2010; Meyers 2007; Yang and Lee 2004; Yang et al. 2008; van Zaanen
and Kanters 2010]. It is often reported that the use of lyrics improves the accuracy of
valence recognition.

Besides using lyrics, the use of other mid-level or high-level audio features, such as
chord progression and genre metadata, has also been studied. Chord progression is
automatically detected by a chord recognition system [Cheng et al. 2008], while genre
metadata are obtained by applying an automatic genre classifier or by crawling the
Internet [Lin et al. 2009]. Empirical evaluations show that the incorporation of these
features improves the accuracy of emotion recognition. For example, Schuller et al.
[2008, 2010] incorporated genre, ballroom dance style, chord progression, and lyrics in

"Note the performance is also influenced by the ambiguity issue inherent to the five-class taxonomy and the
subjectivity issue inherent to emotion perception.
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their MER system and found that many of them contribute positively to the prediction
accuracy.

8. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

Despite a great deal of effort, MER is still a fairly new research area with a lot of
unknown or unsolved problems. For example, the accuracy of valence recognition of
existing systems is still not satisfactory [Yang and Chen 2011b], and the subjectivity
issue of emotion perception has not been resolved. In this section, we describe some
possible future research directions. Like Klaus R. Scherer concluded in the foreword
of Music and Emotion: Theory and Research [Juslin and Sloboda 2001], we hope this
review article will inspire more multidisciplinary-minded researchers to study “a phe-
nomenon that has intrigued mankind since the dawn of time.”®

8.1. Exploiting Vocal Timbre for MER

Another source of information that is not yet fully exploited in the literature is the
singing voice of the music. Typically, a pop music consists of the accompany music,
lyrics, and the singing voice. The timbral of the singing voice, such as aggressive,
breathy, gravelly, high-pitched, or rapping [Turnbull et al. 2008], is often directly re-
lated to our emotion perception. For example, a song with screaming and roaring voices
usually conveys an angry emotion, whereas a song with sweet voices tends to be of pos-
itive emotion. Therefore, vocal timbre is important for valence perception and should
be incorporated to MER. Speech features that have been shown useful for speech emo-
tion recognition [Fernandez and Picard 2005; Giannakopoulos et al. 2009; Picard et al.
2001; Schuller et al. 2009; Ververidis and Kotropoulos 2006] and automatic singer
identification [Fujihara et al. 2005; Nwe and Li 2007a; Shen et al. 2006; Tsai and Wang
2006], such as AFO [Fujihara and Goto 2007], vibrato, harmonics, attack-delay [Nwe
and Li 2007b], voice source features [Fernandez and Picard 2005], and harmonics-to-
noise ratio [Schuller et al. 2009], could be considered.

A key issue of vocal timbral recognition is the suppression or reduction of the accom-
panying music [Goto 2004]. The simplest way might be to apply a bandpass filter that
preserves only the frequency components of the singing voice. A major drawback of
this approach, however, is that many instruments also have frequency responses in the
singing format and thus cannot be eliminated. Therefore, advanced techniques, such
as predominant-FO estimation [Goto 2004] or melodic source separation [Lagrange
et al. 2008], may be needed.

8.2. Personalized Emotion-Based Music Retrieval

In Yang and Chen [2011a], the authors only focused on the indexing part of MER;
that is, predicting the emotion distribution of a song P(e|d) such that we can orga-
nize and represent songs in the emotion plane. This methodology can be extended to
address the retrieval part; that is, when a user u clicks on a point e¥, return to the
user a list of songs ranked in descending order of P(d|e?, u), where e/ = [v},a’]T, and
[v},a/]T € [—1,1]% are VA values. We can consider an emotion distribution P(e|d) as
a collection of users’ perceived emotions of a song and the perceived emotion of the
user P(e|d, u) as a sample of the distribution. Though the methodology of predicting
P(e|d, u) remains to be developed, it is interesting because by doing so, music emo-
tion recognition and emotion-based music retrieval would be studied under a unified
probabilistic framework.

8Interested readers may also refer to Kim et al. [2010] for another state-of-the-art review of MER.
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8.3. Connections Between Dimensional and Categorical MER

As we have described in Sections 4 and 5, the categorical approach and the dimen-
sional approach to MER offer complementary advantages. The former offers an atomic
description of music that is easy to incorporate into a conventional text-based retrieval
system, whereas the latter offers a simple means for a 2D user interface. It is there-
fore interesting to combine the two approaches to construct a more effective and user-
friendly emotion-based music retrieval system. We shall give two example directions.

From the model training perspective, as the emotion labels are easier to be obtained
(e.g., by crawling AMG or Last.fm), it is interesting to develop a method that uti-
lizes the categorical emotion labels as ground truth data for dimensional MER system.
This can be approached, for example, by mapping the affective terms (e.g., peaceful,
romantic, sentimental) to points in the emotion plane (cf. Figure 2) and regarding the
corresponding VA values as the ground truth of the associated music pieces. In this
way, constructing a large-scale database for training and evaluating dimensional MER
would be easier.

From the music retrieval perspective, because users may be unfamiliar with the
essence of the valence and arousal dimensions, when representing songs as points in
the emotion plane it should be beneficial to add affective terms to guide the users. The
users can choose the affective terms to be displayed. We could also allow the users to
decide the position of the affective terms and utilize such information to personalize
the MER system.

8.4. Considering the Situational Factors of Emotion Perception

According to psychological studies, our emotion response to music is dependent on
an interplay between musical, personal, and situational factors [Gabrielsson 2002].
Indeed, under the influence of situational factors such as listening mood and listening
environment, a person’s emotion perception of the same song could vary a lot. For
example, when we are in a sad mood, a happy song may be not so happy to us.
Therefore, it would be great if the MER system could detect the listening mood (e.g.,
via prosodic cues, body movements, or physiological signals [Jaimes et al. 2006; Lee
and Narayanan 2005; Lin et al. 2008, 2009; Picard et al. 2001]) or the listening
environment (e.g., via monitoring the background volume) to modify the emotion
predictions. On the other hand, the MER system can also utilize the information of
the listening context to actively recommend music to the listeners.
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