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ABSTRACT
The ever expanding multimedia content (such as images
and videos), especially on the web, necessitates effective
text query-based search (or retrieval) systems. Popular ap-
proaches for addressing this issue, use the query-likelihood
model which fails to capture the user’s information needs.
In this work therefore, we explore a new ranking approach
in the context of image and video retrieval from text queries.
Our approach assumes two separate underlying distributions
for query and the document respectively. We then, deter-
mine the extent of similarity between these two statistical
distributions for the task of ranking. Furthermore we extend
our approach, using Active Learning techniques, to address
the question of obtaining a good performance without re-
quiring a fully labeled training dataset. This is done by
taking Sample Uncertainty, Density and Diversity into ac-
count. Our experiments on the popular TRECVID corpus
and the open, relatively small-sized USC SmartBody corpus
show that we are almost at-par or sometimes better than
multiple state-of-the-art baselines.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering,
Retrieval Models; H.5.1 [Multimedia Information Sys-
tems]: Video (e.g., tape, disk, DVI)
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1. INTRODUCTION
The ever increasing volume of multimedia content (such as

images, videos, etc.), thanks to the web, has necessitated ef-
fective multimedia search systems. The goal of these search
(or retrieval) systems, is to be able to rank the content (mul-
timedia samples) in order of relevance to a given text query
by the user. The popular web-based image/video search
systems, e.g. Google, Yahoo, etc. are common examples.
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Conventional search systems typically, first automatically
annotate the samples with multiple text labels (each typi-
cally one word long), specifying different objects, events, etc.
called concepts. They then, treat every sample as simply a
text document containing the labels and rank them based
on the similarity of these labels with the user’s query [11].
However the first step of automated annotation, tends to be
noisy and introduces errors. Thus, these approaches are of-
ten not effective. Direct-retrieval approaches, inspired from
cross-language retrieval techniques, bypass the task of an-
notation [5]. Such techniques treat the query to be coming
from one language and the feature representations of the
documents to be ranked, to be coming from some other.

For the task of ranking, many of these direct-retrieval sys-
tems [6, 9, 2], including the Continuous Relevance Model
(CRM), uses query-likelihood as a ranking function [5]. The
query-likelihood models assume a language model over the
documents and the query to have been sampled out from
that distribution. It then ranks the documents by comput-
ing the conditional probability of the query given a docu-
ment. This style of modeling ignores the user’s information
need, since the query is assumed to be modeled by the docu-
ment distribution [3]. This raises a central research question:
Can there be a new way to rank the documents, without
making such an assumption?

In this work, we address this fundamental issue by explor-
ing a ranking function that captures the notion of relevance
of the query and the document as a measure of distance.

Another major concern with these retrieval systems is that
they require a large fully annotated training corpus for a
good performance. The human-effort costs for doing this, is
prohibitively high. This begs an answer to another research
question: Can we achieve a good retrieval performance with-
out requiring a fully annotated training data (i.e. would a
partially annotated training dataset suffice)?

Active Learning addresses this issue by outputting an or-
der of labeling the unlabeled training samples such that a
good retrieval performance is achieved before all unlabeled
data is queried for their labels. Typical active learning sys-
tems consists of a retrieval/classification engine and a sam-
ple selection engine, which ranks the unlabeled samples, typ-
ically by a measure of informativeness [11]. In our work, we
determine this informativeness by combining measures of
Sample Density and Diversity [2] with that of Sample Un-
certainty, while the ranking function that we talked about is
used for the retrieval engine. We call this system KLActive.
Our experiments show that KLActive performs better than



the state-of-the-art on the popular, large TRECVID corpus
and almost at-par on the smaller USC SmartBody corpus.

2. BACKGROUND

2.1 Query-Likelihood and CRM
The research community has already explored retrieval

of multimedia content using Query-Likelihood as a ranking
function [6, 9, 4]. The idea behind query-likelihood is to
compute the quantity P (w|ri), the conditional probability
of the text query word w given a M -dimensional feature
vector ri, of an image/video sample i. Assuming we have t
samples to rank, we compute P (w|ri) for each i = 1, 2, ..., t
and then rank them based on their conditional probability
scores. CRM, one such approach, proposes to compute this
probability as follows: P (w|ri) = P (w, ri)/P (ri) [4]. The
joint-distribution is then estimated from the training data
(Train) by

P (w, ri) =
∑

J∈Train

(P (J)P (w|J)

M∏
sk∈ri,k=1

P (sk|J)) (1)

2.2 CBIR Systems and KL-Divergence
Content-Based IR (CBIR) systems seek to rank the im-

age/video samples just like conventional multimedia search
systems, except here the query is in the form of an im-
age/video rather than text. The research community has
addressed this question by utilizing distance measures to
compute similarity between the query and the sample to be
ranked. One such popular distance measure is the Kullback-
Leibler Divergence (KL-Divergence) [7, 10]. KL-Divergence
between two continuous distributions P and Q (defined over
the variable r) is defined as :

D(P ||Q) =

∫
r

P (r) log(P (r)/Q(r))dr (2)

CBIR systems, typically compute a language model (a Bag-
of-Words) representation for both the query and the sample
to be ranked and are thus able to compute a KL-Divergence
based similarity between the two distributions.

2.3 Active Learning
Active Learning is a technique for determining an opti-

mal order of labeling the unlabeled samples in the training
data, such that a system achieves a good performance at
the task of retrieval/classification on unseen test data, even
before it has been trained with the fully annotated train-
ing dataset. This is typically done by ranking the unlabeled
training samples by a measure of informativeness and la-
beling the samples with a higher score first and using them
to train the retrieval/classification engine [11, 2]. This pro-
cess is repeated in batches. CRMActive, a promising recent
approach, computes this informativeness measure by com-
bining quantities measuring Sample Uncertainty (how sure
is the retrieval engine about the relevance of a query to the
sample in question), Sample Density (does the sample cho-
sen for labeling represent the population or is it an outlier)
and Sample Diversity (how much do the samples chosen for
labeling resemble each other) [2].

For computing Sample Uncertainty, CRMActive first uses
Normalized CRM [4] for annotating the unlabeled samples

with concepts from the vocabulary. Assuming a vocabu-
lary V consisting of k concepts, it computes P (wi|r), wi ∈
V, i = 1, 2, ..., k for the image/video described by the M -
dimensional feature vector r and picks the top-n concepts,
where 0 < n < k, as relevant for the particular image/video
(in decreasing order of relevance). Now, Sample Uncertainty
of an unlabeled sample x, unct(x) is obtained by computing
the difference between the conditional probabilities of the
most relevant label, i.e. i = 1 and the first irrelevant one
i = n+ 1 [2].

For computing Sample Density and Diversity, CRMActive
clusters the samples in the feature space, taking into account
the agreement between the labels of the samples of a cluster.

Sample Density of an unlabeled sample x in cluster C is
then computed by

den(x) =
p(x)

max
xi∈Train

p(xi)
,

where Train is the training set and p(x) is the standard
Gaussian Kernel Density Estimate:

p(x) =
1

|C|
∑
xi∈C

KGauss(x,xi)

and |C| is the total number of samples in cluster C. For two
M -dimensional vectors x, y, KGauss(x,y) is defined by:

KGauss(x,y) =

M∏
i=1

(
1√
2πσ

exp(−(xi − yi)2/2σ2)) (3)

where σ controls the spread of the kernel.
Assuming there are T clusters, each “represented” by their

respective centroids in set S, S = {rep(C1), ..., rep(CT )},
Sample Diversity of an unlabeled sample x is defined as:

div(x) = 1−max
xi∈S

KGauss(x,xi)√
KGauss(x,x)×KGauss(xi,xi)

,

Finally, informativeness of an unlabeled sample x is de-
fined as :

Info(x) = λ1 × unct(x) + λ2 × den(x) + λ3 × div(x), (4)

where
∑3

i=1 λi = 1; ∀i, λi ≥ 0.

3. PROPOSED APPROACH
CRM-based approaches use query-likelihood for ranking

and assume the query to be sampled out from the distribu-
tion governing the documents. The query is not modeled
directly, thereby ignoring the user’s information needs. In
order to mitigate this weakness, drawing inspiration from
cross-language retrieval [3], we explore a model comparison
based approach for ranking. Our approach assumes that
there is a separate probability distribution governing both
the query and the samples to be ranked. We now com-
pare the similarity between the expected value of the query
distribution and that of the sample distribution, using KL-
Divergence. This permits the ranking of the samples.

Let θd be the distribution governing the samples to be
ranked, Eqθ be the expected value of the query distribution
and r be the random variable over which the distributions
are defined. Then the KL-Divergence between these two
distributions according to Equation 2 is proportional to:

−D(Eqθ||θd) ∝
∫
r

Eqθ(r) log θd(r)dr, (5)



where both the query and the document distributions are
approximated by kernels. θd is approximated by the Gaus-
sian kernel (Equation 3) KGauss(r, rd), with rd being the
feature vector representing the document(d) to be ranked.
However, different from CBIR approaches, our query dis-
tribution is not directly representable in terms of r, since
our queries are texts. Taking a cue from cross-language re-
trieval [3], we address this issue by the following mapping:

Eqθ(r) =

∑
J∈TrainKGauss(r, rJ).βJ(q)∑

J∈Train βJ(q)
, (6)

where rJ is the feature vector of the current training im-
age J , Train is the training set, q is the query term and
KGauss(., .) is the Gaussian kernel of Equation 3 and the
query distribution, βJ(q), has the following multinomial form:

βJ(q) = λ
Nq,J

NJ
+ (1− λ)

Nq

N
(7)

where Nq,J is the number of times q occurred in the anno-
tation of image J, NJ is the number of annotation labels
for image J, Nq is the total number of times q occurred in
the training set, and N is the total length of all annota-
tions across the training data. λ denotes a parameter that
controls the degree of smoothing. Equation 6 computes the
mapping statistic over the entire training set and is thus, in
effect an expected value of the query distribution.

Note that the integral in Equation 5 is actually an integra-
tion over all M-dimensions of the features. Also, due to the
limitation of expressing continuous integrals in computers,
we approximate this representation by a sum over the cor-
responding feature values which occur in the dataset. This
version of the Equation 5 constitutes our ranking function.

In order to extend this model for active learning, we com-
pute measures of Sample Density and Sample Diversity fol-
lowing the cluster-refinement based approach proposed in
CRMActive [2]. However, we determine Sample Uncertainty
of an unlabeled sample x as follows:

unct(x) =
1

−D(q1||x)− (−D(qk+1||x))
, (8)

where q1, ..., qk (in decreasing order of relevance) are the
top-k most relevant labels assigned to x by our model. The
denominator in Equation 8 gives a measure of the gap (dis-
tance) between the KL-Divergence measures of the most rel-
evant label and the first irrelevant one with respect to the
sample x. This therefore points to the level of uncertainty
the model has about the labels it assigns to x. Now, we
combine the three measures of Density, Diversity and Un-
certainty using Equation 4. Thus, we have in place both the
ranking system as well as the sample selection(order deter-
mining) system. We call this combined system KLActive.

4. EXPERIMENTS

4.1 Methodology
We conduct experiments to test the effectiveness of an al-

gorithm at the task of retrieving relevant images/videos for
a query concept and see how its performance evolves under
an active learning setting. In our experiments, the goal of an
algorithm is to rank the test samples by their similarity to a
single word query without annotating the test samples, i.e.
direct-retrieval. The algorithm starts with the initial train-
ing dataset, a small section of which is labeled and the rest

being unlabeled. For each concept label in the vocabulary,
the algorithm ranks the test samples by their similarity to
the concept. It then selects a batch of K unlabeled training
samples, we reveal the labels for these selected samples, and
the algorithm repeats the ranking task. For each round, we
compute precision scores of the algorithm for the top 5 re-
trieved images/videos per concept and report their average.
We call this score (AP for the top 5 documents): P@5.

4.2 Datasets
TRECVID 2007: The portion of the TRECVID 2007

video corpus, which is annotated, has 110 short video clips,
with a total of about 21,500 frames [1]. Each frame in every
video is annotated with at most 16 concept labels selected
from a set of 36 concepts such as “crowd”, “building”, “air-
plane”, etc. that constitute the whole vocabulary. This cor-
pus has been used extensively in video retrieval/annotation
experiments [11, 2]. For every frame, a 225-dimensional
feature vector (color moment, edge orientation histogram,
wavelet PWTTWT texture) is computed, as described in
Zha et al. [11]. The frames from 13 randomly selected videos
constitute our test set for our experiments, while we use the
rest of the data (frames from 97 videos) for training. We
selected 4000 frames from the training data as the initial set
of labeled samples, containing at least 1 positive example of
every concept. We set the batch size (i.e. the number of
samples which are annotated in every iteration), to be 2400.

USC SmartBody: SmartBody is an open virtual char-
acter animation platform. It ships with a library of 274 an-
imation clips such as walking, hand beat gesture, pointing,
etc. [8]. The animations are defined on a 3D skeleton con-
sisting of 119 individual joints, the 3D coordinates of which
are available from the SmartBody API. A dataset created
with this software was recently made public [2]. Here, each
video is annotated (not at the frame-level) using at most 6
concept labels from a vocabulary of 30 labels such as “Legs”,
“Arms”, “Face”, etc. The dataset along with the features -
the differences between the minimum and the maximum val-
ues for the skeleton angles at 9 joints (neck, left(L)/right(R)
shoulders, L/R elbows, L/R hip joints, and L/R knees)- is
open to the research community. Using these features, we
encode every video as a 9-dimensional feature vector. We
randomly selected 24 videos for testing and used the rest of
the data (250 animations) for training. We selected 40 an-
imations from the training data as the initial set of labeled
samples, containing at least one positive example of each
concept. We now set, batch size (i.e. the number of samples
which are annotated in every iteration), to be 23.

4.3 Baseline Systems
For the task of direct retrieval in an active learning con-

text, we compare KLActive with three different approaches.
The first and the second one being an active learning sys-
tem that uses KL-Divergence based model comparison (KL-
Random) and Normalized CRM (CRMRandom) as the re-
trieval engines respectively, while the samples are selected
randomly in each batch of active learning. The results are
averaged over 3 runs with different random seeds for both
cases. The only prior approach that is known to us, that
selects the samples non-randomly in this setting, is CRMA-
ctive [2]. We therefore, also compare our approach with
theirs. For our experiments, the values of the parameters λ,
σ and the validated parameters of the baseline approaches



Top 5 Retrieved Images from TRECVID-2007 (in decreasing order of  relevance 

from left to right) 

Query: Outdoor 

Representative Frames from Top 5 Retrieved Videos from SmartBody (in 

decreasing order of  relevance from left to right) 

Query: Arms 

Neutral Pose 

Figure 1: Example retrieval results by KLAc-
tive after Round 0 for TRECVID and SmartBody
Datasets.

are all selected by performing 10-fold cross-validation on the
first annotation batch. The values of all the parameters for
the active-learning setup are reused from past work [2].
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Table 1: AP scores for top-5 videos/images (on Y-
axis) for retrieval on TRECVID (a), SmartBody (b).

4.4 Results and Discussion
Table 1 presents the retrieval results for the TRECVID

Corpus and for the USC SmartBody corpus over different
rounds of active learning. The first observation that stands
out from the results is that all the models tend to improve
their performance as successive rounds of active learning
progress. This leads us to conclude that supplying more
training data helps improve the performance. The next
noteworthy observation is that for both the datasets the Ac-
tive Learning version of both the CRM and KL-Divergence
algorithms generally outperform their random counterparts.
Thus it seems prudent, in the context of active learning,
to label unlabeled samples based on a measure of sample
informativeness rather than random sample selection.

However, the more interesting observation is a compari-
son of the two ranking schemes: KL-Divergence and query-
likelihood based CRM. For TRECVID, clearly the KL- Di-
vergence based approaches win while this is not the case for
SmartBody. We hypothesize that this is primarily due to dif-
ference in dataset size. TRECVID is a much larger dataset
compared to SmartBody. Further for the experiments, we
start with much more samples in TRECVID (4000 as op-
posed to 40) and then in every pass we add more labeled
samples (2400 as opposed to 23). Now recall that the idea
in query-likelihood is to estimate the parameters of a distri-

bution over the documents(θd) and the query is treated to
be sampled out from this distribution. On the other hand
in KL-divergence based model comparison, we assume sep-
arate distributions for the query(θq) and the documents(θd)
and compare the two. This results in two fundamentally
different ranking functions, Equation 1 for CRMActive and
Equation 5 for KLActive. Due to the paucity of samples
in SmartBody, KLActive fails to capture the true query
distribution θq. This problem however, is less acute for
TRECVID. Thus, the KL-Divergence based models do not
perform as well on SmartBody as they do in TRECVID.
This is also borne out by the fact that in SmartBody, the
difference between the two approaches in terms of precision
values at Round-0 (when there is less labeled training data)
is much larger as compared to Round-9.

Figure 1 shows sample retrieval results for both Smart-
Body and TRECVID for sample queries in the first round
using KLActive. The relevance of the retrieved results to the
queries is very apparent, showing the model’s effectiveness.

5. CONCLUSIONS
This work explores a novel ranking scheme for retrieval of

multimedia content based on a statistical model comparison-
based approach of query and document distributions. Fur-
thermore, we extend the model in order to adapt it to an
active learning setting. Experimental results show the effec-
tiveness of our approach viz-a-viz other baselines. KLActive
is a promising avenue to explore for future research.
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