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A Review and Meta-Analysis of Multimodal Affect Detection Systems

SIDNEY K. D’MELLO, University of Notre Dame
JACQUELINE KORY, MIT Media Lab

Affect detection is an important pattern recognition problem that has inspired researchers from several areas.
The field is in need of a systematic review due to the recent influx of Multimodal (MM) affect detection systems
that differ in several respects and sometimes yield incompatible results. This article provides such a survey
via a quantitative review and meta-analysis of 90 peer-reviewed MM systems. The review indicated that the
state of the art mainly consists of person-dependent models (62.2% of systems) that fuse audio and visual
(55.6%) information to detect acted (52.2%) expressions of basic emotions and simple dimensions of arousal
and valence (64.5%) with feature- (38.9%) and decision-level (35.6%) fusion techniques. However, there
were also person-independent systems that considered additional modalities to detect nonbasic emotions
and complex dimensions using model-level fusion techniques. The meta-analysis revealed that MM systems
were consistently (85% of systems) more accurate than their best unimodal counterparts, with an average
improvement of 9.83% (median of 6.60%). However, improvements were three times lower when systems
were trained on natural (4.59%) versus acted data (12.7%). Importantly, MM accuracy could be accurately
predicted (cross-validated R2 of 0.803) from unimodal accuracies and two system-level factors. Theoretical
and applied implications and recommendations are discussed.
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1. INTRODUCTION

Affect detection (or affect recognition or affect classification) is an emerging research
area of considerable practical and theoretical interest to a number of fields includ-
ing signal processing, machine learning, computational linguistics, computer vision,
neuroscience, and cognitive and social psychology [Picard 2010]. From a practical
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standpoint, affect detection is a cornerstone of affect-aware interfaces that aim to auto-
matically detect and intelligently respond to users’ affective states in order to increase
usability and effectiveness [Brave and Nass 2002; Picard 1997]. From a theoretical
standpoint, affect detection is ultimately a signal processing and pattern recognition
problem because it involves the development of a classifier or regressor to detect an
ill-defined phenomenon (affect) from observable signals. The problem is extremely chal-
lenging because affective states are psychological constructs (conceptual variables) that
are not directly observable and are embedded in a noisy context-sensitive expressive
and communicative system that has been fine-tuned over millions of years. The chal-
lenge is to detect an elusive and fleeting signal (affect) embedded in a system with
multiple sources of noise exacerbated by context sensitivity, social masking, and in-
dividual and cultural variability [Elfenbein and Ambady 2002; Russell 1994; Russell
et al. 2003].

The aforementioned complexities make affect detection an interesting and worth-
while problem to pursue as witnessed by numerous efforts toward detecting affective
states from a variety of modalities, such as facial expressions, acoustic-prosodic cues,
body movements, gesture, contextual cues, text and discourse, physiology, and neural
circuitry (see Calvo and D’Mello [2010], Pantic and Rothkrantz [2003], and Zeng et al.
[2009] for reviews). While early affect detection systems focused primarily on individ-
ual modalities and on emotional expressions portrayed by actors, many contemporary
systems emphasize Multimodal (MM) detection of naturalistic affective expressions
[Zeng et al. 2009], which is a novel problem in its own right.

Despite the impressive progress made so far, it is safe to say that there is still con-
siderable ground to be covered before affect detectors can be integrated into everyday
interfaces and devices and can be more readily deployed into real-world contexts. The
field is still confronted with a number of persistent problems, such as (a) intrusive,
expensive, and noisy sensors, some of which have scalability concerns; (b) technical
challenges associated with detecting latent psychological constructs (i.e., affect) from
weak signals embedded in noisy channels; (c) difficulties associated with collecting
adequate realistic training data for machine learning [Douglas-Cowie et al. 2007];
(d) the persistent problem of obtaining ground truth labels for supervised classification,
when interobserver agreement is generally low [Afzal and Robinson 2011; Graesser
et al. 2006]; (e) challenges of incorporating top-down models of context with bottom-up
body-based sensing [Conati and Maclaren 2009]; (f) issues of generalizability across
contexts, time, individuals, and cultures [Calvo and D’Mello 2010]; (g) lack of clarity
of the affective phenomenon being modeled (e.g., moods vs. emotions, categorical vs.
dimensional representations, partly due to a difficulty in defining affect [Izard 2010]);
and (g) many others as articulated in previous reviews [Calvo and D’Mello 2010; Pantic
and Rothkrantz 2003; Zeng et al. 2009].

As researchers are well aware, this daunting list of challenges and open problems
is more the norm than the exception given the difficulty of affect detection and the
relative infancy of the field (about 15 years old). Numerous innovative solutions to
address some of the aforementioned challenges have been extensively reviewed in both
early (prior to 2009—see Cowie et al. [2001], Jaimes and Sebe [2007], Pang and Lee
[2008], and Pantic and Rothkrantz [2003]) and more recent surveys (2009 to present—
see Calvo and D’Mello [2010], D’Mello and Kory [2012], Valstar et al. [2012], and Zeng
et al. [2009]), and will not be repeated here. Instead, the present focus is on MM
affect detection, a strategy that is gaining momentum because it is expected to yield
several advantages over unimodal (UM) affect detection. The remainder of the section
briefly introduces the area of MM affect detection along with an overview of the issues
addressed in this article.
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1.1. MM Affect Detection

While UM detection involves the use of a single modality (e.g., facial features, ges-
tures), MM systems fuse two or more modalities for affect detection. This raises a
number of unique challenges and opportunities. The main challenges include (a) decid-
ing which modalities to combine; (b) collecting MM training data; (c) handling missing
data, different sampling rates, and modality interdependence when building models;
(d) deciding how to fuse data from different modalities; and (e) deciding how to evaluate
MM affect detectors. The hypothesized advantages of MM approaches to affect detec-
tion include (a) a higher-fidelity model of human affective expression, (b) a potential
solution to address missing data caused by UM sensors, and (c) a solution to the noisy
channel problem that plagues UM approaches.

With respect to the first advantage, it is widely acknowledged that human affec-
tive expression consists of a complex coordination of signals encompassing mostly in-
voluntary (e.g., physiology), semivoluntary (facial expressions, body movements), and
voluntary (e.g., overt actions such as key presses) responses [Ekman 1992; Rosenberg
and Ekman 1994]. Analyzing multiple signals and their mutual interdependence is
expected to yield models that more accurately reflect the underlying nature of human
affective expression.

Second, UM signals suffer from notable problems associated with missing data.
For example, a speech-based affect detector is virtually useless when the user is not
speaking, while facial expressions cannot be reliably tracked when the face is out of view
or occluded. MM approaches can provide more continuous affect detection capabilities
by basing their decisions on the available channels.

The third hypothesized advantage of MM systems stems from the fact that UM af-
fect detectors are inherently noisy since the link between specific signals and affective
states is tenuous at best [Barrett et al. 2007; Russell et al. 2003]. This is partially
the case because there is no one-to-one mapping between an expression and an affec-
tive state. For example, a furrowed brow caused by squinting to focus at something in
the distance is diagnostic of a different cognitive state (information seeking) than a fur-
rowed brow that accompanies an expression of confusion [D’Mello and Graesser 2014].
Furthermore, the same affective state can be differentially expressed as a function of
the underlying eliciting stimulus. For example, a nearby spider (about to strike) and a
spider across the room elicit different responses because they require different actions
even though the underlying affective state (fear) elicited by both situations might be the
same [Coan 2010]. In general, there is a loose coupling between observable expressions
and specific affective states; hence, UM affect detectors are expected to yield moderate
accuracies as best. MM affect detectors should yield improvements over UM systems
because they are more suited to modeling the weak coupling between expression and
experience of affect.

1.2. Goals and Overview of the Present Article

It is generally expected that incorporating MM signals should yield improvements in
affect detection accuracies over UM signals. Although this assumption has obvious
face validity, it has not always been supported. For example, when compared to the
accuracies obtained by the best UM classifiers, some studies have reported impressive
MM improvements (e.g., Jiang et al. [2011], Kessous et al. [2010], Lin et al. [2012],
Paleari et al. [2009], and Wöllmer et al. [2010]), others have reported negligible or null
improvements (e.g., Emerich et al. [2009], Kim [2007], and Metallinou et al. [2012]),
and some have even reported negative effects (e.g., Glodek et al. [2011], Gunes and
Piccardi [2005], and Khalali and Moradi [2009]). The considerable interstudy variance
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in the results of MM affect detection makes it difficult to appropriately gauge what
advantages (if any) MM detection yields over UM detection. In addition, there is the
question of whether situations can be identified where MM detectors yield impressive
improvements, and whether these situations can be differentiated from those that re-
sult in null or negative effects. The present article attempts to address these questions
by analyzing 90 MM and UM affect detection accuracies reported in published studies.

Research Questions. We focus on answering three specific research questions pertain-
ing to state-of-the-art MM affect detection systems. First, what are the major trends
in contemporary MM affect detectors? More specifically, can any general conclusions
be drawn with respect to the various components (called system-level factors) of MM
affect detection systems (e.g., type of training data, modality fusion methods, affect
representation models)? Second, what is the added improvement (if any) in MM over
the best UM detection accuracy (called MM1 effect size or MM1 effects)? Third, can we
identify system-level factors that correlate with MM1 effects and can they be used to
predict MM accuracies in a manner that generalizes across our sample of 90 studies
(called moderation analyses)?

Preliminary Analyses. We have made an initial attempt to answer some of these ques-
tions (specifically the second and partially the first and third questions) by performing
a preliminary analysis of 30 published MM affect detectors [D’Mello and Kory 2012].
The results of this initial analysis indicated that MM accuracies were consistently (26
out of 30 studies) better than UM accuracies, and on average, yielded an 8.12% im-
provement over the best UM detectors. The present article substantially expands on
this initial study, both in terms of distributive breadth (the number of studies analyzed)
and analysis depth (the types of questions that can be answered with a larger sample
of studies).

Focus of Current Analyses. The focus of this article is on quantifying study-level
factors and statistically analyzing MM accuracies rather than qualitatively describing
individual affect detection systems; the latter has been extensively done in previous
surveys, although mainly on UM and/or audio-visual detection (see Calvo and D’Mello
[2010], Jaimes and Sebe [2007], Pantic and Rothkrantz [2003], and Zeng et al. [2009]).
Hence, we do not discuss individual systems and approaches in depth, but focus on
identifying general trends across systems with descriptive statistics and analyzing
MM accuracies and effects with both descriptive and inferential statistics.

It is sometimes argued that meta-analyses of this type are not feasible because it is
improper to compare accuracies across studies that differ in multiple respects. Hence,
it is important to emphasize that the present article does not make such comparisons.
Instead, MM1 effects are computed by comparing MM accuracies to UM accuracies
from the same study, a comparison that is justifiable because study-level factors are
held constant. The distribution of MM1 effects from individual studies is then statis-
tically analyzed, an approach recommended by standard texts on meta-analyses (e.g.,
Borenstein et al. [2009] and Lipsey and Wilson [2001]). In addition, the variability in
datasets, methods, and metrics used is, in fact, a major strength of meta-analytical ap-
proaches because it allows one to estimate “population effects” from individual “study
effects” by averaging across interstudy variability.

To summarize, with the exception of our preliminary study [D’Mello and Kory 2012],
this article represents the first major attempt to quantify and statistically analyze a
large set of MM affect detectors in order to make generalizable conclusions.

2. METHOD

The methodology used to search for relevant articles, the inclusion/exclusion criteria,
the data coding, and data treatment procedures are discussed in some detail in this
section to enable replication as more studies emerge in the literature.
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2.1. Search Process and Inclusion/Exclusion Criteria

A three-pronged approach was used for study selection. First, relevant journals and
conference proceedings were searched using a targeted search strategy. The journals in-
cluded IEEE Transactions on Affective Computing, IEEE Transactions on Multimedia,
and IEEE Transactions on Pattern Analysis and Machine Intelligence. Conferences
included the International Conference on Affective Computing and Intelligent Inter-
action (ACII), IEEE International Conference on Automatic Face and Gesture Recog-
nition (FG), IEEE International Conference on Multimedia and Expo (ICME), ACM
International Conference on Multimodal Interfaces (ICMI), and INTERSPEECH. The
secondary search commenced by identifying additional articles from the reference sec-
tions of articles retrieved from the targeted search and from recent survey articles
[Calvo and D’Mello 2010; Zeng et al. 2009]. Finally, the informal search proceeded by
querying Google Scholar with the following search queries: (multimodal OR bimodal)
fusion; (affect OR emotion) AND (detection OR recognition). We restricted our targeted
search to articles published within the last 5 years (2009–2013), but earlier articles
could have been retrieved in the secondary and informal searches as long as they were
published in the last 10 years (2003 and beyond).

A rather liberal inclusion/exclusion criterion was adopted in order to maximize the
number of studies considered. Any peer-reviewed publication that reported both UM
and MM affect detection accuracies in a clearly accessible format (i.e., accuracy metrics
could be easily obtained from the text, tables, or figures) was included in the analysis.
Failure to report both UM and MM accuracies unfortunately led to the exclusion of some
relevant and highly cited studies (e.g., Kapoor et al. [2007]), but this was unavoidable
due to the nature of the analytic strategy. Selection bias was avoided by never excluding
a study based on the results, publication outlet, or authors.

In all, 84 articles were selected based on the search and inclusion/exclusion criteria.
These 84 articles yielded 90 viable systems since some articles reported more than one
unique multimodal affect detector. There was a strong positive correlation between
the year (2004–2013) and the number of studies, r = 0.727, suggesting that recent
studies were more frequent in the sample. More than 60% of the studies were from the
2009–2013 period and 42% of all studies were from the 2011–2013 period.

2.2. Data Coding

The studies were coded along several system-level (or study-level) factors. The coding
process was initially performed by one of the authors and then independently checked
by the second author. Disagreements were resolved via discussion among the authors.
Table I describes how each study was coded with respect to the factors discussed in the
following.

Data type addresses whether training and validation data consisted of affective ex-
pressions that were (a) obtained by asking actors to portray various emotions (e.g.,
Castellano et al. [2008], Cueva et al. [2011], Dobrišek et al. [2013], Lingenfelser et al.
[2011], and Metallinou et al. [2012]), (b) collected via experimental methods that in-
duced specific emotions (e.g., Bailenson et al. [2008], Glodek et al. [2013], Koelstra
et al. [2012], Soleymani et al. [2012], and Wöllmer et al. [2013a]), or (c) naturalistic
displays of affect (i.e., nonacted and not induced—e.g., Castellano et al. [2009], D’Mello
and Graesser [2010], Kapoor and Picard [2005], Litman and Forbes-Riley [2004], and
Wöllmer et al. [2013b]).

While the criteria for a dataset to be categorized as acted or natural is quite clear, the
induced category requires some clarification. This designation was applied to datasets
where specific emotions were induced using well-established techniques such as show-
ing participants films (e.g., Soleymani et al. [2012]) or images (e.g., Hussain et al.
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[2012]) that were previously validated as being reliable elicitors of affect [Kory and
D’Mello 2014]. It was also applied to studies where individuals were required to par-
ticipate in interactions that were intentionally affectively charged, thereby increas-
ing the likelihood that they would respond emotionally. For example, the SEMAINE
dataset [McKeown et al. 2012] was constructed by asking individuals to engage in a
conversation with an animated agent that had one of four affective dispositions (or
personalities): angry, happy, gloomy, or pragmatic. Studies that utilized this dataset
(e.g., Karpouzis et al. [2007] and Nicolaou et al. [2011]) were categorized as “induced”
because it is likely that the affective disposition of the agent induced specific emotions
in the individual. In fact, this was the main motivation toward using agents with four
specific affective dispositions.

Number of participants simply refers to the number of unique individuals in the
training/validation dataset. It is an important factor because generalizability is related
to the number of individuals used to train the detector due to individual differences in
affect expression.

Affect representation model refers to whether ground truth affect measures for the
supervised classifiers consisted of discrete or dimensional representations. Discrete
models consider emotional episodes as belonging to one of m distinct categories (e.g.,
judging if a 30 second video of an individual’s face represents anger, sadness, or fear).
Discrete ratings do not need to be mutually exclusive since affective blends are often
experienced, yet most studies use mutually exclusive ratings for convenience (e.g.,
D’Mello and Graesser [2010], Krell et al. [2013], and Rashid et al. [2012]). Dimensional
models represent affect along one or more dimensions, primarily valence (positive-
negative) and activation/arousal (sleepy vs. awake or inactive vs. active) (e.g., Hussain
et al. [2012], Lu and Jia [2012], and Wang et al. [2013]), but occasionally extending to
other dimensions such as expectancy, power, and dominance (e.g., Baltrušaitis et al.
[2013], Glodek et al. [2013], and Wöllmer et al. [2013a]).

The affect representation model is a conceptual entity that is concerned with the
affective representation and not with the measurement scale per se. Hence, studies
involving ordinal or continuous ratings of discrete emotions were coded as discrete,
as was the case where the intensity of amusement (a discrete state) was rated via a
0 (neutral) to 8 (amused) scale (e.g., Bailenson et al. [2008]). Similarly, studies with
categorical ratings of dimensions (e.g., low vs. high ratings of valence) were coded as
dimensional (e.g., Bailenson et al. [2008]).

Affect detection model pertains to whether the machine learning models were clas-
sifiers or regressors. In most cases, classifiers and regressors were used when affect
models were discrete (e.g., D’Mello and Graesser [2010], Hommel et al. [2013], and
Rashid et al. [2012]) and continuous (e.g., Eyben et al. [2011], Kanluan et al. [2008],
and Savran et al. [2012]), respectively. However, a number of studies used dimensional
representations and collected ordinal or continuous ratings, but performed classifica-
tions instead of regressions by discretizing the scales into high versus low or high versus
medium versus low categories (e.g., Glodek et al. [2011] and Wöllmer et al. [2013a]).
For example, Wöllmer et al. [2010] used a five-point scale to measure valence and
activation, but then performed a categorical classification by performing a tripartite
split on each dimension (i.e., dividing the scale into low, medium, and high sections).
Similarly, ordinal or continuous activation-valence values were often discretized by
clustering prior to classification (e.g., Karpouzis et al. [2007]).

Number of affective states detected only applies to classification tasks and is sim-
ply the number of discrete affective states considered. It is an important factor as
the affect detection problem ostensibly becomes more challenging as the number of
discriminations increases.
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Affective states/dimensions detected pertains to the specific affective states/
dimensions in the classification/regression models. Researchers in the affective sci-
ences have proposed a number of taxonomies to categorize the discrete affective states
that occur in everyday experiences [Ekman 1992; Ortony et al. 1988; Plutchik 2001].
Broadly, the affective states can be divided into discrete basic and discrete nonbasic
states. States such as anger, surprise, happiness, disgust, sadness, and fear are typ-
ically considered to be basic affective states [Ekman 1992]. States such as boredom,
confusion, frustration, engagement, and curiosity share some, but not all, of the fea-
tures commonly attributed to basic emotions (see Ekman [1992]). Consequently, these
are labeled as nonbasic states. Some studies used a combination of both (e.g., Castellano
et al. 2008; Sebe et al. 2006] and these were coded as discrete mixed.

With respect to affective dimensions, most researchers agree that valence and arousal
(activation) are two essential dimensions to represent affect [Barrett et al. 2007; Russell
2003]. Beyond this, there is considerable debate as to which other dimensions are
needed [Fontaine et al. 2007; Kaernbach 2011]. Most studies detected valence and
arousal (coded as dimensional simple), but expectancy, power, and dominance were
also considered in some studies (coded as dimensional complex).

Number of modalities simply refers to whether the MM detectors fused two (bimodal)
or three (trimodal) modalities.

Modalities refer to the specific modalities used for affect detection. In communication
theory, modality is considered to be distinct from medium because the former focuses
on the sense via which a message is communicated (e.g., facial expression, pitch),
while the latter is concerned with the means of message communication [Sutdiffe
2008]. For example, facial expressions and gestures are different modalities that can
be communicated via the same medium (video). The present coding scheme focused on
modality instead of medium.

The specific modalities used in the 90 studies included (a) facial features extracted
from video, (b) paralinguistic or acoustic-prosodic features from the voice, (c) linguistic
or semantic features from written or spoken language, (d) body movements consisting
of postures and gestures (excluding facial features), (e) eye gaze, (f) central physiology
(only Electroencephalography—EEG), (g) peripheral physiology (e.g., Electrodermal
activity (EDR), Electrocardiography (ECG), Electromyography (EMG), respiration),
and (h) content and context.

While modalities (a)–(f) were straightforward, peripheral physiology and con-
tent/context require some clarification. With respect to peripheral physiology, although
individual channels, such as EDR, ECG, EMG, and so forth, can be analyzed inde-
pendently and treated as separate modalities, most studies fused features from these
various channels instead of considering each signal individually. For example, Chanel
et al. [2011] built (a) a peripheral model by combining galvanic skin response, blood
volume pulse, heart rate, chest cavity expansion, and skin temperature; (b) a central
physiology model (EEG); and (c) a combined peripheral + central physiology model.
In this and similar cases, the combination of the individual peripheral physiological
channels was taken as a UM detector.

Content features were gleaned from a multimedia content analysis of affect-
elicitation stimuli (e.g., low-level video features such as color, lighting [Koelstra et al.
2012]). Context features were obtained by analyzing the situation in which the affec-
tive interaction was embedded. For example, D’Mello and Graesser [2010] tracked a
number of contextual cues, such as session length, system feedback, and so on, when
individuals completed a learning session with a computer tutor. Both content and con-
text features are unique from the other modalities in that they are obtained from the
stimuli and situation rather than the individuals themselves. They were grouped as
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context/context features since there were not a sufficient number of studies to sustain
an independent analysis of each.

Fusion method pertains to the method used to fuse modalities. Possible options
include data-level, decision-level, score-level, hybrid, and model-level fusion. In data-
level fusion, individual data streams are fused prior to feature engineering (e.g., fusing
video data from two cameras). Feature-level fusion consists of independently computing
features from each modality and then fusing the features prior to classification (e.g.,
Castellano et al. [2008], D’Mello and Graesser [2010], and Litman and Forbes-Riley
[2006a]). In decision-level fusion, classification is first performed on the individual
features and the outputs (decisions) are fused via one of several voting rules (e.g.,
Kanluan et al. [2008], Koelstra et al. [2012], and Walter et al. [2011]). Score-level
fusion is related to decision-level fusion in that affect likelihoods (or probabilities)
computed by classifiers operating on independent modalities are fused (e.g., Gajsek
et al. [2010]). Only a small number of systems relied on score-level fusion, so these were
coded as decision-level fusion due to the similarity between these two methods. Hybrid
fusion combines both feature- and decision-level fusion, for example, by combining
independent decisions of individual UM classifiers with the decisions of a feature-
level fused MM classifier (e.g., Chetty and Wagner [2008] and Mansoorizadeh and
Charkari [2010]). Finally, model-level fusion takes advantage of the interdependencies
among the various modalities during the fusion process (e.g., Caridakis et al. [2006],
Eyben et al. [2010], and Metallinou et al. [2012]). When multiple fusion techniques
were implemented and compared in a single study, the fusion method that yielded the
highest accuracy was analyzed.

Validation method is concerned with whether the affect detectors are expected to
generalize to new individuals (person independent) or not (person dependent). This
is a critical distinction because (for the most part) affect detectors are intended to
be person independent but developing such systems is more challenging due to large
interindividual variability in affect. Designation of an affect detector as person depen-
dent or independent was rarely articulated in the papers, but could be inferred from
the methods used to validate the detectors. Studies that used leave-one-person-out or
leave-several-people-out validation techniques, where instances from the same individ-
ual were either in the training or testing sets but never both, were deemed to be person
independent (e.g., D’Mello and Graesser [2010], Savran et al. [2012], and Schuller
[2011]). Studies that cross-validated within an individual, or studies where person in-
dependence across training and testing sets was not carefully controlled were coded as
person dependent (e.g., Castellano et al. [2008], Litman and Forbes-Riley [2006a], and
Monkaresi et al. [2012]).

2.3. Encoding Affect Detection Accuracy

Table II provides several measures of UM and MM affect detection accuracies. The
key measures were detection accuracy of the best, second-best, and worst UM detec-
tors (Max1, Max2, and Min, respectively) and MM accuracy (MM). Most studies that
performed a categorical classification used classification accuracy (i.e., the proportion
of correctly classified instances) as the evaluation metric. In rare cases where both
classification accuracy and the F1 measure were reported, classification accuracy was
taken to be the metric in order to increase consistency among studies. The correlation
coefficient was taken as the performance metric for regression models.

MM1 effect was the key effect size metric. If a1 and a2 are accuracies associated with
two UM detectors, and a12 is the MM accuracy, then the MM1 effect was computed as
the percent improvement over the best UM detector (see Equation (1)). This metric
affords a unified analysis framework for studies that used classification accuracies, F1
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scores, or correlation coefficients to quantify performance.

MM1 effect = 100 ∗ a12 − max(a1, a2)
max(a1, a2)

. (1)

In addition to the MM1 effect, MM2 and MMMin effects were also computed as the
percent MM improvement over the second-best and worst UM detectors. These are
important metrics to test for inhibition effects, which occur when MM accuracies are
lower than underperforming UM detectors.

It is important to note three points about the data presented in Table II. First,
accuracy scores associated with the best-performing detector were used when multiple
detectors or multiple fusion techniques were considered for the same classification task.
For example, Soleymani et al. [2012] reported both feature-level and decision-level MM
accuracies. Decision-level fusion yielded higher accuracies, so only decision-level fusion
results were used in the subsequent analyses.

Second, several studies performed multiple discriminations on the same set of af-
fective states. For example, D’Mello and Graesser [2010] developed one classifier to
predict four affective states and another to predict an overlapping but different set of
five affective states. Similarly, the study by Eyben et al. [2011] contributed five data
points by independently predicting five affect dimensions (i.e., activation, expectancy,
intensity, power, and valence). In general, one data point was obtained for the studies
that performed a categorical classification. It was the dimensional studies that con-
tributed multiple data points because the number of models increases proportional
to number of dimensions considered. In all, data from 124 classification tasks was
obtained. These 124 data points were reduced to the 90 shown in Table II after the
aggregation procedure discussed next.

Third, when multiple classification tasks on the same dataset were performed, the one
closest to real-world performance was retained. For example, if text-based models were
built on automatically recognized and human-transcribed speech (e.g., Litman and
Forbes-Riley [2006b]), then the former was analyzed. Similarly, person-independent
validation results were used when both person-dependent and person-independent
validation methods were reported (e.g., D’Mello and Graesser [2010]). For the same
reason, event-level or segment-level analyses with a temporal resolution in seconds
were preferred over frame-level analyses with a temporal resolution in milliseconds
because affective phenomena operate across a coarser time span ranging from a few
seconds to tens of seconds [D’Mello and Graesser 2011; Rosenberg 1998].

2.4. Data Treatment

Data from 124 classification tasks were subjected to aggregation, winsorization, and
standardization procedures as noted in the following.

Aggregation. Studies that performed multiple classification tasks on the same
dataset would bias the results and would violate independence assumptions of the
inferential statistical analyses applied to the data. Therefore, the data reported in Ta-
ble II consists of average scores across multiple classification tasks on the same dataset.
For example, the five correlation coefficients from the Eyben et al. [2011] study dis-
cussed previously were averaged to yield one data instance. Studies that reported
multiple classification tasks on different datasets were analyzed as separate data in-
stances (e.g., Rosas et al. [2013] where results corresponding to two distinct datasets
were reported in the same article).

Winsorization (Outlier Treatment). An examination of the MM, Max1, Max2, and
Min accuracy distributions did not yield any outliers, which, following standard con-
ventions, were defined as values exceeding three standard deviations from the mean.
However, the MM1, MM2, and MMMin effects yielded two, one, and two outliers,
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respectively. These outliers were replaced with the values corresponding to three stan-
dard deviations from the means of each distribution (60.7%→55.5%; 91.9%→55.5% for
MM1 effect; 275%→168% for MM2 effect; and 217%→182% and 275%→182% for MM-
Min effect), akin to a Winsorization procedure [Tukey and McLaughlin 1963], which is a
widely used technique for outlier treatment. Paired-sample t-tests on the distributions
before and after outlier replacement did not yield significant differences (p > 0.10) for
any of the three MM effects, thereby indicating that this method of treating outliers
had no unintended effects.

Standardization. The three MM effects represent percent improvements over a base-
line, so they are not sensitive to differences in accuracy metrics. However, raw detector
accuracy scores were quantified in terms of percent correct (recognition accuracy),
correlation coefficient, or F1 measure. These different metrics raised issues for the sta-
tistical methods used to analyze the raw detection accuracy scores (Max1, Max2, and
Min). Hence, these measures were standardized (i.e., z-scores were computed) within
each metric prior to the analyses.

3. RESULTS AND DISCUSSION

The results are presented with respect to the three major research questions listed in
the Introduction: (a) What are the major trends in contemporary MM affect detectors?
(b) What is the added improvement (if any) of MM affect detection accuracy (MM1
effects) over the best UM detectors? (c) Can we identify system-level factors identified
in (a) that are predictive of MM1 effects analyzed in (b)?

It is useful to clarify our terminology before proceeding. System and study are used to
refer to a multimodal affect detector (system) and its validation (study). Effects refer to
percent improvement in MM accuracies over UM accuracies (MM1, MM2, and MMMin
effects), while accuracies refer to affect detector performance represented as z-scores
following metric-level standardization of percent correct, F1, and correlation coefficient
(see Section 2.4).

3.1. Major Trends in MM Affect Detectors

Table III lists descriptive statistics on the various system-level factors described in
Section 2.2.

Data Sources. We note that on average MM detectors were constructed from affective
data from 21.2 participants (not shown in Table III). There was also considerable
variability (SD = 37.8) in the number of participants used for model building, ranging
from a single participant [Busso et al. 2004; Haq et al. 2008] to 343 participants
[Wöllmer et al. 2013b]. An examination of the distribution indicated that 25% of the
studies had five participants or fewer, 50% had 12 participants or fewer, and 97% of
studies had fewer than 50 participants.

The data also indicated that the MM detectors were more likely to be trained on
actor-portrayed affective displays (>50% of studies) rather than on more spontaneous
expressions that were either experimentally induced or naturally occurred.

Affect Models. As is evident in Table III, approximately two thirds of the affect
detectors focused on discrete (or categorical) affect models and performed classification
tasks. Even though one third of the studies used dimensional models of affect, only 7.8%
performed regressions. This was because several studies either collected categorical
measures of affect dimensions (e.g., low or high arousal) or discretized continuous
measures (e.g., via median splits or by applying clustering). On average, the classifiers
discriminated 4.71 affective states (SD = 2.28; median = 4 states), with a minimum
of 2 and a maximum of 12 (not shown in Table III). The results also revealed that
approximately one third of the affect detectors exclusively focused on discriminating
the basic emotions, while less than 10% primarily focused on nonbasic emotions. Even
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Table III. Descriptive Statistics on Study Features

Dimension Prop. Dimension Prop.
Data type Measure. model

Acted 0.522 Disc. 0.644
Induced 0.278 Dim. 0.356
Natural 0.200

Detection model Affect detected
Classification 0.922 Disc. basic 0.367
Regression 0.078 Disc. nonbasic 0.078

Disc. mixed 0.178
No. of modalities Dim. simple 0.278

Bimodal .867 Dim. complex 0.100
Trimodal .133

Fusion method
Modality Feature 0.389

Face 0.767 Decision 0.356
Voice 0.822 Hybrid 0.056
Text 0.167 Model 0.200
Body 0.133
Eye Gaze 0.011 Validation method
Peri. physio. 0.111 Person indep. 0.378
Central physio. 0.056 Person dep. 0.622
Content 0.067

Notes: Prop. = Proportion; Peri = Peripheral; Physio. =
Physiology; Content = Content/Context; Measure. = Mea-
surement; Disc. = Discrete; Dim. = Dimensional; Indep. =
Independent; Dep. = Dependent.

though 17.8% of the studies included a mixture of basic and nonbasic emotions, these
studies mainly focused on basic emotions with one or two nonbasic emotions. Hence,
more than 50% of the studies had a primary focus on the basic emotions.

The two primary dimensions of valence and arousal dominated the dimensional
models (approximately 30% of studies) with 10% of studies modeling more complex
dimensions. In all, 48 affective states (including dimensions) were modeled in the 90
studies (not shown in Table III). Only nine of the 48 affective states (18.8%) appeared
in more than 5% of the studies, and these nine states collectively accounted for 76% of
the states detected across all studies. The nine frequent states were (a) the six basic
emotions—anger (12%), sadness (11%), happiness (9%), fear (7%), disgust (7%), and
surprise (7%); (b) the two primary dimensions of valence (8%) and arousal (7%); and
(c) the state of no apparent feeling (8%) or neutral.

Modalities. The face and voice were the most commonly used modalities, each oc-
curring in over 75% of the studies. Text, body movements, and peripheral physiology
were individually used in at least 10% of the studies. Eye gaze, central physiology, and
context/content models were relatively infrequent.

Fifteen unique MM combinations were noted in the 90 studies. Of these, most were
bimodal (86.7%) systems, while a handful were trimodal systems. Audiovisual systems
(face + voice) comprised 55.6% of the MM systems, followed by speech + text (11.1%)
and face + speech + text (5.6%). These three combinations accounted for 72.3% of
the systems. In addition, voice + peripheral physiology, face + body movements, and
face + voice + body movements each accounted for 4.4% of the MM systems. In all,
these six MM combinations accounted for 85.6% of the systems, while the remaining
nine combinations were quite infrequent (each observed in <4% of the studies).

Fusion Methods. Several studies tested multiple fusion methods, so it was difficult
to accurately estimate if a particular method was used more frequently than others.
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Fig. 1. Histogram (left) and kernel smoothing density estimation (right) of distribution of MM1 effects.

When multiple methods were used in the same study, we only recorded the method
that yielded the best performance, because the final detector would presumably use the
best-performing method. As noted in Table III, feature-level and decision-level fusion
were dominant and were collectively observed in approximately 75% of the studies.
Model-level fusion was somewhat less frequent (20%), but occurred at nontrivial rates.
Data-level fusion was nonexistent and hybrid fusion was rare.

The most common feature-level fusion strategy simply involved concatenating fea-
ture vectors from individual modalities (e.g., D’Mello and Graesser [2010] and Forbes-
Riley and Litman [2004]) with or without feature selection. The decision-level fu-
sion methods usually relied on simple voting rules (e.g., Dy et al. [2010] and Gajsek
et al. [2010]), but more nuanced ways of decision making were also proposed. Some of
these include metadecision trees [Wu and Liang 2011], cascading specialists [Kim and
Lingenfelser 2010; Wagner et al. 2011], Kalman filters [Glodek et al. 2013], Bayesian
belief integration [Chanel et al. 2011], and Markov decision networks [Krell et al. 2013].
There was considerable variation in model-level fusion methods, but bidirectional long
short-term memories [Eyben et al. 2010; Metallinou et al. 2012; Wöllmer et al. 2010,
2013a], various HMM-based approaches (error-weighted semicoupled HMMs [Lin et al.
2012], multistream HMMs [Zeng et al. 2005, 2007], boosted multistream HMMs [Zeng
et al. 2006], boosted coupled HMMs [Lu and Jia 2012]) and Bayesian-based approaches
(e.g., Jiang et al. [2011], Paleari et al. [2009], Sebe et al. [2006], and Wang et al. [2013])
were most prominent.

Validation Methods. Tenfold cross-validation at the segment (or frame) level was the
most popular validation method. This method was used in 62.2% of the studies. This
validation method is problematic when the goal is to build person-independent models
(which is usually the goal), since instances from the same individual are in both the
training and testing sets. In contrast, leave-one-subject-out or leave-several-subjects-
out validation methods guarantee training and testing independence, but were used
with considerably less frequency (37.8% of studies).

3.2. MM Effects and Accuracy

The data were analyzed in terms of (a) MM improvement over best UM accuracies
(MM1 effects), (b) MM improvement over second-best (MM2 effects) and worst (MMMin
effects) UM accuracies, and (c) relationships between UM and MM accuracies.

Overall MM Effects (MM1 Effect). The distribution of MM1 effects is presented in
Figure 1. A one-sample t-test indicated that the mean MM1 effect of 9.83% significantly
differed from zero, t(89) = 8.08, p < 0.001, d = 0.85 sigma (large effect1). This suggests

1Cohen’s d is a common effect size statistic in standard deviation units (sigma) between two samples
with means M1 and M2 and standard deviations s1 and s2 [Cohen 1992]. According to Cohen, effect
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Fig. 2. MM1 effects (Y axis) by study number (X axis) ordered by effect size (ascending order).

Table IV. Grouping of MM1 Effects

Number of Percent of Cumulative
Group Studies Studies (%) Percent (%)
MM1 � −1 5 5.56 5.56
−1 < MM1 � 1 8 8.89 14.4
1 < MM1 � 5 21 23.3 37.8
5 < MM1 � 10 23 25.6 63.3
10 < MM1 � 20 20 22.2 85.6
20 < MM1 � 30 8 8.89 94.4
MM1 > 30 5 5.56 100.0

that, on average, the MM detectors yield positive improvements in performance com-
pared to the best UM detectors.

There was considerable variance in the MM1 effect distribution. MM1 effects ranged
from −14.2% to 52.5% with a standard deviation of 11.5%. The large range and the
fact that the standard deviation was greater than the mean, suggests that the median
value of 6.60% might provide a more accurate estimate of the central tendency of the
distribution than the mean.

To examine the distribution of MM1 effects more closely, we sorted the distribution
(see Figure 2), divided it into several categories of practical interest (see Table IV) and
computed the percent of studies falling into each category. This analysis indicated that
14.4% of the studies either yielded negative or negligible (�1%) MM1 effects. Results
for the remaining 85% of the studies were much more positive in that roughly half
of the studies yielded either small 1%–5% or medium-sized (5%–10%) MM1 effects.
Approximately 35% of the studies yielded impressively large effects (>10%).

MM2 and MMMin Effects. MM2 and MMMin effects are identical for the studies that
only considered two modalities (87% of studies), yet we analyze these effects separately
because there were some subtle differences in their distributions. MM2 effects ranged
from 4.40% to 168.4% with an impressive mean of 40.0% (SD = 36.9%). MMMin effects
had a mean of 43.7% (SD = 40.0%) and a range of 4.40%–182.3%. Given the large

sizes approximately equal to 0.3, 0.5, and 0.8 represent small, medium, and large effects, respectively.

d = (M1 − M2)/

√
s2
1 +s2

2
z .
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Fig. 3. Scatter plots denoting relationships between MM and UM accuracy along with regression line for
(a) regression of MM (Multi) on best UM (Uni 1) accuracy; (b) regression of MM (Multi) on second-best UM
(Uni 2) accuracy; (c) same as (a) but after controlling for second-best UM accuracy; and (d) same as (b) but
after controlling for best UM accuracy.

standard deviations, the median values of 27.9% and 29.4% for MM2 and MMMin
effects, respectively, might be a more accurate summary statistics of these distributions.
One-sample t-tests indicated that the mean MM2 effect significantly differed from zero,
t(89) = 10.3, p < 0.001, d = 0.1.08 sigma, as did the mean MMMin effect, t(89) = 10.4,
p < 0.001, d = 1.09 sigma. Furthermore, paired samples t-tests indicated that the
mean MM2 effect was significantly, t(89) = 8.18, p < 0.001, and substantially (d = 1.11
sigma) greater than the mean MM1 effect (9.83%) A similar finding was discovered
when MMMin effects were compared to MM1 effects, t(89) = 8.59, p < 0.001, d = 1.15
sigma. In general, MM2 and MMMin effects were approximately four times greater
than MM1 effects, so MM detectors were substantially more accurate than their less
effective UM counterparts.

Relationships between UM and MM Accuracies. There was a very robust correlation
between best UM and MM accuracies, r(88) = 0.870, p < 0.001. The correlation be-
tween second-best UM and MM accuracies was notable, but smaller, r(88) = 0.681. Best
and second-best UM accuracies were also strongly correlated, r(88) = 0.725, p < 0.001.

We simultaneously regressed MM accuracy (dependent or predicted variable) on
best and second-best UM accuracies (independent or predictor variables). The model
was significant, F(2, 87) = 139.7, p < 0.001, and explained a robust amount of the
variance,2 R2 = 0.763; f 2 = 3.22. The best UM accuracy was a significant predictor
(β = 0.795, p < 0.001) but second-best UM accuracy was not (β = 0.104, p = 0.174).
This indicates that much of the variance in MM accuracy can be explained by the best
UM accuracy.

These patterns are shown in Figure 3, where we note that the linear relationship
between MM and best UM accuracy (Figure 3(a)) is retained after controlling for second-
best UM accuracy (Figure 3(c)). However, the linear relationship between MM and

2R2 or the coefficient of determination is used to assess goodness of fits of regression models. Using Cohen’s

recommended conventions [Cohen 1992], effect sizes are expressed as Cohen’s f 2 = R2

1−R2 and values of 0.02,
0.15, and 0.35 are taken to signify small, medium, and large effects, respectively.
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second-best UM accuracy (Figure 3(b)) essentially disappears after controlling for best
UM accuracy (flat line in Figure 3(d)).

Hence, the final model simply consisted of predicting MM accuracy from best UM
accuracy. This model was significant, F(1, 88) = 274.8, p < 0.001, and robust, R2 =
0.757, f 2 = 3.12. The standardized model coefficient (β weight) was 0.870, which
indicates that a 1 unit (in standard deviation units) increase in best UM accuracy
results in a 0.870 unit increase in MM accuracy.

To address the question of whether this regression model generalizes to new studies,
we performed a between-study 10-fold cross-validation analysis, which yielded an R2

of 0.746, which was very similar to R2 on the entire training set (0.757). The very small
discrepancy of 0.011 suggests that the regression model is expected to generalize to
new studies.

There is the question of whether MM accuracy increases, decreases, or remains
unchanged as a function of the difference between best and second-best UM accuracies.
To address this question, we retained the residuals (prediction errors or unexplained
variance) after regressing best on second-best UM accuracies. MM accuracy was then
regressed on the residual. The resultant model was significant and explained a modest
amount of variance, F(1,88) = 37.6, p < 0.001, R2 = 0.299, f 2 = 0.43, β = 0.574.
This finding suggests that MM accuracy improves in relation to the difference between
best and second-best UM accuracies. Put simply, MM accuracy was higher when UM
accuracies were more independent.

3.3. Moderation Analysis

Section 3.1 analyzed general trends in the design of MM affect detectors (system-level
factors) while Section 3.2 quantified performance in terms of MM effects. In this section,
we assess whether the system-level factors can predict MM performance.

The analyses proceeded by independently regressing MM1 effects and MM accuracy
on the eight system-level factors listed in Table III plus the number of participants
and number of affective states (10 total). Eight out of these 10 factors were categor-
ical variables, so these were dummy coded prior to constructing the models. It was
not possible to consider every unique modality combination given that there were 15
modality combinations and only 90 data points. However, since 55.6% of the modality
combinations were face + voice, we created a new indicator variable and coded it as a 1
for face + voice and a 0 for other modality combinations. Furthermore, given that only
five studies reported hybrid fusion, these studies were removed prior to constructing
the model for fusion method.

Predicting MM1 Effects. The resultant models for predicting MM1 effects are shown
in Table V, where k is the number of studies used to construct each model. F is the
test statistic for model significance (p value is in parentheses) and R2 is the measure
of model fit. Significant (p < 0.05) models were discovered for data type, number of
affective states, and classifier fusion method, but not for the remaining seven factors.

The significant model for data type yielded a small- to medium-sized effect ( f 2 =
0.087). A test of model coefficients indicated that MM1 effects for detectors built from
natural data were statistically equivalent to those built from induced data (p = 0.299),
but were significantly (p = 0.009) lower than detectors built from acted data. The
induced models yielded quantitatively lower MM1 effects than the acted models, but
the difference was not quite significant (p = 0.102). These patterns are graphically
depicted in Figure 4(a), where we note a negative linear relationship between MM1
effects and authenticity of training and validation data (mean MM1 effects = 12.7%,
8.19%, and 4.59% for acted, induced, and natural data, respectively). More precisely,
if data type is numerically coded along an authenticity dimension, with 1, 2, and 3
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Table V. Regression Models for Predicting MM1 Effects

Significance and Fit
Dimension k F (p) R2

Number of participants 88 0.004 (0.947) 0.000
Data type 90 ∗∗3.80 (0.026) 0.080
Affect representation model 90 1.25 (0.267) 0.014
Affect detection model 90 0.329 (0.567) 0.004
Affect states detected 90 0.828 (0.511) 0.037
Number of affective states 83 ∗∗6.77 (0.011) 0.077
Number of modalities 90 1.02 (.316) .011
Modality (face + voice vs. other) 90 2.08 (.153) .023
Fusion method 85 ∗∗4.96 (0.009) 0.108
Validation method 90 0.133 (0.716) 0.002
Note: ∗∗denotes significant models at the p < 0.05 level.

Fig. 4. Mean MM1 effect by (a) data type and (b) fusion method. Error bars are 95% confidence intervals.

representing acted, induced, and natural data, respectively, then there is a negative
−0.245 (p = 0.020) correlation between data authenticity and MM1 effects.

The results also indicated that MM1 effects could be predicted from the number of
affective states in the 85 studies that built classifiers instead of regressors. This model
also yielded a small- to medium-sized effect ( f 2 = 0.083). Interestingly, the number of
affective states was a positive predictor (β = 0.278), so MM1 effects improved when
more affective states were considered. One tentative interpretation of this finding is
that the classification problem becomes more difficult when more affective states are
considered and the additional modalities have more to contribute in this situation.

The third significant model had MM fusion type as the predictor and also yielded
with a small- to medium-sized effect ( f 2 = 0.121). An analysis of the model coefficients
indicated that MM1 effects associated with feature- (M = 7.73%) and decision-level
(M = 6.68%) fusion were statistically equivalent (p = 0.661), but were lower than
MM1 effects for model-based fusion (M = 15.3%, p < .05; see Figure 4(b)). This finding
should be interpreted with caution because it does not represent direct comparisons of
different fusion techniques on the same datasets and classification tasks. Instead, it
simply suggests that, on average, model-level fusion yielded higher MM1 effects than
feature-level and decision-level fusion.

Predicting MM Accuracy. In Section 3.2, we reported that 75.7% of the variance in
MM accuracy was explained by the best UM accuracy. We investigated if this model
could be improved by adding system-level factors. The analyses proceeded by testing if
each system-level factor explained unique variance in MM accuracy after accounting
for best UM accuracy (our previous model). This was accomplished with 10 hierarchical
linear regressions with UM accuracy as the predictor for the Step 1 models and each
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system-level factor as individual predictors in the Step 2 models. A significant change
in R2 from Step 1 to Step 2 would indicate that the system-level feature under con-
sideration explained additional variance in MM accuracy above and beyond best UM
accuracy.

The results yielded significant R2 changes (�R2) for data type (�R2 = 0.034, p =
0.002), affect representation model (�R2 = 0.011, p = 0.046), number of affective states
classified (�R2 = 0.025, p = 0.005), and fusion method (�R2 = 0.014, p = 0.041), but
not for number of subjects (�R2 = 0.001, p = 0.633), affect detection model (�R2 =
0.00, p = 1.00), affect states detected (�R2 = 0.019, p = 0.144), number of modalities
(�R2 = 0.00, p = 0.936), modality (face + voice vs. other: �R2 = .009, p = .068), and
validation method (�R2 = 0.06, p = 0.137).

Examining coefficients of models with significant �R2 indicated that (a) detectors
developed from induced and natural affect had MM accuracies that were on par but
significantly (p < 0.01) lower than detectors developed from acted data, (b) detectors
that used discrete affect models yielded significantly (p = 0.043) higher accuracies
than their dimensional counterparts, (c) MM accuracies increased (p = 0.005) when
more affective states were classified, and (d) model-level fusion resulted in significantly
(p < 0.05) higher MM accuracies than feature- and decision-level fusion.

Next, we created a model that predicted MM accuracy when these four key factors
(data type, affect representation model, number of affective states, and fusion method)
were considered simultaneously. This model was constructed using a forward feature
selection approach, where features were incrementally added if they improved model
fit. It should be noted that due to missing data (elimination of five studies that used
hybrid fusion and number of states not applicable in the seven studies that developed
regressors), this model was constructed from 78 out of the 90 studies. The Step 1 model
on these 78 studies with the best UM accuracy as a predictor yielded an R2 of 0.796
(note the difference from the 0.757 R2 reported earlier on all 90 studies). The Step 2
model had an R2 of 0.832, which represented a significant improvement (�R2 = 0.036,
p = 0.014) from the Step 1 model. The significant predictors that were retained by
forward feature selection were best UM accuracy (β = 0.879, p < 0.001), whether the
training data was acted (coded as 1) or not (coded as 0) (β = 0.138, p = 0.006), and
whether model-level fusion (coded as 1) was used in lieu of feature and decision fusion
(coded as 0) (β = 0.122, p = 0.014). Finally, 10-fold cross-validation yielded an R2 of
0.803. The very small discrepancy of 0.029 from R2 on entire training data is suggestive
of excellent generalizability of the final model.

4. GENERAL DISCUSSION

Timely surveys that synthesize research are critical in any burgeoning research area.
The qualitative nature of surveys can be complemented with quantitative meta-
analyses, an invaluable scientific tool for approximating a population variable from
effects obtained in individual studies that vary along multiple dimensions [Borenstein
et al. 2009]. In this article, we identified 90 contemporary MM affect detectors from
the peer-reviewed literature, coded and descriptively analyzed each detector along 10
dimensions, performed a meta-analysis on MM accuracy as compared to UM accuracy
(MM effects), and identified important system-level moderators of MM1 effects. In
this section, we summarize our major findings along with their applied implications,
discuss their theoretical implications, address limitations, offer recommendations for
future work, and make concluding remarks.

4.1. Major Findings and Applied Implications

The major findings are organized with respect to the three research questions listed
in the Introduction: (a) identifying major trends in MM affect detectors, (b) analyzing
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MM effects and MM accuracy, and (c) identifying the factors that moderate MM effects
and accuracies.

Major Trends in MM Affect Detectors. The first surveys on automated affect detection
emerged over a decade ago [Cowie et al. 2001; Pantic and Rothkrantz 2003]. According
to these pioneering surveys, and at the risk of overgeneralization, the state of the art
in affect detection in 2003 and earlier could be summarized as “the use of basic sig-
nal processing and machine learning techniques, independently applied to still frames
(but occasionally to sequences) of facial or vocal data, to detect exaggerated context-
free expressions of a few basic affective states that are acted by a small number of
individuals with no emphasis on generalizability.” Based on the present analysis, sub-
jective interpretation, and somewhat overgeneralization, the 2013 state of the art can
be summarized as “the use of basic and advanced signal processing and machine learn-
ing techniques, independently and jointly applied to sequences of primarily facial and
vocal data, to detect exaggerated and naturalistic context-free and context-sensitive
expressions of a modest number of basic affective states and simple dimensions that
are acted or experienced by a modest number of individuals with some emphasis on gen-
eralizability.” The italicized items in the previous summary reflect important changes
in the state of the art from 2003 to 2013. Based on this comparison, it is clear that con-
siderable progress has been made, although there is still more to be done. We discuss
some of the remaining issues with respect to the following four aspects: authenticity,
utility, scope, and generalizability.

Authenticity refers to the naturalness of training and validation data and is directly
related to the extent to which an affect detector developed in the lab can be applied
in the real world. The fact that more than 50% of the affect detectors were based
on acted data is of some concern since spontaneous and acted expressions differ in
surprising ways. A striking example is a study that found that individuals rarely smile
when generating posed expressions of frustration, but smiles were discovered in 90%
of instances of spontaneous frustration [Hoque and Picard 2011].

Utility refers to whether the affect detectors can be expected to be useful in real-world
contexts. Assuming that detection accuracy will eventually be sufficiently accurate, the
question is whether the affective states that are detected are relevant in the real-world
contexts of use (e.g., editing a word document on a computer). This is a critical issue
since more than 50% of the studies primarily focused on detecting the basic emotions of
anger, sadness, fear, frustration, disgust, and surprise. This is a bit unfortunate because
it has been asserted that many interactions with computers and even human-human
interpersonal communication rarely involve the basic emotions [Cowie et al. 2005; Zeng
et al. 2009]. Some recent evidence for this assertion can be found in a meta-analysis
on 24 studies that collectively tracked the emotions of over 1,700 students during
interactions with a range of learning technologies [D’Mello 2013]. The major finding
was that engagement, confusion, boredom, curiosity, frustration, and happiness were
the most frequent affective states. With the exception of happiness, which occurred
with some frequency, the basic emotions were rarely observed in over 1,200 hours of
interaction.

Scope (in this context) simply refers to the landscape of configurations that were
covered by the affect detectors. In addition to the basic versus nonbasic emotion im-
balance discussed previously, perhaps the greatest disparity emerges in the modality
combinations. More specifically, the eight modalities identified in Table III afford 28
and 56 unique bimodal and trimodal combinations, respectively. However, only 15 out
of the possible 84 (28 + 56) combinations (17.9%) were observed at least once in the
data. Six of these (7.14% of possible combinations) were represented in more than 85%
of the studies, while the face + voice, which represents a mere 1.19% of possible modal-
ity combinations, was the focus of more than half of the studies. Indeed, the explored
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MM space is sparse and there is both the room for and the need to consider different
modality combinations.

Generalizability pertains to an affect detector’s ability to maintain its level of ac-
curacy when applied to new individuals and to new or related contexts. One way to
facilitate generalizability is to collect training data in diverse contexts and from a large
number of individuals. There is clearly more work to be done in this respect since 97%
of the studies collected training and validation data from fewer than 50 individuals and
usually in a single context (e.g., watching videos, interacting with a specific interface).
Generalizability across the individual can be assessed via person-independent models,
where training and validation data are completely independent. As noted in Table III,
about 40% of the studies used person-independent validation methods, so there is some
confidence on their generalizability (across individuals). Unfortunately, no clear case
for generalizability can be made for the remaining 60% of studies that used person-
dependent validation methods. Furthermore, no notable efforts were made to assess
generalizability across tasks, situational contexts, datasets, and cultures. This is par-
ticularly important since emerging data suggests that models trained on individuals
from one demographic do not necessarily generalize to another [Ocumpaugh et al.
2014].

MM Effects and Accuracy. A number of important conclusions can be drawn from the
analysis of MM effects and MM and UM accuracies. Over 85% of the studies resulted
in MM1 effects greater than at least 1%. This provides important evidence that MM
classifiers do outperform their best UM counterparts. The sizes of the mean (9.83%)
and median (6.60%) MM1 effects resemble modest improvements over UM accuracy.
Importantly, however, MM1 effects associated with detectors trained on naturalistic
data (4.59%) were three times lower than detectors trained on acted data (12.7%).
Since the ultimate goal of affect detection is to sense naturalistic affective expressions,
the modest 4.59% effect might represent a more accurate estimate of state-of-the-art
multimodal affect detection improvement.

The question of whether this modest improvement in accuracy obtained by MM
systems is worth their increased complexity is a question that is best addressed at
the application level. It should also be noted that the present study only evaluated
MM detectors from a single dimension, namely, performance improvements over UM
detectors. However, MM detectors have additional advantages, such as providing higher
fidelity models of affect expression and the ability to address missing data problems
that can cripple UM detectors. Furthermore, the analysis that focused on assessing MM
performance improvements over the second-best and worst UM classifier indicated
that although combining modalities yields modest improvements in affect detection
accuracies, considering multiple individual modalities can have a major impact on
performance. This is because performance would be severely impacted if only one
modality was modeled and in the worst case if it always happened to be the lower
performing modality.

Turning back to MM1 effects, one reason for their relatively modest size, especially
for the systems trained on more naturalistic data, is that there might be consider-
able redundancy among the different modalities. Strong correlations among the best
UM, second-best UM, and MM accuracies provide some evidence to support this view.
Evidence for redundancy among modalities can also be obtained by the fact that the
best UM accuracies predicted 75.7% of the variance in MM accuracies and this finding
generalizes to new studies. Impressive MM1 effects are not expected if the different
modalities convey similar information, albeit in different ways. The analysis that found
that MM accuracies increased when UM accuracies were more dissimilar provides some
evidence in support of this claim.
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The lower multimodal effects for natural emotional expressions compared to acted
expressions might also be attributable to several differences among the two. In particu-
lar, some aspects of acted expressions that are conducive to multimodal effects include
increased intensity (since they are usually exaggerated), decreased variability (since
they are generated out of context), increased coordination between different modalities
(since prototypical emotions are invoked), and increased specificity (since there is lower
likelihood of multiple emotions being experienced) [Barrett 2006; Russell 2003].

Factors that Moderate MM Effects. We examined 10 system-level factors and iden-
tified three that moderated MM1 effects. We discovered that MM1 effects were posi-
tively impacted by acted data (vs. induced or natural data), number of affective states
classified, and when model-level modality fusion methods were used (vs. feature or
decision level). Two out of these four system-level factors (acted vs. nonacted data and
model-level vs. non-model-level fusion) yielded a 3.6% improvement in predicting MM
accuracy over best UM accuracy. Furthermore, fit of the final model with all three
predictors was excellent (R2 of 0.832), and generalizes to new studies as verified with
a 10-fold study-level cross-validation analysis.

The final model, specified in Equation (2), can be used by researchers to predict
expected multimodal classification accuracy (proportion of cases correctly classified
ranging from 0 to 1) prior to even constructing the classifiers. Best unimodal accuracy
is the classification accuracy (as a proportion ranging from 0 to 1) of the best UM
detector. Data type acted is an indicator variable set to 1 for acted data and 0 for
induced data. Model-level fusion is also an indicator variable set to 1 for model-level
fusion and 0 for feature- and decision-level fusion.

MM accuracy = 0.900 × Best unimodal accuracy + 0.273 × Data type acted
+ 0.312 × Model level fusion − 0.253 (2)

4.2. Theoretical Implications

The fact that combining MM accuracies yielded modest improvements has important
implications for psychological theories of emotion. These theories in turn guide much
of the affect detection models, so alignment of our findings with emotion theory has
implications for next-generation affect detection systems.

The classical model of emotion, which was proposed by Tomkins [1962], Ekman
[1992], and Izard [2007], and others, posits that discrete “affect programs” produce the
physiological, behavioral, and subjective changes associated with a particular emotion.
According to this theory of “basic emotions,” there is a specialized circuit for each ba-
sic emotion in the brain. Upon activation, this circuit triggers a host of coordinated
responses in the mind and body. In other words, an emotion is expressed via a sophisti-
cated synchronized response that incorporates peripheral physiology, facial expression,
speech, modulations of posture, affective speech, and instrumental action. This predic-
tion is very relevant to affect detection because it suggests that MM affect detection
should be more reliable due to this coordinated recruitment of response systems.

In contrast to this highly integrated, tightly coupled, central executive view of emo-
tion, researchers have recently argued in favor of a disparate, loosely coupled, dis-
tributed perspective [Coan 2010; Lewis 2005]. According to this contemporary view,
there is no central affect program that coordinates the various components of an emo-
tional episode. Instead, these components are loosely coupled and the specific context
and appraisals determine which bodily systems are activated. These models would
accommodate the prediction that in most cases a combination of modalities might con-
ceivably yield small improvements in classification accuracies. Hence, other than the
rare cases of prototypical emotions, or in artificial experimental contexts involving
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acted emotions, modest multimodal effects might be expected. Indeed, this is exactly
what was observed in the present analysis.

4.3. Limitations and Future Work

There are five primary limitations to this work. The first pertains to the comprehen-
siveness of the studies that were analyzed. Our goal was to obtain a reasonably large
sample of MM studies rather than attempting to analyze every single study in the lit-
erature. This is defendable because one does not need to study an entire population to
estimate its parameters. Furthermore, almost all of the tests of statistical significance
yielded significant results and we show evidence for model generalizability, thereby
suggesting that our sample size of 90 studies was adequate to detect the relatively
large effects in our data.

The second limitation was that there was some imbalance with respect to the modal-
ities, data, evaluation metrics, and affective states classified. For example, a majority
of the studies we analyzed focused on audio-visual affect recognition, so the results
are somewhat biased toward these systems. It is important to note, however, that this
imbalance in our study is linked to a similar imbalance in the current state of the
art. Specifically, most studies focus on the audio and visual modalities, while central
physiology, gaze, and content/context-based sensing are comparatively rare. Peripheral
physiological-based affect sensing (i.e., biosignals) are quite common affect detection
modalities, but these are not often combined with face, voice, text, and other modalities.

A third limitation that befalls all meta-analyses is the possibility of publication bias.
This is because it is likely that the papers that report positive MM1 effects are more
likely to be published, and subsequently included in this meta-analysis, than papers
that report negligible or negative effects. We suspect that this might not be a severe
issue in the present study, since approximately 15% of the studies reported negative or
null (<1%) MM1 effects, but there is no clear way to assess publication bias with the
present data.

A fourth limitation is that the present study is more consistent with an informal
meta-analytic approach rather than a more formal meta-analysis procedure. This was
due to a lack of available information needed to perform a formal meta-analysis. More
specifically, one of the key steps in conducting a meta-analysis is to inversely weight the
effect size with respect to its error, but error estimates on affect detection accuracies
were never reported in the papers we analyzed. This also precluded the use of well-
established techniques to identify and correct for publication bias like trim-and-fill
procedures [Duval and Tweedie 2000].

Fifth, the somewhat large timespan (roughly 10 years) of the studies included in this
analysis might also be of some concern since the newer classification and fusion meth-
ods were unavailable for some of the older studies. Although the selection procedure did
bias newer studies in lieu of older ones, it is possible that the older studies might have
yielded better multimodal accuracies if some of the latest multimodal fusion methods
were used. However, this does not appear to be a major concern as publication date
(normalized so that the earliest study in 2004 was coded as 0, 2005 as 1, and so on) was
not correlated with MM1 (r(88) = 0.042, p = 0.696), MM2 (r(88) = 0.056, p = 0.600),
or MMMin (r(88) = 0.102, p = 0.338) effects. Nevertheless, it would be informative
to reanalyze some of the older datasets with newer methods to ascertain if the use of
newer techniques results in performance improvements.

4.4. Recommendations for Future Systems

In this section we list some guidelines based on our analysis of the 90 multimodal
detectors. These should be considered to be general recommendations since decisions
should ultimately be guided by specific application contexts. Some of these suggestions
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might seem obvious; however, they are noted here since some or all were ignored in
more or less all of the studies.

First, there is a tradeoff between accuracy and authenticity in that highly accurate
results are usually obtained in nonauthentic contexts, specifically building person-
dependent models to detect acted expressions recorded in ideal conditions. Lower ac-
curacies obtained in more naturalistic contexts are of greater practical value. Second,
excellent results without meaningful comparison conditions are of less importance than
modest results with stringent comparisons. For example, if a new multimodal fusion
technique is being proposed, then its improvement over simpler techniques (e.g., naı̈ve
feature-level fusion) should be reported. Similarly, classification accuracy (or recogni-
tion rate) is a meaningless metric without a baseline comparison when there is an
uneven distribution of classes (more on this point follows). Third, only a small subset
of the landscape encompassing modalities and affective states has been explored. In
addition to refining systems that operate on already-explored areas of this landscape,
systems that explore new areas could lead to exciting innovations and discoveries. One
suggestion is to focus on different modalities in addition to or in lieu of the face and
speech to detect nonbasic affective states that pervade human-computer interactions,
such as confusion, frustration, and perhaps even boredom. Fourth, model-level fusion
techniques that embrace, rather than ignore, time-varying relationships among differ-
ent modalities showed significant promise, so it might be useful to channel research
efforts into improving these techniques. Fifth, the standard procedure of collecting la-
beled data to train supervised classifiers is inherently limited due to the manual affect
annotation process, thereby resulting in small datasets (in terms of number of unique
individuals). It is unlikely that this approach will lead to models that generalize at
large [Ocumpaugh et al. 2014]; hence, it might be useful to consider semisupervised
learning approaches that only require a small subset of the training data to be anno-
tated. Furthermore, crowd-sourcing techniques might be useful alternatives to current
cumbersome annotation methods that simply do not scale to larger datasets [McDuff
et al. 2012].

It would also be highly beneficial if there was a more or less standard approach
to evaluating and reporting results of affect detectors. Some suggested evaluation
criteria include (a) meaningful comparison conditions when new systems are being
proposed (as noted previously), (b) using person-independent validation techniques,
(c) testing promising affect detectors developed by other researchers on one’s own
datasets (this was very rare), (d) testing new techniques on multiple datasets (i.e.,
cross-corpus evaluations), and (e) studying generalizability to individuals of different
demographics—also referred to as population validity.

Suggestions on how to report results include reporting of (a) accuracy metrics that
correct for uneven distribution of classes, (b) error estimates on accuracy measures,
(c) number of individuals and instances, and (d) other information noted in Table III.
With respect to the first item in this list, Jeni et al. [2013] recently evaluated a num-
ber of classification accuracy metrics by performing simulations as well as analyzing
real datasets with imbalanced class distributions (skewed data). Their findings indi-
cated that several of the commonly used metrics, such as accuracy (recognition rate),
kappa, F-score, Krippendorff ’s alpha, and area under the precision-recall curve, were
adversely affected by data skew. Area under the Receiver Operating Characteristics
(ROC) curve (AUC or A′) was most robust to data skew, but tended to minimize poor per-
formance when compared to precision-recall curves. They recommended reporting both
original uncorrected performance metrics as well as skew-normalized versions of these
metrics with the normalization conducted by up-sampling and down-sampling the test
partitions (the paper also provides a link to software to compute the skew-normalized
statistics).
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4.5. Concluding Remarks

The phrase “consistent, but modest under natural conditions” succinctly captures per-
formance of contemporary affect detectors. These MM detectors were consistently better
than their UM counterparts, but the improvements were modest when the detectors
were trained on naturalistic affect expressions. A fundamental question is whether
these findings can be best explained by the method or by the data. In particular, were
MM1 effects modest because the detectors are not sufficiently sophisticated to model
the intricate nonlinear time-varied relationships between the different modalities? Or
were they modest because the training data did not contain adequate expressions of
coordination among modalities, thereby rendering even the most sophisticated detec-
tors inept? The field of MM affect detection is too young to currently settle these issues,
so an answer awaits further research.

However, there is another possibility beyond the method and the data. It may be the
case that the expression of naturalistic emotions is inherently a diffuse phenomenon,
which will yield modest effects irrespective of method or data. This suggests that in ad-
dition to considering different methods and data sources, it might be useful to consider
alternate models of emotion beyond the classic view described in Section 4.2. Thus
far, the emphasis has been on the method and the data, at the expense of examining
the affective phenomenon itself (i.e., insufficient attention to recent development in
emotion theories and alternate models). Perhaps a more balanced approach that com-
bines better data sources and innovative algorithms with more diverse emotion models
represents the most promising way forward.

Whatever the case may be, this review and analysis has shown that the field of
multimodal affect detection has come a long way from the initial proof-of-concept sys-
tems of the past. Skeptics who thought that computers could never sense anything as
elusive as affect have repeatedly been proven wrong. Even more significant is the fact
that emerging systems go beyond detecting affect by dynamically responding to the
sensed affect, thereby closing the so-called affective loop [Conati et al. 2005]. For exam-
ple, the Affective AutoTutor is an intelligent tutoring system that improves learning
gains for low domain-knowledge students by automatically sensing (via a MM anal-
ysis of contextual cues, facial features, and body movements) and responding to con-
fusion, frustration, and boredom [D’Mello and Graesser 2012]. UNC-ITSPOKE is a
speech-enabled intelligent tutoring system that automatically senses and responds to
a learner’s uncertainty by modeling acoustic-prosodic and lexical features of students’
spoken responses [Forbes-Riley and Litman 2011]. Another example is the Affective
Music Player, which strategically selects music to induce specific moods (positive, neg-
ative, neutral) on a personalized basis via a predictive psychophysiological model [van
der Zwaag et al. 2013]. In general, systems that both sense and respond to affect are
continually emerging as documented in a recent edited volume on affective computing
[Calvo et al. 2014].

Despite impressive progress, one limitation of most (but not all of these systems)
is that they have been tested in lab-based contexts (the Affective Music player is an
exception). Hence, the challenge is now to repudiate critics who think that affective
systems will forever be resigned to the confines of the lab and will never make it into
real-world applications. This will require a concentrated effort to export affect detection
out of the lab and into the wild, where one must contend with the dynamic nature and
unpredictability of the real world. It is our hope that this will be reflected in the next
review of multimodal affect detectors.
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