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Introduction 
Recent years have seen a significant expansion in research on computational models of human 
emotional processes, driven both by their potential for basic research on emotion and cognition as well 
as their promise for an ever increasing range of applications. This has led to a truly interdisciplinary, 
mutually beneficial partnership between emotion research in psychology and computational science, of 
which this volume is an exemplar. To understand this partnership and its potential for transforming 
existing practices in emotion research across disciplines and for disclosing important novel areas of 
research, we explore in this chapter the history of work in computational models of emotion including 
the various uses to which they have been put, the theoretical traditions that have shaped their 
development, and how these uses and traditions are reflected in their underlying architectures. 

For an outsider to the field, the last fifteen years have seen the development of a seemingly bewildering 
array of competing and complementary computational models. Figure 1 lists a “family tree” of a few of 
the significant models and the theoretical traditions from which they stem. Although there has been a 
proliferation of work, the field is far from mature: the goals that a model is designed to achieve are not 
always clearly articulated; research is rarely incremental, more often returning to motivating theories 
than extending prior computational approaches; and rarely are models contrasted with each other in 
terms of their ability to achieve their set goals. Contributing to potential confusion is the reality that 
computational models are complex systems embodying a number of, sometimes unarticulated, design 
decisions and assumptions inherited from the psychological and computational traditions from which 
they emerged, a circumstance made worse by the lack of a commonly accepted lexicon for even 
designating these distinctions. 

In this chapter, we lay out the work on computational models of emotion in an attempt to reveal the 
common uses to which they may be put and the underlying techniques and assumptions from which the 
models are built. Our aim is to present conceptual distinctions and common terminology that can aid in 
discussion and comparison of competing models. Our hope is this will not only facilitate an 
understanding of the field for outside researchers but work towards a lexicon that can help foster the 
maturity of the field towards more incremental research.   



In characterizing different computational models of emotion, we begin by describing interdisciplinary 
uses to which computational models may be put, including their uses in improving human-computer 
interaction, in enhancing general models of intelligence, and as methodological tools for furthering our 
understanding of human behavior. We next discuss how models have been built, including the 
underlying theoretical traditions that have shaped their development. These differing theoretical 
perspectives often conceptualize emotion in quite different ways, emphasizing different scenarios and 
proposed functions, different component processes and different linkages between these components. 
It should then come as no surprise that such differences are also reflected in the underlying design of 
the computational models. We next narrow our focus to cognitive appraisal theory, undeniably one of 
the most influential theoretical perspectives within computational research. To help organize and 
dissect research on computational appraisal models, we introduce a generic appraisal architecture, a 
component model view of appraisal models, that conceptualizes emotion as a set of component models 
and relations between these components. We discuss how different computational systems address 
some, but typically not all, of these component models and describe differing processing choices that 
system developers have used in realizing their component model variants.  Finally, we illustrate how this 
component model view can help guide work in evaluating and contrasting alternative computational 
models of emotion.  

 

Figure 1: A history of computational models of emotion 



The uses of computational models: an interdisciplinary partnership 
New tools often transform science, opening up new approaches to research, allowing previously 
unaddressed questions to be explored, as well as revealing new questions. To appreciate the 
transformative role that computational models of emotion can have on research, we consider three 
aspects in this section: the impact on emotion research in psychology, the impact on artificial 
intelligence (AI) and finally the impact on work in human-computer interaction. 

Impact on psychological research on emotion 
Work in computational models of emotion impacts research in human emotion by transforming how 
theories are formulated and evaluated. One way this occurs is through a process of concretizing 
concepts in the theory. Psychological theories of emotion have typically been cast at an abstract level 
and through informal (natural language) descriptions. Concepts in the theory are usually not defined 
formally, and how processes work may not be laid out in systematic detail. The formulation of a 
computational model enforces more detail. The structures and processes of the theory must be 
explicitly and formally defined in order to implement them in a computational model, thus making a 
computer model a particularly concrete realization of the theory. The process of realizing the model can 
reveal implicit assumptions and hidden complexities, thereby forcing them to be addressed explicitly in 
some documented fashion. For example, appraisal theories often argue that a key variable in appraisal is 
an attribution of blameworthiness for an event deemed motivationally incongruent (e.g., Lazarus, 1991). 
But the process by which a person makes such an attribution and therefore whether a particular 
situation would be deemed blameworthy, and the related required resources and capacities are 
typically not carefully laid out. And yet this attribution process may in itself be quite involved (e.g., 
Shaver, 1985, Weiner, 1995).  

As computational modeling exposes hidden assumptions in the theory, addressing those assumptions 
can extend the scope of the theorizing. Seen in this way, computational models become not only a way 
to concretize theories, but also a framework for theory construction. In so doing, computational 
modeling also extends the language of emotion theorizing by incorporating concepts, processes, and 
metaphors drawn from computation, much as concepts such as information processing and symbol 
systems impacted psychology in general. For example, several computational models have recast the 
appraisal theory in terms of concepts drawn from AI, including knowledge representation (e.g., Gratch 
and Marsella, 2004a), planning (e.g., Dias and Paiva, 2005, Gratch, 2000), neural networks (Sander et al., 
2005) and decision-making (Lisetti and Gmytrasiewicz, 2002, Ito et al., 2008). Incorporation of the 
models into larger simulations can also expose hidden questions behind traditional conceptualizations 
and extend the scope of theorizing. For example, several computational models of emotion have been 
incorporated into larger simulation systems that seek to model emotion’s role in human mental 
processes and behavior (Marsella and Gratch, 2001, Dias and Paiva, 2005, Becker-Asano, 2008, Rank, 
2009). This has led researchers to address fundamental architectural questions about the relation of 
appraisal processes to other cognitive processes, perception, and behavior (Marsella and Gratch, 2009, 
Rank, 2009). Of course, a central challenge here is to ensure that increases in the scope of the theorizing 
do not endanger the parsimony often critical to a model’s explanatory power. 



Coupled to this transformation of the theory formation process through modeling and simulation runs 
of the model, the computational realization of a theory can also increase the capacity to draw 
predictions from theory. In particular, computational models provide a new empirical framework for 
studying emotion processes that goes beyond what is feasible in more traditional laboratory settings. 
Computer simulations of the model behave: they provide a means to explore systematically the 
temporal dynamics of emotion processes and form predictions about the time course of those 
processes. Manipulations of experimental conditions may be explored more extensively first with a 
computational model, such as ablating certain functionalities or testing responses under adverse 
conditions that may be costly, risky or raise ethical concerns in vivo (e.g., Armony et al., 1997). 
Simulations can reveal unexpected model properties that suggest further exploration. Additionally, 
models of emotion and affective expression have been incorporated into virtual humans, software 
artifacts that look and act like humans, capable of perception and action in a virtual world that they can 
co-habit with people.  These systems essentially allow for the study of emotion in a virtual ecology, a 
form of synthetic in vivo experimentation. 

Finally, the computational modeling of emotion and emotional expression has led to new ways to create 
stimuli for human subject experimentation. Virtual humans are in some ways the experimenter’s 
ultimate confederate. A virtual human can be manipulated systematically to elicit behavior from human 
subjects. For example, virtual humans have been used to show that subtle changes in physical 
appearance or behavior can profoundly impact social interaction, including changes to people’s 
willingness to cooperate (Krumhuber et al., 2007), the fluidity of their conversation (Gratch et al., 2007), 
learning outcomes (Baylor and Kim, 2008) and even their level of social aggression  (McCall et al., 2009). 

Impact on Artificial Intelligence & Robotics 
Modern research in the psychology, cognitive science and neuroscience of emotion has led to a 
revolution in our thinking about the relation of emotion to cognition and social behavior, and as a 
consequence is also transforming the science of computation. Findings on the functional, often adaptive 
role that emotions play in human behavior have motivated AI and robotics research to explore whether 
computer analogues of human emotion can lead to more intelligent, flexible and capable systems. Early 
work by Simon (Simon, 1967) argued that emotions serve the crucial function of interrupting normal 
cognition when unattended goals require servicing. Viewing emotion as serving this critical interrupt 
capacity provides a means for an organism to balance competing goals as well as incorporate reactive 
behaviors into more deliberative processing. A range of studies point to emotions as the means by 
which the individual establishes values for alternative decisions and decision outcomes. Busemeyer et 
al. (Busemeyer et al., 2007) argue that emotional state influences the subjective utility of alternative 
choice. Studies performed by Damásio and colleagues suggest that damage to ventromedial prefrontal 
cortex prevents emotional signals from guiding decision making in an advantageous direction (Bechara 
et al., 1999).   

Other authors have emphasized how social emotions such as anger and guilt may reflect a mechanism 
that improves group utility by minimizing social conflicts, and thereby explains peoples “irrational” 
choices to cooperate in social games such as prison’s dilemma (Frank, 1988). Similarly, “emotional 
biases” such as wishful thinking may reflect a rational mechanism that is more accurately accounting for 



certain social costs, such as the cost of betrayal when a parent defends a child despite strong evidence 
of their guilt in a crime (Mele, 2001).  

Collectively, these findings suggest that emotional influences have important social and cognitive 
functions that would be required by any intelligent system. This view is not new to Artificial Intelligence 
(Sloman and Croucher, 1981, Minsky, 1986, Simon, 1967) but was in large measure ignored in AI 
research of the late 20th century which largely treated emotion as antithetical to rationality and 
intelligence. However, in the spirit of Hume’s famous dictum: “reason is, and ought only to be the slave 
of the passions…” (Hume, 2000, 2.3.3.4), the question of emotion has again come to the fore in AI as 
models have begun to catch up to theoretical findings. This has been spurred, in part, by an explosion of 
interest in integrated computational models that incorporate a variety of cognitive functions (Anderson, 
1993, Bates et al., 1991, Rickel et al., 2002). Indeed, until the rise of broad integrative models of 
cognition, the problems emotion was purported to solve, for example, juggling multiple goals, were 
largely hypothetical. More recent cognitive systems embody a variety of mental functions and face very 
real challenges how to allocate resources. A re-occurring theme in emotion research in AI is the role of 
emotion in addressing such control choices by directing cognitive resources towards problems of 
adaptive significance for the organism (Scheutz and Sloman, 2001, Scheutz and Schermerhorn, 2009, 
Blanchard and Cañamero, 2006, Staller and Petta, 2001). 

Impact on Human Computer Interaction 
Finally, research has revealed the powerful role that emotion and emotion expression play in shaping 
human social interaction, and this in turn has suggested that computer interaction can exploit (and 
indeed must address) this function. Emotional displays convey considerable information about the 
mental state of an individual.  Although there is a lively debate whether these displays reflect true 
emotion or are simply communicative conventions (Manstead et al., 1999), pragmatically there is truth 
in both perspectives. From emotional displays, observers can form interpretations of a person’s beliefs 
(e.g., frowning at an assertion may indicate disagreement), desires (e.g., joy gives information that a 
person values an outcome) and intentions/action tendencies (e.g. fear suggests flight). They may also 
provide information about the underlying dimensions along which people appraise the emotional 
significance of events: valence, intensity, certainty, expectedness, blameworthiness, etc. (Smith and 
Scott, 1997).  With such a powerful signal, it is not surprising that emotions can be a means of social 
control (Campos et al., 2003, de Waal, 2003, Fridlund, 1997).  Emotional displays seem to function to 
elicit particular social responses from other individuals ("social imperatives", Frijda, 1987) and arguably, 
such responses can be difficult to suppress.  The responding individual may not even be consciously 
aware of the manipulation. For example, anger seems to be a mechanism for coercing actions in others 
and enforcing social norms; displays of guilt can elicit reconciliation after some transgression; distress 
can be seen as a way of recruiting social support; and displays of joy or pity are a way of signaling such 
support to others. Other emotion displays seem to exert control indirectly, by inducing emotional states 
in others and thereby influencing an observer’s behavior. Specific examples of this are emotional 
contagion, that can lead individuals to “catch” the emotions of those around them (Hatfield et al., 1994) 
and  the Pygmalion effect (also known as “self-fulfilling prophecy”) whereby our positive or negative 
expectations about an individual, even if expressed nonverbally can influence them to meet these 



expectations (Blanck, 1993). Given this wide array of functions in social interactions, many have argued 
that emotions evolved because they provide an adaptive advantage to social organisms (Darwin, 2002, 
de Waal, 2003). 

To the extent that these functions can be realized in artificial systems, they could play a powerful role in 
facilitating interactions between computer systems and human users. This has inspired several trends in 
human-computer interaction. For example, Conati uses a Bayesian network-based appraisal model to 
deduce a student’s emotional state based on their actions (Conati, 2002); several systems have 
attempted to recognize the behavioral manifestations of a user’s emotion including facial expressions 
(Fasel et al., 2002, Lisetti and Schiano, 2000, Haag et al., 2004), physiological indicators (Haag et al., 
2004, Picard, 1997) and vocal expression (Lee and Narayanan, 2003).  

A related trend in HCI work is the use of emotions and emotional displays in virtual characters that 
interact with the user.  As animated films (Thomas and Johnston, 1995) so poignantly demonstrate, 
emotional displays in an artificially generated character can have the general effect of making it seem 
human or lifelike, and thereby cue the user to respond to, and interact with, the character as if it were 
another person.  A growing body of research substantiates this view. In the presence of a lifelike agent, 
people are more polite, tend to make socially desirable choices and are more nervous (Kramer et al., 
2003); they can exhibit greater trust of the agent’s recommendations (Cowell and Stanney, 2003); and 
they can feel more empathy (Paiva et al., 2004). In that people utilize these behaviors in their everyday 
interpersonal interactions, modeling the function of these behaviors is essential for any application that 
hopes to faithfully mimic face-to-face human interaction. More importantly, however, the ability of 
emotional behaviors to influence a person’s emotional and motivational state could potentially, if 
exploited effectively, guide a user towards more effective interactions. For example, education 
researchers have argued that nonverbal displays can have a significant impact on student intrinsic 
motivation (Lepper, 1988). 

A number of applications have attempted to exploit this interpersonal function of emotional expression. 
Klesen models the communicative function of emotion, using stylized animations of body language and 
facial expression to convey a character’s emotions and intentions with the goal of helping students 
understand and reflect on the role these constructs play in improvisational theater (Klesen, 2005). 
Nakanishi et al. (2005) et al. and Cowell and Stanney (2003) each evaluated how certain non-verbal 
behaviors could communicate a character’s trustworthiness for training and marketing applications, 
respectively. Several applications have also tried to manipulate a student’s motivations through 
emotional behaviors of a virtual character: Lester utilized praising and sympathetic emotional displays to 
provide feedback and increase student motivation in a tutoring application (Lester et al., 2000). 
Researchers have also looked at emotion and emotional expression in characters as a means to 
engender empathy and bonding between between learners and virtual characters (Marsella et al., 2003, 
Paiva et al., 2005); Biswas (Biswas et al., 2005) also use human-like traits to promote empathy and 
intrinsic motivation in a learning-by-teaching system.  

In summary, computational models of emotion serve differing roles in research and applications. 
Further, the evaluation of these models is in large measure dependent on those roles. In the case of the 



psychological research that uses computational models, the emphasis will largely be on fidelity with 
respect to human emotion processes. In the case of work in AI and Robotics, evaluation often 
emphasizes how the modeling of emotion impacts reasoning processes or leads in some way to 
improved performances such as an agent or robot that achieves a better fit with its environment.  In HCI 
work, the key evaluation is whether the model improves human-computer interaction such as making it 
more effective, efficient or pleasant. 

Overall, the various roles for computational models of emotion have led to a number of impressive 
models being proposed and developed. To put this body of work into perspective, it is critical for the 
field to support a deeper understanding of the relationship between these models. To assist in that 
endeavor, we now turn to presenting some common terms and distinctions that can aid in the 
comparison of competing models.  

A Component Perspective on the Design of Computational Models 
Each of the computational models listed in Figure 1 is a very different entity, with incompatible inputs 
and outputs, different behaviors, embodying irreconcilable processing assumptions and directed 
towards quite different scientific objectives. What we argue here, however, is that much of this 
variability is illusory. These models are complex systems that integrate a number of component “sub-
models.” Sometimes these components are not clearly delineated, but if one disassembles models along 
the proper joints, then a great many apparent differences collapse into a small number of design 
choices. To facilitate this decomposition, this section describes the component processes underlying 
emotion, with a particular emphasis on components posited in connection with appraisal theory. These 
components are not new—indeed they are central theoretical constructs in many theories of emotion—
but some of the terminology is new as we strive to simplify terms and de-conflict them with other 
terminology more commonly used in computer science. We begin by describing the various theoretical 
traditions that have influenced computational research and the components these theories propose. 

Theoretical traditions 
A challenge in developing a coherent framework for describing computational models of emotion is that 
the term “emotion” itself is fraught with ambiguities and contrasting definitions.  Emotions are a central 
aspect of everyday life and people have strong intuitions about them. As a consequence, the terms used 
in emotion research (appraisal, emotion, mood, affect, feeling) have commonsense interpretations that 
can differ considerably from their technical definition within the context of a particular emotion theory 
or computational model (Russell, 2003). This ambiguity is confounded by the fact that there are 
fundamental disputes within psychological and neuroscience research on emotion over the meaning and 
centrality of these core concepts.  Theories differ in which components are intrinsic to an emotion (e.g., 
cognitions, somatic processes, behavioral tendencies and responses), the relationships between 
components (e.g. do cognitions precede or follow somatic processes), and representational distinctions 
(e.g. is anger a linguistic fiction or a natural kind) – see Chapter 1 for an overview of different theoretical 
perspectives on emotion.  



Understanding these alternative theoretical perspectives on emotion is essential for anyone that aspires 
to develop computational models, but this does not imply that a modeler must be strictly bound by any 
specific theoretical tradition. Certainly, modelers should strive for a consistent and well-founded 
semantics for their underlying emotional constructs and picking and integrating fundamentally 
irreconcilable theoretical perspectives into a single system can be problematic at best. If the goal of the 
computational model is to faithfully model human emotional processes, or more ambitiously, to 
contribute to theoretical discourse on emotion, such inconsistencies can be fatal. However, some 
“fundamentally irreconcilable” differences are illusory and evaporate when seen from a new 
perspective.  For example, disputes on if emotion precedes or follows cognition dissipate if one adopts a 
dynamic systems perspective (i.e., a circle has no beginning). Nonetheless, theoretical models provide 
important insights in deriving a coherent computational model of emotion and deviations from specific 
theoretical constraints, ideally, will be motivated by concrete challenges in realizing a theory within a 
specific representational system or in applying the resulting model to concrete applications. Here we 
review some of the theoretical perspectives that have most influenced computational modeling 
research. 

Appraisal theory 
Appraisal theory, discussed in detail in Chapter 1, is currently a predominant force among psychological 
perspectives on emotion and arguably the most fruitful source for those interested in the design of 
symbolic AI systems, as it emphasizes and explains the connection between emotion and cognition. 
Indeed, the large majority of computational models of emotion stem from this tradition. In appraisal 
theory, emotion is argued to arise from patterns of individual judgment concerning the relationship 
between events and an individual’s beliefs, desires and intentions, sometimes referred to as the person-
environment relationship  (Lazarus, 1991). These judgments, formalized through reference to devices 
such as situational meaning structures or appraisal variables (Frijda 1987), characterize aspects of the 
personal significance of events. Patterns of appraisal are associated with specific physiological and 
behavioral reactions. In several versions of appraisal theory, appraisals also trigger cognitive responses, 
often referred to as coping strategies—e.g., planning, procrastination or resignation—feeding back into 
a continual cycle of appraisal and re-appraisal (Lazarus, 1991 p. 127).   

In terms of underlying components of emotion, appraisal theory foregrounds appraisal as a central 
process. Appraisal theorists typically view appraisal as the cause of emotion, or at least of the 
physiological, behavioral and cognitive changes associated with emotion. Some appraisal theorists 
emphasize “emotion” as a discrete component within their theories, whereas others treat the term 
emotion more broadly to refer to some configuration of appraisals, bodily responses and subjective 
experience (see Ellsworth and Scherer, 2003 for a discussion). Much of the work has focused on the 
structural relationship between appraisal variables and specific emotion labels – i.e., which pattern of 
appraisal variables would elicit hope (see  Ortony et al., 1988) – or the structural relationship between 
appraisal variables and specific behavioral and cognitive responses  – i.e., which pattern of appraisal 
variables would elicit certain facial expressions (Smith and Scott, 1997, Scherer and Ellgring, 2007) or 
coping tendencies (Lazarus, 1991). Indeed, although appraisal theorists allow that the same situation 
may elicit multiple appraisals, theorists are relatively silent on how these individual appraisals would 



combine into an overall emotional state or if this state is best represented by discrete motor programs 
or more dimensional representations. More recent work has begun to examine the processing 
constraints underlying appraisal – to what extent is it parallel or sequential (Moors et al., 2005, Scherer, 
2001)? does it occur at multiple levels (Scherer, 2001, Smith and Kirby, 2000)? – and creating a better 
understanding of the cognitive, situational and dispositional factors that influence appraisal judgments 
(Smith and Kirby, 2009, Kuppens and Van Mechelen, 2007).  

Models derived from appraisal theories of emotion, not surprisingly, emphasize appraisal as the central 
process to be modeled. Computational appraisal models often encode elaborate mechanisms for 
deriving appraisal variables such as decision-theoretic plans (Gratch and Marsella, 2004a, Marsella and 
Gratch, 2009), reactive plans (Rank and Petta, 2005, Neal Reilly, 2006, Staller and Petta, 2001), Markov-
decision processes (El Nasr et al., 2000, Si et al., 2008), or detailed cognitive models (Marinier et al., 
2009). Emotion itself is often less elaborately modeled. It is sometimes treated simply as a label 
(sometimes with an intensity) to which behavior can be attached (Elliott, 1992). Appraisal is typically 
modeled as the cause of emotion with specific emotion label being derived via if-then rules on a set of 
appraisal variables. Some approaches make a distinction between a specific emotion instance (allowing 
multiple instances to be derived from the same event) and a more generalized “affective state” or 
“mood” (see discussion of core affect, below) that summarizes the effect of recent emotion elicitations 
(Neal Reilly, 1996, Gratch and Marsella, 2004a, Gebhard, 2005).  Some more recent models attempt to 
model the impact of momentary emotion and mood on the appraisal process (Gebhard, 2005, Paiva et 
al., 2005, Marsella and Gratch, 2009, Gratch and Marsella, 2004a). 
 
Computational appraisal models have been applied to a variety of uses including contributions to 
psychology, AI and HCI. For example, Marsella and Gratch have used EMA to generate specific 
predictions about how human subjects will appraise and cope with emotional situations and argue that 
empirical tests of these predictions have implications for psychological appraisal theory(Gratch et al., 
2009b, Marsella et al., 2009).  Several authors have argued that appraisal processes would be required 
by any intelligent agent that must operate in real-time, ill-structured, multi-agent environments (e.g., 
Staller and Petta, 2001). The bulk of application of these techniques, however, has been for HCI 
applications, primarily for the creation of real-time interactive characters that exhibit emotions in order 
to make these characters more compelling (e.g., Neal Reilly, 1996), more realistic (e.g., Traum et al., 
2003, Mao and Gratch, 2006), more able to understand human motivational state (e.g., Conati and 
MacLaren, 2004) or more able to induce desirable social effects in human users (e.g., Paiva et al., 2005).  

Dimensional Theories 
Dimensional theories of emotion argue that emotion and other affective phenomena should be 
conceptualized, not as discrete entities but as points in a continuous (typically two or three) dimensional 
space (Russell, 2003, Mehrabian and Russell, 1974, Barrett, 2006, Watson and Tellegen, 1985).  Indeed, 
many dimensional theories argue that discrete emotion categories (e.g., hope, fear and anger) are folk-
psychological concepts that have unduly influenced scientific discourse on emotion and have no 
“reality” in that there are no specific brain regions or circuits that correspond to specific emotion 
categories (Barrett, 2006).  Not surprisingly, dimensional theories de-emphasize the term emotion or 



relegate it to a cognitive label attributed, retrospectively, to some perceived body state. Rather they 
emphasize concepts such as mood, affect or more recently core affect (Russell, 2003). We adopt this 
later term in subsequent discussion.  A person is said to be in exactly one affective state at any moment 
(Russell, 2003, p. 154) and the space of possible core affective states is characterized in terms of broad, 
continuous dimensions. Many computational dimensional models build on the three-dimensional “PAD” 
model of Mehrabian and Russell (1974) where these dimensions correspond to pleasure (a measure of 
valence),  arousal (indicating the level of affective activation) and dominance (a measure of power or 
control).   

It is worth noting that there is a relationship between the dimensions of core affect and appraisal 
dimensions – the pleasure dimension roughly maps onto appraisal dimensions that characterize the 
valence of an appraisal-eliciting event (e.g., intrinsic pleasantness or goal congruence), dominance 
roughly map onto the appraisal dimension of coping potential, and arousal a measure of intensity. 
However, they have quite different meaning: appraisal is a relational construct characterizing the 
relationship between some specific object/event and the individual’s beliefs desires and intentions and 
several appraisals may be simultaneously active; core affect is a non-relational construct summarizing a 
unique overall state of the individual. 

Dimensional theories emphasize different components of emotion than appraisal theories and link these 
components quite differently.  Dimensional theories foreground the structural and temporal dynamics 
of core affect and often do not address affect’s antecedents in detail.  Most significantly, dimensional 
theorists question the tight causal linkage between appraisal and emotion that is central to appraisal 
accounts. Dimensional theorists conceive of core affect as a “non-intentional” state, meaning the affect 
is not about some object (as in “I am angry at him). In such theories, many factors may contribute to a 
change in core affect including symbolic intentional judgments (e.g., appraisal) but also sub-symbolic 
factors such as hormones and drugs (Schachter and Singer, 1962), but most importantly, the link 
between any preceding intentional meaning and emotion is broken (as it is not represented within core 
affect) and must be recovered after the fact, sometimes incorrectly (Clore and Plamer, 2009, Clore et al., 
1994). For example, Russell argues for the following sequence of emotional components:  some external 
event occurs (e.g., a bear walks out of the forest), it is perceived in terms of its affective quality; this 
perception results in a dramatic change in core affect; this change is attributed to some “object” (e.g., 
the bear); and only then is the object cognitively appraised in terms of its goal relevance, causal 
antecedents and future prospects (see also, Zajonc, 1980).  

Models influenced by dimensional theories, not surprisingly, emphasize processes associated with core 
affect and other components (e.g., appraisal) tend to be less elaborately developed. Core affect is 
typically represented as a continuous time-varying process that is represented at a given period of time 
by a point in 3-space that is “pushed around” by eliciting events. Computational dimensional models 
often have detailed mechanisms for how this point changes over time – e.g., decay to some resting state 
– and incorporating the impact of dispositional tendencies such as personality or temperament 
(Gebhard, 2005).  



Computational dimensional models are most often used for animated character behavior generation, 
perhaps because it translates emotion into a small number of continuous dimensions that can be readily 
mapped to continuous features of behavior such as the spatial extent of a gesture. For example, PAD 
models describe all behavior in terms of only three dimensions whereas modelers using appraisal 
models must either associate behaviors with a larger number of appraisal dimensions (see Scherer and 
Ellgring, 2007, Smith and Scott, 1997) or map appraisals into a small number of discrete, though perhaps 
intensity-varying, expressions (Elliott, 1992). For a similar reason, dimensional models also frequently 
used as a good representational framework for systems that attempt to recognize human emotional 
behavior and there is some evidence that they may better discriminate user affective states than 
approaches that rely on discrete labels (Barrett, 2006).  

The relationship between core affect and cognition is generally less explored in dimensional approaches. 
Typically the connection between emotion-eliciting events and current core-affective state is not 
maintained, consistent with Russell’s view of emotion as a non-intentional state (e.g., Becker-Asano and 
Wachsmuth, 2008). Interestingly, we are not aware of any computational models that follow the 
suggestion from Zajonc and Russell that appraisal is a post hoc explanation of core affect. Rather, many 
computational models of emotion that incorporate core affect have viewed appraisal as the mechanism 
that initiates changes to core affect.  For example Gebhard’s (2005) ALMA model includes Ortony, Clore 
and Collins (1988) inspired appraisal rules and WASABI (Becker-Asano and Wachsmuth, 2008) 
incorporates appraisal processes inspired by Scherer’s sequential-checking theory into a PAD-based 
model of core affect. Some computational models explore how core affect can influence cognitive 
processes.  For example, HOTCO 2 (Thagard, 2003) allow explanations to be biased by dimensional affect 
(in this case, a one-dimensional model encoding valence) but this is more naturally seen as the 
consequence of emotion on cognition (e.g., the modeling of an emotion-focused coping strategy in the 
sense of Lazarus, 1991). 

Other approaches 
Anatomic approaches: Anatomic theories stem from an attempt to reconstruct the neural links and 
processes that underlie organisms’ emotional reactions (Panskepp, 1998, LeDoux, 1996, Öhman and 
Wiens, 2004). Unlike appraisal theories, such models tend to emphasize sub-symbolic processes. Unlike 
dimensional theories, anatomic approaches tend to view emotions as different, discrete neural circuits 
and emphasize processes or systems associated with these circuits. Thus, anatomically-inspired models 
tend to foreground certain process assumptions and tend to be less comprehensive than either 
appraisal or dimensional theories, with researchers focusing on a specific emotion such as fear.  For 
example, LeDoux, emphasizes a “high-road” vs. “low-road” distinction in the fear circuit with the later 
reflecting automatic/reflexive responses to situations whereas the former is mediated by cognition and 
deliberation.  Computational models inspired by the anatomic tradition often focus on low-level 
perceptual-motor tasks and encode a two-process view of emotion that argues for a fast, automatic, 
undifferentiated emotional response and a slower, more differentiated response that relies on higher-
level reasoning processes  (e.g., Armony et al., 1997).  

Rational approaches: Rational approaches start from the question of what adaptive function does 
emotion serve and then attempt to abstract this function away from its “implementation details” in 



humans and incorporate these functions into a (typically normative) model of intelligence (Anderson 
and Lebiere, 2003, Sloman and Croucher, 1981, Scheutz and Sloman, 2001, Doyle, 2006, Simon, 1967, 
Frank, 1988). Researchers in this tradition typically reside in the field of artificial intelligence and view 
emotion as window through which one can gain insight into adaptive behavior, albeit it a very different 
window than has motivated much of artificial intelligence research. Within this tradition, cognition is 
conceived as a collection of symbolic processes that serve specific cognitive functions and are subject to 
certain architectural constraints on how they interoperate. Emotion, within this view, is simply another, 
albeit often overlooked, set of processes and constraints that have adaptive value.  Models of this sort 
are most naturally directed towards the goal of improving theories of machine intelligence. 

Communicative approaches: Communicative theories of emotion argue that emotion processes 
function as a communicative system; both as a mechanism for informing other individuals of one’s 
mental state – and thereby facilitate social coordination – and as a mechanism for 
requesting/demanding changes in the behavior of others – as in threat displays (Keltner and Haidt, 1999, 
Parkinson, 2009). Communicative theories emphasize the social-communicative function of displays and 
sometimes argue for a disassociation between internal emotional processes and emotion displays which 
need not be selected on the basis of an internal emotional state (Gratch, 2008, e.g., see Fridlund, 1997). 
Computational models inspired by communicative theories often embrace this disassociation and 
dispense with the need for an internal emotional model and focusing on machinery that decides when 
an emotional display will have a desirable effect on a human user.  For example, in the Cosmo  tutoring 
system (Lester et al., 2000), the agent’s pedagogical goals drive the selection and sequencing of emotive 
behaviors. In Cosmo, a congratulatory act triggers a motivational goal to express admiration that is 
conveyed with applause.  Not surprisingly, computational models based on communicative theories are 
most often directed towards the goal of achieving social influence. 

Dissecting Computational Appraisal Theory 
Appraisal theory, by far, dominates the work on computational models of emotion so here we spend 
some time laying out some terminology that is specific to this class of models (although some of this 
terminology could apply to other approaches).  As we discussed earlier, our aim is to promote 
incremental research on computational models of emotion by presenting a compositional view of model 
building, emphasizing that an emotional model is often assembled from individual “sub-models” and 
these smaller components are often shared and can be mixed, matched, or excluded from any given 
implementation. More importantly, these components can be seen as embodying certain content and 
process assumptions that can be potentially assessed and subsequently abandoned or improved as a 
result of these assessments. In presenting this, we attempt to build as much as possible on terminology 
already introduced within the emotion literature. 



Component Models 
Figure 2 presents an idealized computational appraisal architecture consisting of a set of linked 
component models. This figure presents what we see as natural joints at which to decompose appraisal 
systems into coherent and often shared modules, though any given system may fail to implement some 
of these components or allow different information paths between components. In this architecture, 
information flows in a cycle as argued by several appraisal theorists (Lazarus, 1991, Scherer, 2001, 
Parkinson, 2009): some representation of the person-environment relationship is appraised; this leads 
to an affective response of some intensity; the response triggers behavioral and cognitive 
consequences; these consequences alter the person-environment; this change is appraised; and so on.  
Each of these stages can be represented by a model that represents or transforms state information 
relevant to emotion-processing. Here we introduce terminology associated with each of these: 

Person-environment relationship: Lazarus (1991) introduced this term to refer to some representation 
of the agent’s relationship with its environment. This representation should allow an agent, in principle, 
to derive the relationship between external events (real or hypothetical) and the beliefs, desires and 
intentions of the agent or other significant entities in the (real or hypothetical) social environment. This 
representation need not represent these relationships explicitly but must support their derivation.  
Examples of this include the decision-theoretical planning representations in EMA (Gratch and Marsella, 
2004a) which combines decision-theoretic planning representation with belief-desire-intention 
formalisms or the partially-observable Markov-decision representations in THESPIAN (Si et al., 2008) 

 

Figure 2: A component model view of computational appraisal models 



Appraisal-derivation model:  An appraisal-derivation model transforms some representation of the 
person-environment relationship into a set of appraisal variables.1

Affect-derivation Model: An affect-derivation model maps between appraisal variables and an affective 
state, and specifies how an individual will react emotionally once a pattern of appraisals has been 
determined.

 For example, if an agent’s goal is 
potentially thwarted by some external action, an appraisal-derivation model should be able to 
automatically derive appraisals that this circumstance is undesirable, assess its likelihood, and calculate 
the agent’s ability to cope, i.e., by identifying alternative ways to achieve this goal. Several 
computational appraisal models don’t provide an appraisal-derivation model or treat its specification as 
something that is outside of the system. For example, ALMA (Gebhard, 2005) allows domain developers 
to author a the relational model by specifying how certain states or actions should be appraised (e.g., if 
Sven attacks Valerie, she should appraise this as undesirable). Other researchers treat the appraisal-
derivation as a central contribution of their approach. For example, EMA provides a series of domain-
independent inference rules that derive appraisal variables from syntactic features of the person-
environment relationship (e.g., if the effect of an action threatens a plan to achieve a desired state, this 
is undesirable).  Models also differ in the processing constraints that this model should satisfy. For 
example, models influenced by Scherer’s sequential checking theory incorporate assumptions about the 
order in which specific appraisal variables should be derived (Marinier, 2008). Appraisal-derivation 
models are often triggered by some eliciting event, though this is not always the case (e.g., EMA 
simultaneously appraises every goal in an agent’s working memory and updates these appraisals 
continuously as new information about these goals is obtained. 

Appraisal variables:  Appraisal variables correspond to the set of specific judgments that the agent can 
use to produce different emotional responses and are generated as a result of an appraisal-derivation 
model.  Different computational appraisal models adopt different sets of appraisal variables, depending 
on their favorite appraisal theorist. For example, many approaches utilize the set of variables proposed 
by Ortony, Clore and Collins (1988) including AR (Elliott, 1992), EM (Neal Reilly, 1996), FLAME (El Nasr et 
al., 2000) and ALMA (Gebhard, 2005). Others favor the variables proposed by Scherer (Scherer, 2001) 
including WASABI (Becker-Asano and Wachsmuth, 2008) and PEACTIDM (Marinier et al., 2009). 

2

                                                             
1 Smith and Kirby SMITH, C. A. & KIRBY, L. D. (2009) Putting appraisal in context: Toward a relational model of 
appraisal and emotion. Cognition and Emotion, 00. propose the term relational model to refer to this mapping, 
building on Lazarus’ idea that appraisal is a relational construct relating the person and the environment. They 
introduced the term to draw attention to the fact that many appraisal theories emphasize the mapping from 
appraisal variable to emotion but neglect the situational and dispositional antecedents of appraisal. As “relation” 
and “relational” often has a very different meaning within computer science, we prefer a different term. 
2 Smith and Kirby Ibid. use the term structural model to refer to this mapping, drawing analogy to structural 
equation modeling KLINE, R. B. (2005) Principles and Practice of Structural Equation Modeling, The Guilford Press., 
the statistical technique for estimating the causal relationships between variables that appraisal theorists often 
use to derive these mappings.  As the term “structural model” is often used to contrast with “process models” (a 
distinction we ourselves use later), we prefer the different term. 

 As noted in the discussion of different theoretical perspectives above, there is some 
diversity in how models define “emotion” and here we consider any mapping from appraisal variables to 
affective state, where this state could be either a discrete emotion label, a set of discrete emotions, core 
affect, or even some combination of these factors.  For example, Elliott’s AR (Elliott, 1992) maps 



appraisal variables into discrete emotion labels, Becker-Asano’s WASABI (Becker-Asano and 
Wachsmuth, 2008) maps appraisals into a dimensional (e.g. PAD) representation of emotion, and 
Gebhard’s ALMA (Gebhard, 2005) does both simultaneously. Many computational systems adopt the 
affect-derivation model proposed by Ortony, Clore and Collins (1988) whereby twenty-two  emotion 
labels are defined as conjunctions of appraisal variables – this will be henceforth referred to as the OCC 
model. Others have implemented models based on the work of Lazarus (e.g., Gratch and Marsella’s 
EMA) and Scherer (e.g., Becker-Asano’s WASABI and Marinier’s PEACTIDM).  Much of the empirical work 
in psychological appraisal theory has focused on identifying the affect-derivation model that best 
conforms to human behavior but the results of these studies are far from definitive and can be 
interpreted to support multiple proposed models.  

Affect-Intensity model: An affect-intensity model specifies the strength of the emotional response 
resulting from a specific appraisal. There is a close association between the affect-derivation model and 
intensity model (the intensity computation is often implemented as part of the affect-derivation model), 
however it is useful to conceptualize these separately as they can be independently varied – indeed 
computational systems with the same affect-derivation model often have quite different intensity 
equations (Gratch et al., 2009a). Intensity models usually utilize a subset of appraisal variables (e.g., 
most intensity equations involve some notion of desirability and likelihood), however they may involve 
several variables unrelated to appraisal (e.g., Elliott and Siegle, 1993). Although less studied than 
appraisal-derivation models, some research has investigated which intensity model best conforms to 
human behavior (Mellers et al., 1997, Reisenzein, 2009, Gratch et al., 2009b). 

Emotion/Affect: Affect is a representation of the agent’s current emotional state. This could be a 
discrete emotion label, a set of discrete emotions, core affect (i.e., a continuous dimensional space), or 
even some combination of these factors. An important consideration in representing affect, particularly 
for systems that model the consequences of emotions, is if this data structure preserves the link 
between appraisal factors and emotional state.  As noted above in the discussion of appraisal and 
dimensional theories, emotions are often viewed as being about something (e.g., I am angry at Valarie). 
Agents that model affect as some aggregate dimensional space must either preserve the connection 
between affect and domain objects that initiated changes to the dimensional space, or they must 
provide some attribution process that post hoc recovers a (possibly incorrect) domain object to apply 
the emotional response to.  For example, EM (Neal Reilly, 1996) has a a dimensional representation of 
core affect (valence and arousal) but also maintains a hierarchal data structure that preserves the 
linkages through each step of the appraisal process to the multiple instances of discrete emotion that 
underlie its dimensional calculus. In contrast, WASABI (Becker-Asano and Wachsmuth, 2008) breaks this 
link.   Some models propose some hybrid. For example, EMA maintains discrete appraisal frames that 
represent specific discrete emotion instances but then allow a general dimensional “mood” to moderate 
which discrete emotion raises to the level of awareness. 

Affect-consequent model: An affect-consequent model maps affect (or its antecedents) into some 
behavioral or cognitive change. Consequent models can be usefully described in terms of two 
dimensions, one distinguishing if the consequence is inner or outer directed (cognitive vs. behavioral), 
and the other describing whether or not the consequence feeds into a cycle (i.e., is closed-loop). 



Emotion can be directed outward into the environment or inward, shaping a person’s thoughts. 
Reflecting this, behavior consequent models summarize how affect alters an agent’s observable physical 
behavior and cognitive consequent models that determine how affect alters the nature or content of 
cognitive processes. Most embodied computational systems model the mapping between affect and 
physical display, such as facial expressions. For example, WASABI maps regions of core affect into one of 
seven possible facial expressions  (Becker-Asano, 2008, p. 85) and ParleE (Bui, 2004) maps from an 
emotion state vector (the intensity of six discrete emotion labels) to a facial muscle contraction vector 
(specifying the motion of 19 facial action units). Emotions can also trigger physical actions. For example, 
in a process called problem-focused coping, EMA (Gratch and Marsella, 2004b, Marsella and Gratch, 
2009) attempts to mitigate negative emotions by changing features in the environment that led to the 
initial undesirable appraisal. In contrast, cognitive consequent models change some aspect of cognition 
as a result of affective state. This can involve changes in how cognition processes information – for 
example, Gmytrasiewicz and Lisetti (2000) propose a model that changes the depth of forward 
projection as a function of emotional state in order to model some of the claimed effects of emotion on 
human decision making. Cognitive consequent models can also change the content of cognitive 
processes – for example, EMA implements a set of emotion-focused coping strategies like wishful 
thinking, distancing and resignation that alter an agent’s beliefs, desires and intentions, respectively.  

We can further distinguish consequences by whether or not they form a cycle by altering the 
circumstances that triggered the original affective response. For example, a robot that merely expresses 
fear when its battery is expiring does not address the underlying causes of the fear, whereas one that 
translates this fear into an action tendency (e.g., seek power) is attempting to address its underlying 
cause.  In this sense, both behavioral and cognitive consequences can be classified as closed-loop if they 
directly act on the emotion eliciting circumstances or open-loop if they do not. 

Open-loop models are best seen as making an indirect or mediated impact on the agent’s emotional 
state.  For example, open-looped behavioral consequences such as emotional displays make sense in 
multi-agent setting where the display is presumed to recruit resources from other agents. For example, 
building a robot that expresses fear makes sense if there is a human around that can recognize this 
display and plug it in. Gmytrasiewicz and Lisetti’s (2000) work on changing the depth of decision making 
can similarly be seen as having an indirect on emotion: by altering the nature of processing to one best 
suited to a certain emotional state, the cognitive architecture is presumably in a better position to solve 
problems that tend to arise when in that state. 

Closed-loop models attempt to realize a direct impact to regulate emotion and suggest ways to enhance 
the autonomy of intelligent agents. Closed-loop models require reasoning about the cognitive and 
environmental antecedents of an emotion so that these factors can ultimately be altered.  For example, 
EMA implements problem-focused coping as a closed-loop behavioral strategy that selects actions that 
address threats to goal achievement, and implements emotion-focused coping as a closed-loop 
cognitive strategy that alters mental state (e.g., abandons a goal) in response to similar threats. Closed-
loop models naturally implement a view of emotion as a continuous cycle of appraisal, response and re-
appraisal: In EMA, an agent might perceive another agent’s actions to be a threat to its goals, resulting 



in anger, which triggers a coping strategy that results in the goal being abandoned, which in turn lowers 
the agent’s appraised sense of control, resulting in sadness (see Marsella and Gratch, 2009). 

The component model in Figure 2 is, of course, only one of many possible ways to dissect and link 
emotion components but we have found it pragmatically useful in our own understanding of different 
computation approaches, as we illustrate below. Additionally, many of the components we identify have 
previously been highlighted as important distinctions with the literature on emotion research. For 
example Smith and Kirby (2009) highlight appraisal-derivation as an important but understudied aspect 
of appraisal theory.  In their work they propose the term relational model to refer to this component, 
building on Lazarus’ idea that appraisal is a relational construct relating the person and the 
environment. As “relation” and “relational” often has a very different meaning within computer science, 
we prefer a different term appraisal-derivation model.  Appraisal-derivation models are frequently 
identified within the appraisal theory under the term structural model, drawing analogy to structural 
equation modeling (Kline, 2005), the statistical technique for estimating the causal relationships 
between variables that appraisal theorists often use to derive these mappings.  As the term “structural 
model” is not emotion-specific, and is often used to contrast with “process models” (a distinction we 
ourselves use later), we prefer the term appraisal-derivation model. The idea of closed-loop models has 
been proposed by a variety of appraisal theorists. Most recently, Brian Parkinson has used the term 
transactional model to highlight the incremental unfolding nature of emotional reactions (Parkinson, 
2009), although we prefer the term closed-loop, again drawing on computer metaphors.   

Processing Assumptions 
Computational appraisal models can vary, not only by which sub-components they choose to 
implement, but how these individual components are realized and interact. Some computational 
systems make strong commitments to how information is processed (e.g., is in parallel or sequential?). 
Others make strong commitments concerning what information is processed (e.g., states, goals, plans). 
Here we introduce terminology that characterizes these different processing choices. 

Process Specificity:  Computational models vary considerably in term of the claims they make about 
how information is process. At the most abstract level, a structural model specifies a mapping between 
inputs and outputs but makes no commitment to how this mapping is realized – the term structural 
comes from structural equation modeling (Kline, 2005), a statistical method whereby the relationship 
between input and output can be inferred. In contrast, a process model posits specific constraints on 
how inputs are transformed into outputs. For example, Ortony, Clore and Collins present a structural 
affect-derivation model that maps from appraisal values to an emotion label, whereas Scherer’s 
Sequential Checking Theory is a process appraisal-derivation model that not only specifies the structure 
of appraisal but proposes a set of temporal processing constraints on how appraisal variables should be 
derived (e.g., goal relevance should be derived before normative significance). The distinction between 
structural and process is not clear-cut and is best seen as a continuum. Psychological process theories 
only specify processes to some level of detail and different theories vary considerably in terms of their 
specificity. In contrast, a computational model must be specified in sufficient detail for it to be realized 
as working software, however many of these process details are pragmatic and do not correspond to 
strong theoretical claims about how such processes should be realized. For example, Elliott’s Affective 



Reasoner implements affect-derivation via a set of ad hoc rules, but this should not be seen as a claim 
that appraisal should be implemented in this manner, but rather as a short cut necessary to create a 
working system. 

Processing constraints can be embedded within an individual appraisal component or can emerge from 
the interactions of individual components.  For example, Scherer’s sequential checking theory posits 
temporal ordering constraints with its model of appraisal derivation. In contrast, Gratch and Marsella’s 
EMA model posits that emotion arises from a continuous cycle of appraisal, coping and re-appraisal and 
that such temporal properties arise from the incremental evolution of the person-environment 
relationship (see Marsella and Gratch, 2009 for an in-depth discussion of this point). 

Processing constraints can be asserted for a variety of reasons. In psychology, process models are 
typically used to assert theoretical claims about the nature of human mental processes, such as if 
appraisal is a sequential or parallel process. Within computational systems, the story is more complex. 
For computational systems that model human psychological processes, the aim is the same: faithfully 
reflect these theoretical claims into computational algorithms. For example, Marinier (2008) translates 
Scherer’s processing assumptions into architectural constraints on how information is processed in his 
PEACTIDM model. However, processing constraints can be introduced for a variety of other reasons 
having nothing to do with fidelity to human psychological findings. These include, for example, 
formalizing abstract mappings into precise language (Meyer, 2006, Lorini and Castelfranchi, 2007), 
proving that a mapping is computable, illustrating efficient or robust algorithms to achieve a mapping, 
etc.    

Representational Specificity: Regardless of how component models process information, computational 
systems vary considerably in the level-of-detail of the information they process. Some models emotional 
processes as abstract black boxes (exploring, for example, the implications of different relationships 
between components) whereas others get down the nitty-gritty of realizing these processes in the 
context of concrete application domains. This variance is perhaps easiest to see when it comes to 
appraisal derivation. For example, all appraisal models decompose the appraisal process into a set of 
individual appraisal checks. However, some models stop at this level, treating each check as a 
representational primitive (e.g., Sander et al., 2005), whereas others further decompose appraisal 
checks into the representational details (e.g., domain propositions, actions, and the causal relationships 
between them) that are necessary for an agent to appraise its relationship to the environment (e.g., El 
Nasr et al., 2000, Gratch and Marsella, 2004a, Neal Reilly, 1996, Si et al., 2008, Mao and Gratch, 2006, 
Dias and Paiva, 2005, Becker-Asano, 2008). 

Process specificity can vary independently from representational specificity. For example, Sander and 
colleagues (2005) provide a detailed neural network model of how appraisals are derived from the 
person-environment relationship, but the person-environment relationship itself is only abstractly 
represented. Process and representational specificity also vary across component models within the 
same system. For example, WASABI (Becker-Asano, 2008) incorporates detailed representational and 
process commitments for its model of affect-derivation but uses less detail for its model of appraisal 
derivation. Such differences often result from the fact that specific systems are directed at addressing a 



subset of the components involved in emotion processes but that the authors often require a complete 
working system to assess the impact of their proposed contribution and these other components may 
be rudimentary or ad hoc. 

Domain specific vs. Domain independent:  In addition to their processing constraints and 
representational specificity, algorithms can be characterized by the generality of their implementation. 
A domain-independent algorithm enforces a strict separation between details of a specific domain, 
typically encoded as a domain theory and the remaining code which is written in such a way that it can 
be used without modification. For example, planning algorithms operate on a domain theory consisting 
of a set of states and actions that describe a domain and provide general algorithms that operate 
syntactically on those representations to generate plans. Computational appraisal models differ in terms 
of how domain-specific knowledge is encoded and which components require domain-specific input.  
Most systems incorporate domain-independent affect-derivation models (Marinier, 2008, Becker-Asano, 
2008, Gratch and Marsella, 2004a, Gebhard, 2005, Neal Reilly, 1996, Bui, 2004). Fewer systems provide 
domain-independent algorithms for appraisal-derivation (e.g., Gratch and Marsella, 2004a, Neal Reilly, 
1996, Si et al., 2008, El Nasr et al., 2000).   

 



Example applications of this framework 
Viewing a computational model of emotion as a model of models allows more meaningful comparisons 
between systems. Systems that appear quite different on the surface can be seen as adopting similar 
choices along some dimensions and differing in others. Adopting a component model framework can 
help highlight these similarities and differences, and facilitate empirical comparisons that assess the 
capabilities or validity of alternative algorithms for realizing component models. 

Table 1 illustrates how the component model framework can highlight conceptual similarities and 
differences between emotion models.  This table characterizes three quite different systems: EMA is the 
authors’ own work on developing a general computational model of appraisal and coping motivated by 
the appraisal theory of Richard Lazarus (Lazarus, 1991) and has been applied to driving the behavior of 
embodied conversational agents (Swartout et al., 2006); FLAME is an OCC-inspired appraisal model that 
drives the behavior of characters in interactive narrative environments (El Nasr et al., 2000); and ALMA 
is intended as a general programming tool to allow application developers to more easily construct 
computational models of emotion for a variety of applications (Gebhard, 2005). Some observations that 
can be made from this table include: 

• EMA and FLAME both focus on appraisal derivation. They provide domain-independent techniques 
for representing the person-environment relationship and derive appraisal variables via domain-
independent inferences rules, although the approaches adopt somewhat different representational 
and inferential choices. In contrast, ALMA does not address appraisal derivation; 

• All systems in Table 1 use rules to derive affect from a set of appraisal variables. ALMA and FLAME 
both adopt OCC-style appraisal variables and affect-derivation models whereas EMA uses a model 
inspired by Lazarus; 

• Each system adopts a different choice for how the intensity of an emotion is calculated. 
• All systems incorporate some notion of core affect, though they adopt different representations. 

EMA has a mood state that summarizes the intensity of all active emotional appraisals and this 
mood biases the selection of a single emotional appraisal that can impact behavior. ALMA 
represents both a current emotion and a more general mood in a three-dimensional (PAD) space 
(either of which can impact behavior). FLAME has a one-dimensional (positive vs. negative) mood 
state that can influence behavior. 

• EMA and FLAME propose closed-loop consequence models that allow emotion to feed back into 
changes in the mental representation of a situation, although they adopt quite different algorithmic 
choices for how to realize this function. 

Besides allowing such conceptual comparisons, the key benefit of decomposing systems into component 
models is that it allows individual design decisions to be empirically assessed independent of other 
aspects of the system. For example, in Table 1, FLAME and EMA adopt different models for deriving the 
intensity of an emotional response:  both systems calculate intensity as a function of the utility and 
probability of goal attainment but FLAME adds these variables whereas EMA multiples them for 
prospective emotions (e.g., hope and fear) and uses a threshold model for retrospective emotions (e.g., 
joy and sadness). An advantage of the component model view is these alternative choices can be 



directly compared and evaluated, independently of the other choices adopted in the systems from 
which they stem.  

Gratch and Marsella recently applied this component-model perspective to an empirical comparison of 
different affect-derivation models (Gratch et al., 2009b).  Besides the two approaches proposed by EMA 
and FLAME, researchers have proposed a wide range of techniques to calculate the intensity of an 
affective response. In their study, Gratch and Marsella analyzed several competing approaches for 
calculating the intensity of a specific emotional response to a situation and classified these approaches 
into a small number of general approaches  (this includes approaches used in a variety of systems 
including: Velásquez, 1998, El Nasr et al., 2000, Bui, 2004, Marinier et al., 2009, Reisenzein, 2009, Price 
et al., 1985, Dias and Paiva, 2005, Neal Reilly, 1996). They then devised a study to empirically test these 
competing appraisal intensity models, assessing their consistency with the behavior of a large number of 
human subjects in naturalistic emotion-eliciting situations.  In the study they had subjects play a board 
game (Battleship™ by Milton Bradley™) and assessed subjects self-reported emotional reactions as the 
game unfolded and as a consequence of if they were winning or losing (which was manipulated 
experimentally). 

Table 2 summarizes the results of this study that compared the behavior of EMA to several other 
systems proposed in the literature. These include ParleE (Bui, 2004), a system that uses appraisal models 
to drive facial animation; BTDE (Reisenzein, 2009), an appraisal theory that attempts to reduce 
appraisal-derivation, affect-derivation and affect-intensity to operations over beliefs and desires; 
FLAME,  described above, Cathexis, an anatomical approach that views emotions as arising from drives; 
FearNot! (Dias and Paiva, 2005), an appraisal model based on EMA; EM (Neal Reilly, 1996) an OCC-

 



inspired model that drives the behavior of interactive game characters; and a model proposed by Price 
and colleagues (Price et al., 1985) that inspired the design of FLAME.  Although these models vary in 
many ways, when it comes to affect-intensity, they can be described in terms of four basic methods 
have been proposed in the literature for deriving the intensity of an emotional response.  

As noted in the table, different systems used different intensity models depending on the emotion type.  
The intensity models, listed in the first column, include expected utility (i.e., the intensity of emotional 
response is proportional to the utility of a goal times its probability of attainment), expectation-change 
(i.e., the intensity is proportional to the change in probability caused by some event), and additive (i.e., 
the intensity is proportional to the sum of probability and utility). The cells in the table indicate the 
intensity model that a particular system applies to calculate the intensity of a given emotion. The table 
also summarizes the results of how well these different models explain the data elicited from the study. 
A slash through the box indicates the model cannot explain the results of the experiment. This analysis 
lends support for the expected utility model for all emotions, with a particularly strong fit for the 
prospective emotions (i.e., hope and fear), though allows that some modified version of a threshold 
model might explain the results of retrospective motions like joy and sadness.  If the goal of an emotion 
model is to realistically model human emotional responses, expected utility is probably a good choice 
for that appraisal intensity component model. 

Of course, the behavior of a specific component is not necessarily independent of other design choices 
so such a strong independence assumption should be treated as a first approximation for assessing how 
alternative design choices will function in a specific system. However, unless there is a compelling 
reason to believe choices are correlated, such an analysis should be encouraged. Indeed, a key 
advantage of the compositional approach is that it forces researchers to explicitly articulate what these 
dependencies might be, should they wish to argue for a component that is repudiated by an empirical 
test that adopts a strong assumption of independence. 

Dividing computational emotion models into components enables a range of such empirical studies that 
can assess the impact of these design choices on the possible uses of emotion models that were 
outlined at the start of this chapter – i.e., their impact on psychological theories of emotion; their 
impact on artificial intelligence and robotics; and their impact on human-computer interaction. Here we 
touched on some studies that more naturally apply to the first goal and several examples of this now 
exist including evaluations of the psychological validity of cognitive consequent models (Marsella et al., 
2009) and appraisal-derivation models (e.g., Tomai and Forbus, 2007, Mao and Gratch, 2006). However, 
the same approach can be equally applied to these other overall objectives.  For example, de Melo and 
colleagues present evidence that the appraised expression of emotion can influence human-computer 
interaction in the context of social games such as iterated prisoner’s dilemma (de Melo et al., 2009) and 
it would be interesting to consider how different appraisal-derivation and intensity models might impact 
the power of this effect. Other researchers have explored how emotions might improve the decision-
making capabilities of general models of intelligence (Scheutz and Sloman, 2001, Ito et al., 2008) and a 
component model analysis can give greater insight into which aspects of these models contribute to 
enhanced performance.  



Conclusion 
In this chapter, we provided an overview of research into computational models of emotion that details 
the common uses of the models and the underlying techniques and assumptions from which the models 
are built. Our goals were two-fold. For researchers outside the field of computational models on 
emotion, we want to facilitate an understanding of the field. For research in the field, our goal is to 
provide a framework that can help foster incremental research, with researchers relying on careful 
comparisons, evaluations and leveraging to build on prior work, as a key to forward progress. 

To achieve those goals, we presented several conceptual distinctions that can aid in evaluation of 
competing models.  We identified several roles for models, in psychological research, in human-
computer interaction and in AI. Evaluation, of course, must be sensitive to these roles.  If, for example, 
the model is being used as a methodological tool for research in human emotions or in human-
computer interaction research as a means to infer user emotional state, then fidelity of the model with 
respect to human behavior will be critical. If the model is to be used to create virtual characters that 
facilitate engagement with, or influence of, humans then fidelity may be less important, even 
undesirable, while effectiveness in the application becomes more important.  

Our assumption is that regardless of the specific details of the evaluation, research progress in 
computational models of emotion critically hinges not only in evaluations of specific models but also in 
the comparison across models. Due to complexity of some of these models, and their emphasis on 
different aspects of the overall emotion process, it may not be reasonable or desirable to undertake 
comparison and evaluation in toto. Rather component-by-component analyses, based on a common 
lexicon, will be both more revealing and often easier.  Our hope is that the application of the component 
analyses exemplified above may serve as a means to facilitate this component-by-component evaluation 
and lead to additional work in this direction.  
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