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ABSTRACT
We consider the problem of browsing the top ranked por-
tion of the documents returned by an information retrieval
system. We describe an interactive relevance feedback agent
that analyzes the inter-document similarities and can help
the user to locate the interesting information quickly. We
show how such an agent can be designed and improved by us-
ing neural networks and reinforcement learning. We demon-
strate that its performance significantly exceeds the perfor-
mance of the traditional relevance feedback approach.

Categories and Subject Descriptors
H.3.3 [Information storage and retrieval]: Information
Search and Retrieval—Relevance feedback, Selection process;
H.5.m [Information Interfaces and Presentation]: Mis-
cellaneous; I.2.6 [Artificial Intelligence]: Learning—Con-
nectionism and neural nets

General Terms
Experimentation, performance, algorithms

1. INTRODUCTION
Helping the user to locate interesting information among the
retrieved material is almost as important as the retrieval it-
self. An information retrieval system responds to the user’s
query with a large set of documents and leaves the user
to find the relevant information among these documents by
herself. Generally, the user is provided with some assis-
tance in form of a document organization subsystem. For
example, one of the most popular approaches is to order the
retrieved document by their likelihood of being relevant to
the query – place them in the ranked list [14]. Other alterna-
tives include clustering and different document visualization
techniques [15, 16].

In our previous work [21] we have considered a browsing in-
terface for an information retrieval system that integrates
the traditional ranked list with clustering visualization of

documents. The visualization presents the documents as
spheres floating in 2- or 3-dimensional space and positions
them in proportion to the inter-document similarity. If two
documents are very similar to each other, the correspond-
ing spheres will be closely located and the spheres that are
positioned far apart indicate a very different document con-
tent. Thus the visualization provides additional and very
important information about the content of the retrieved
set: while the ranked list shows how similar the documents
are to the original query, the clustering visualization high-
lights how the documents relate to each other.

We studied the combination of the ranked list and clustering
visualization by running intensive off-line simulations and a
user study [20, 21]. We showed that the inter-document
similarities can be accurately visualized for retrieval pur-
poses. We observed that users navigating the combination
can do significantly better than by following the ranked list
alone. However, it was also obvious that the system having
access to the exact values of the inter-document similarity
can provide a helpful assistance to the users.

In this paper we present an extension to that study. We
design a document selection procedure that can guide the
user through the retrieved set helping her to locate the rel-
evant information as quickly as possible. We assume that
the user is ready to provide the system with her relevance
judgments about the documents as she is examining them.
The document selection procedure can be implemented as
a “wizard” that comes up right after the documents are re-
trieved [22]. The wizard estimates the relevance values for
each unexamined document and highlights the document’s
screen representations – both the sphere in the visualization
part and the title in the ranked list – with a color shade of
intensity proportional to the relevance estimation. The user
can see where the most likely to be relevant documents are
located in the ranked list and in the visualization. As the
user examines the documents and marks them as relevant
or not, the wizard reevaluates its estimations and changes
the highlighting accordingly. This interaction is very similar
to the traditional relevance feedback approach. However, in
contrast to the relevance feedback we concentrate on analy-
sis of documents that are already present in the retrieved set.
We do not attempt to improve the original query, repeat the
search process, and bring in new documents. In addition,
our analysis focuses only on the inter-document similarity
information obtained after the original retrieval session and
ignores all term-level statistics. We assume that any estima-



tions the wizard assigns based on the similarity information
will be easily explainable to the user by our proximity-based
visualization system. The wizard keeps both the ranked list
and the visualization unchanged during the whole session
adjusting only the color highlighting. We believe, that re-
ordering the ranked list or making other structural changes
to the presentation will have a disorienting effect on the
users. The wizard points the user to the most likely rele-
vant documents without forcing its choice onto her.

In this paper we design such a wizard by modeling the inter-
action process between the user and the document set – we
consider an agent that is examining the document set, select-
ing unknown documents, and adjusting its behavior based
on whether the selected document was relevant or not. We
show that the relevance feedback methodology can be ef-
fectively applied in this setting. We formulate the feedback
problem in terms of reinforcement learning and show how
the agent effectiveness can be significantly improved after
a modest amount of training. We evaluate the agent per-
formance by assuming that the user always follows its sug-
gestions and run the experiments on the standard TREC
collections.

In the following sections we summarize the past research in
relevance feedback and neural networks in information re-
trieval. We define interactive browsing as a reinforcement
learning problem and consider three different agent repre-
sentations. We describe our experiments and discuss results.
We conclude with suggestions for future work.

2. RELATED WORK
Relevance feedback has been a major research focus of infor-
mation retrieval for well over 30 years and has been shown to
dramatically improve retrieval performance [29]. The gen-
eral model is to examine a portion of the retrieved docu-
ments assigning relevance values to each of them. The doc-
uments’ content are analyzed to “shift” the query closer to-
wards the examined relevant documents and away from the
examined non-relevant documents. This process is usually
done in batches – the documents in the collection are bro-
ken into training and testing sub-collections, the queries are
modified with the information from the training collection
and evaluated on the test collection.

Aalbersberg [1] explored the notion of incremental relevance
feedback, where the documents are considered one at a time
and the query is modified after each document. Allan [2]
conducted an intensive study of the incremental approach
showing results as good as if the feedback occurred in one
pass.

The most common model for implementing relevance feed-
back was outlined by Rocchio [27]. The terms are ranked
based on the weighted sum of the terms weights in the old
query, the known relevant, and known non-relevant doc-
uments. The new query is constructed with several top
ranked terms:

wi(Q′) = α ·wi(Q) + β ·wi(R) + γ ·wi(N )

where wi(R) and wi(N ) are the average weights of the ith
term in the relevant and non-relevant documents, wi(Q) and
wi(Q′) are the weights of the same term in the old and new

queries. Parameters α, β, and γ – called Rocchio coefficients
– control the relative impact of each component. Generally,
these parameters are selected empirically and the best 10-
20 terms are added to the query [4]. Buckley and Salton [9]
suggested an approach called Dynamic Feedback Optimiza-
tion (DFO) where the coefficients are learned by greedy ex-
ploration of the parameter space. They also demonstrated
that increasing the number of expansion terms can improve
performance.

Biron and Kraft [8] give a detailed overview of alternative
methods for relevance feedback including the connectionist
approaches. Neural networks found successful application in
both retrieval and relevance feedback [6, 34, 19]. The net-
work is constructed connecting the documents, terms, and
query. The connection weights are initialized using the sta-
tistical information about the term usage and adjusted as
the relevance judgments become available. In our study we
consider only the similarity information between the docu-
ments and ignore the data about the individual terms.

Text classification and categorization is where the neural
networks are trained to assign class labels to the documents
based on the terms they contain [25, 30]. Information fil-
tering also benefits from the neural network classification
abilities. Here they are used to select relevant material from
document streaming through the system. Schütze et al. [31]
compared neural network-based classifiers with other clas-
sification techniques. Lewis et al. [23] and later Callan [10]
studied different learning methods for the neural networks.
Hull et al. [17] examined performance of combined methods
where the decisions of several different classifiers including
neural network were considered together.

The growth of the world wide web resulted in the devel-
opment of autonomous agents that use the hyperlink envi-
ronment to perform distributed search tasks on behalf of
the user. Quite often a neural network forms a core part
of such an agent. Menczer and Belew [24] studied the fea-
tures of the web structure that can be most useful for the
agents. The Wisconsin Adaptive Web Assistant [32] com-
piles its search instructions into a neural network allowing
for adjusting of the search strategies as the training infor-
mation become available. Joachims et al. [18] developed a
system that performs look-ahead searches and provide the
suggestions to the user on the base of reinforcement learn-
ing. Balabanovic [5] studied the agents that make use of
preference information collected from multiple users. Choi
and Yoo [11] considered how the multiple agents accepting
user’s feedback, can interact with each other and learn from
their common experience. These systems make extensive use
of the hyperlink structure and term level information. They
slowly adapt to the user and her requests while performing
the search task. We are looking at navigating unstructured
text documents, training the agent off-line, and keep it un-
changed during the actual search session.

3. SEARCH STRATEGY
The problem of navigating the retrieved document set can
be naturally expressed as a reinforcement learning problem.
Indeed, we have an agent operating in an environment – our
document set. The agent interacts with the document set
at discrete time steps. At each time step t the environment



state is defined by the inter-document similarities, what doc-
uments were examined, and what relevance judgments were
assigned. The agent receives some representation of the en-
vironment state (Dt) and has to select an action – choose
the next document d to examine. At the next time step
the agent receives a numerical reward from the environment
– whether the examined document is relevant or not. The
agent has a specific goal – finding all relevant documents as
quickly as possible.

The agent implementation is defined at each time step by a
mapping between a state representation combined with an
action and a numeric value: F (Dt, d). The agent computes
the mapping for each unexamined document and selects d
with the highest value of F (Dt, d). The process continues
until all documents are examined. We call this interaction
process the search strategy and call the agent implementa-
tion F (Dt, d) the search strategy function. Reinforcement
learning methods specify how the search strategy function
can be changed as a result of the interaction experience with
the goal of maximizing the total reward.

In this paper we focus on a particular reinforcement learning
algorithm called Temporal Difference (TD) learning [33]. A
detailed description of the algorithm is the beyond the scope
of this paper and can be found elsewhere [33, p.212]. Here
we provide the update rule that modifies the search strategy
function at each learning step and controls the outcome of
the learning process:

∆~θt = η · (rt+1 + ρ · F~θ(Dt+1, dt+1)− F~θ(Dt, dt))
·∇~θF~θ(Dt, dt)

where t is the time step when we have to select a document,
Dt is the environment state at the time step t, rt+1 is the

reward obtained after the document dt is examined, ~θ is the
parameter vector that define the search strategy function
F~θ(Dt, dt), η is the learning rate that controls the speed and
stability of the learning process, and ρ is the discount factor
that controls how much the reward at time t+1 is discounted
by comparing to reward at time t.

There are three important questions that we have to yet to
consider: the goal of the search strategy, the reward func-
tion, and the document set state representation:

• How do we measure if a search strategy was quick
enough in discovering the relevant documents? The
outcome of a search strategy is a new document rank-
ing as opposed to the original ranked list. Two rank-
ings can be compared using traditional information re-
trieval measure. In this study we use the average pre-
cision. Thus our problem is to define a search strategy
that will maximize the expected average precision.

• The search strategy strongly depends upon the reward
function r. In this study our reward function rt+1 = 1
if the examined document dt was relevant and 0 oth-
erwise – we reward the search strategy for discovering
the relevant documents. However, the total reward
will not depend upon when the relevant documents
are examined – i.e., the total reward will be the same
if all relevant documents examined at the beginning of

the search or at the end. The discount factor ρ is a
part of the reward function that decreases the reward
if it was obtained at a later time step. If ρ < 1, the
search strategy will prefer the relevant documents to
occur towards the beginning of the search. At the same
time it can allow for some exploration of the document
set if the information collected during the exploration
will help to find the relevant documents in one quick
sweep. If ρ = 0, the search strategy will interested
in only immediate rewards and ignore any chance for
exploration.

• In the next three sections we consider the question
of selecting good features to represent the document
set state and define three different forms for F~θ(D, d).
Our analysis is based on the ideas from the Rocchio
feedback approach, where the document ranking is ad-
justed based on the information from the old query and
examined documents.

3.1 Simple Rocchio
The first design follows directly from the Rocchio approach.
We define the search strategy function F1(D, d) as a single
perceptron unit that has four inputs: bias or constant input,
document similarity to the query, average similarity between
the document and all examined relevant documents, and
average similarity between the document and all examined
non-relevant documents:

F1(Dt, d) = θ0 + θ1 · querysim(d)

+ θ2 · 1

|Rt|
�
∀x∈Rt

sim(x,d)

+ θ3 · 1

|Nt|
�
∀x∈Nt

sim(x, d)

where querysim(d) is the similarity between the document
and the original query, sim(x,d) is the similarity between
two documents, Rt and Nt are the set of all examined rele-
vant and non-relevant documents at time step t.

3.2 Application Coefficients
Our second design results from an heuristic observation that
different parts in the Rocchio-based representation should
have different weights depending on how many documents
were examined. For example, at the beginning of the search,
while few relevant documents are known, one should rely
more on the similarity to the original query than further
into the process when the document relevance information
is plentiful. We accommodate this intuition by dividing the
search process into three distinct phases and training a sep-
arate search strategy function for each phase. Specifically,
we define our second search strategy function F2(D, d) as a
linear combination of three instances of the search strategy
function from the previous section (F1(Dt, d)), where the
coefficients – they are called application coefficients in ma-
chine learning – are smooth functions of the number of the
examined documents [7]:

F2(Dt, d) =
�
i

Ai(|Rt|+ |Nt|) · F1i(Dt, d)



where Ai(·) is defined as following:

Ai(x) = exp � − (x− µi)2

σ2 �
where µi defines the center of the influence area for the ith
subnetwork F1i(Dt, d) and σ defines its width.

3.3 Tile Coding
Both search strategy function representations discussed in
the previous sections are quite limited in the shape of the
functions they can approximate: F1(D, d) describes a lin-
ear combination of features or a hyperplane, while F2(D, d)
describes three connected hyperplanes. For our third rep-
resentation we used a technique called tile coding that can
approximate more complex functions [33, p. 204].

In tile coding the feature space is partitioned with a regu-
lar grid (tiling) and a single number is assigned to each cell
(tile) in the partition. Generally, several tilings are placed
in the feature space and their origins are shifted by some
amount relative to each other. The set of tilings defines the
final function F3(D, d): given a point in the feature space, a
tile containing that point is selected from each grid and the
average of the corresponding numbers is returned. Detailed
overview of the tile coding and a good public-domain imple-
mentation of this technique can be found elsewhere [12].

The flexibility of tile coding comes at a cost of losing some
accuracy while partitioning the feature space. The accu-
racy of the representation can be improved by increasing
the number of tilings and decreasing the size of individual
tiles. The generalization ability of the approximation is pro-
portional to the tile size as well. Requiring the large number
of tilings makes the tile coding much more computationally
expensive than the simple linear approximator.

The search strategy function F3(D, d) is defined on the fea-
ture space of five dimensions. Four of them are the same
feature that used in F2(D, d): document-query similarity,
average similarities to relevant and non-relevant documents,
and the number of examined documents. The fifth feature
is the number of examined documents squared.

4. EXPERIMENTS
We generated the retrieved document sets for our experi-
ments by running the Inquery retrieval engine [4] on two
standard TREC collections. The engine ranks the retrieved
documents based on their likelihood of being relevant. In
practice, Inquery assigns what is called a belief score to each
document in the collection. We used that score as the query-
document similarity value.

4.1 Document Representation
The Inquery system is based on a probabilistic model of
retrieval and does not incorporate the notion of similar-
ity between documents. Therefore, to compute the inter-
document similarities we used a vector-space approach where
each document is represented by a vector term weights V .
The weight of the ith term in the vocabulary, vi is computed
using the Inquery weighting formula, which uses Okapi’s tf

score [26] and Inquery’s normalized idf score:

vi =
tf

tf + 0.5 + 1.5 doclen
avgdoclen

·
log( colsize+0.5

docf )

log(colsize+ 1)

where tf is the number of times the term occurs in the doc-
ument, docf is the number of documents the term occurs in,
doclen is the number of terms in the document, avgdoclen
is the average number of terms per document in the collec-
tion, and colsize is the number of documents in the collec-
tion. The similarity between a pair of documents is mea-
sured by the cosine of the angle between the corresponding
vectors [28].

4.2 Experimental Setup
For our experiments we used TREC ad-hoc queries with
their corresponding collections and the relevance judgments
supplied by NIST accessors [13]. Specifically, TREC topics
251-300 and 301-350 were converted into queries and run
against the documents in TREC volumes 2 and 4 (2.1GB)
and TREC volumes 4 and 5 (2.2GB) accordingly. For each
TREC topic we considered four types of queries: (1) a query
constructed by extensive analysis and expansion [3]; (2) the
description field of the topic; (3) the title of the topic; and
(4) a query constructed from the title by expanding it using
Local Context Analysis (LCA) [35]. A query of the last type
has size and complexity between the corresponding queries
of the first and second types.

Our assumption is that during a typical retrieval session a
user does not generally look beyond the first screen showing
the retrieved material – that is approximately equivalent to
ten retrieved documents. Thus, we are interested in analyz-
ing just the top portion of the ranked list. For each query
we selected the 50 highest ranked documents.

4.3 Training and Evaluation Procedure
Following the interaction model outlined in our previous
work we extended each document set with the relevance
judgments for the highest ranked relevant document and
all non-relevant documents that precede it in the ranked
list [21] – we model a situation where a user located the
first relevant document by following the ranked list. Thus
the experimental task is given the highest ranked relevant
document as the starting point, find the rest of the relevant
information. We compare performances of the search strate-
gies by computing the average precision on the unexamined
portion of the document set.

We divided the eight data sets – one for each query type
on each collection – into three subsets: training, testing,
and evaluation. The document sets retrieved from different
collections do not overlap. The document sets retrieved from
the same collection exhibit some amount of overlapping. For
example, each of four queries of different types created for
the same TREC topic retrieve fifty documents creating a
set of two hundred documents total. Our analysis shows
that there are on average a hundred unique documents in
that set. We trained each search strategy function on one
data set, making it four functions trained on the data sets
from one collection. We selected one function out of these
four that performed best on the data from that collection



Table 1: Average precision and percent improvement over the baseline (in parentheses) for the top fifty
retrieved documents. The search strategies are given a starting point for exploration: the relevance judg-
ments for the top ranked relevant document and all non-relevant documents that precede it in the ranked
list. Precision is computed for the unexamined portion of the retrieved set. Asterisks indicate statistical
significance by two-tailed t-test with p < 0.05.

Data Set Worst Best RF(+10t) RF(+100t) F1(D, d) F2(D, d) F3(D, d)
Full 14.69 82.00 39.86 44.17 46.55 ( 5.38* %) 50.65 (14.67*%) 51.00 (15.44*%)

TREC-5 Desc 11.95 88.00 45.12 50.60 52.96 ( 4.67 %) 53.00 ( 4.74 %) 53.42 ( 5.57* %)
Title 10.57 74.00 38.08 41.39 41.96 ( 1.38 %) 43.41 ( 4.87* %) 43.99 ( 6.27* %)
Title+Desc 11.94 64.00 34.79 38.26 40.73 ( 6.45* %) 43.76 (14.37*%) 44.02 (15.05*%)
Full 19.73 90.00 53.64 54.70 57.85 ( 5.76* %) 61.84 (13.06*%) 62.38 (14.05*%)

TREC-6 Desc 16.10 94.00 56.04 60.39 60.52 ( 0.22 %) 62.85 ( 4.07 %) 63.29 ( 4.80* %)
Title 15.21 84.00 52.00 54.74 57.26 ( 4.61 %) 58.36 ( 6.61* %) 58.95 ( 7.70* %)
Title+Desc 17.74 88.00 48.68 50.07 55.38 (10.59*%) 56.66 (13.16*%) 57.03 (13.90*%)

total average 14.74 83.00 46.03 49.29 51.65 ( 4.79* %) 53.82 ( 9.18* %) 54.26 (10.08*%)

Table 2: Average precision and percent improvement over the baseline (in parentheses) for the top hundred
retrieved documents. The search strategies are given a starting point for exploration: the relevance judg-
ments for the top ranked relevant document and all non-relevant documents that precede it in the ranked
list. Precision is computed for the unexamined portion of the retrieved set. Asterisks indicate statistical
significance by two-tailed t-test with p < 0.05.

Data Set worst best RF(+100t) F1(D, d) F2(D, d) F3(D, d)
Full 10.99 90.00 43.50 45.81 ( 5.32 %) 49.86 (14.63*%) 50.59 (16.31*%)

TREC-5 Desc 8.49 88.00 45.36 48.37 ( 6.64* %) 48.52 ( 6.97* %) 48.92 ( 7.84* %)
Title 7.96 84.00 39.49 42.03 ( 6.45* %) 43.14 ( 9.25* %) 44.00 (11.42*%)
Title+Desc 9.16 70.00 34.25 37.82 (10.42*%) 39.94 (16.59*%) 40.80 (19.12*%)
Full 14.75 94.00 51.48 55.61 ( 8.04* %) 60.01 (16.58*%) 60.29 (17.12*%)

TREC-6 Desc 10.98 96.00 57.30 61.69 ( 7.66* %) 64.41 (12.41*%) 64.74 (12.98*%)
Title 10.78 92.00 52.43 55.71 ( 6.26* %) 55.20 ( 5.28 %) 56.48 ( 7.72* %)
Title+Desc 12.43 92.00 51.07 53.86 ( 5.45 %) 55.79 ( 9.24* %) 56.22 (10.08*%)

total average 10.69 88.25 46.86 50.11 ( 6.94* %) 52.11 (11.20*%) 52.75 (12.58*%)

overall. We then evaluated that function on the four data
sets retrieved from another collection.

We trained the search strategies by running them on the
training set multiple times. Each search strategy function

began with all parameters (~θ) initialized to zero. We have
experimented with different values for the TD-algorithm pa-
rameters. The learning rate η = 0.1 and discount factor
ρ = 0.4 worked well in our experiments. The parameters for
application coefficients (A(·)) were defined as µ = 1, 25, 50
and σ = 6. The tile coding representation used 256 tilings,
each tile side was equal to one third of the corresponding
feature range. The learning process was terminated at the
point when the average precision failed to improve for sev-
eral iterations.

4.4 Baseline
We have used the Inquery relevance feedback subsystem as
our baseline: starting with the ranked list we follow it until
the first relevant document is found. At that point all ex-
amined documents are analyzed and a new query is created
by expanding the old query with several top ranked terms
from the examined documents. The rest of the unexamined
documents are re-ordered using the modified query and the
process continues until all documents are examined.

5. RESULTS
Tables 1, 2, and 3 show the average precision numbers ob-
tained for our baseline and three different search strate-

gies and the percent improvement over the baseline. The
first two columns in each table show the average precision
numbers for two hypothetical search strategies: one that al-
ways examines all non-relevant documents before any rele-
vant ones (“worst”) and the other that considers all relevant
documents before all non-relevant(“best”). These numbers
provide a scale for the performance results.

In the earlier study we considered the same baseline rel-
evance feedback algorithm each time expanding the query
with the top 10 highest ranked terms [21]. In our latest ex-
periments we observed that adding more terms to the query
increases performance – Table 1 shows a significant increase
in average precision while expanding the query with top 100
terms instead of top 10. Increasing the number of terms
beyond that amount (i.e., adding 500 terms) degrades the
performance. Thus we use the expansion algorithm with 100
terms as our baseline.

Table 1 shows a significant improvement in the average pre-
cision for all search strategies over the baseline. The perfor-
mance increases as more information is added to the docu-
ment set representation. The first search strategy learns a
better set of Rocchio coefficients and exhibits a 5% improve-
ment over the baseline. The second strategy allows these
coefficient to change as the browsing process progresses and
achieves a 9% improvement. The third search strategy that
uses tiling to represent its function demonstrates a 10% im-
provement.



Table 4: Rocchio coefficients from three different
sources.

System Old query (θ1) Relevant (θ2) Non-rel. (θ3)
Inquery [3] 0.5 4 -1
DFO [9] 0.25 8 -1
F1(D, d) 0.5 2 -1

We observed a similar increase in average precision while
considering the top 100 documents instead of the top 50
(Table 2).

The search strategies were beginning their exploration from
a known starting point: the top ranked relevant document
and all non-relevant documents positioned above it in the
ranked list were marked as examined and the corresponding
relevance judgments were provided to the search strategies.
We have considered the importance of that starting point:
the search strategies were to start without any relevance in-
formation and to explore the whole retrieved set. Table 3
shows the average precision numbers computed in those set-
tings. Despite that the search strategies were not retrained
to take into account the lack of the starting point, we ob-
served a significant improvement in average precision over
the baseline, albeit a smaller one.

5.1 Interpretation
The first two search strategy functions F1(D, d) and F2(D, d)
are easily interpreted by considering the neural network coef-
ficients learned in the training process. The size (256 tilings
and more than 20000 tiles) and complexity (5 dimensions) of
the tile coding representation make the interpretation of the
final F3(D, d) function very difficult and we do not attempt
it in this paper.

The first representation – the straightforward adaptation of
the Rocchio approach – showed values that are significantly
different from those discussed in the past studies (Table 4).
Inquery relevance feedback subsystem uses the relevant to
non-relevant ratio of 4 : 1 and it has been shown to work
well in TREC experiments [3]. We implemented a neural
network that used the Inquery values and the search strat-
egy exhibited performance very similar to what we have ob-
served from our baseline. Buckley and Salton [9] recommend
the ratio of 8 : 1. We implemented another neural network
that used this ratio and observed a slight but not statisti-
cally significant drop in average precision while comparing
it to the baseline. In our experiments the network learned
the same 2 : 1 ratio for the Rocchio coefficients on each
individual training set.

The second search strategy function representation was al-
lowed to change the Rocchio coefficients depending on how
many documents were examined. Figure 1 shows the learned
coefficients vary with each examined document. We ob-
served that the magnitude of the coefficient for the aver-
age similarity to non-relevant documents (|θ3|) steadily de-
creases as more documents are examined. The magnitude
of the coefficient for the average similarity to relevant doc-
uments (|θ2|) displays an increase for the middle part of the
process, while the importance of the document-query simi-
larity (|θ1|) shows exactly the opposite behavior.

10 20 30 40 50

-2

-1

1

θ3

θ2

θ1

Figure 1: The Rocchio coefficients vary significantly
with the number of examined documents.

6. CONCLUSIONS
Relevance feedback has been shown to increase performance
of an information retrieval system on multiple occasions.
We demonstrated that the technique also works in highly
interactive settings even when no additional documents are
retrieved. The relevance feedback methods can be effectively
applied to support a user browsing the top portion of the
ranked list and helping her to find all relevant documents as
quickly as possible.

We modeled the feedback process with an agent that is in-
teracting with the retrieved set. We formalized the agent
description and formulated the problem in terms of rein-
forcement learning. We showed how the agent performance
can be improved after a modest amount of training.

We have compared three different representations for search
strategy function and showed how taking into account the
number of examined documents improves our results. We
demonstrated that the technique is very successful when
only the inter-document similarity data is available and no
term information is provided. Thus it easy to design a very
efficient implementation of the feedback algorithm making
it a good candidate for on-line search environments.

7. DISCUSSION AND FUTURE WORK
In our earlier work [21] we have conducted a similar study
of interactive browsing. That analysis was mostly done in
the visualization space considering the Euclidean distances
between document representations in 2 and 3 dimensions.
We only used the information about relevant documents in
our experiments. The highest numbers reported earlier did
not much exceed the interactive relevance feedback baseline
with 10 terms expansion (Table 1, column 3). In this pa-
per we focused on the similarity relationships among high-
dimensional document vector representations, took into ac-
count both relevant and non-relevant judgments, and further
improved the system by training. The final system (with tile
coding representation) shows 13% increase in average pre-
cision over the best performance we have reported in the
past [21].

The learning phase for the agent stops when it is finished



Table 3: Average precision and percent improvement over the baseline (in parentheses) for the top fifty
retrieved documents. The search strategies start without any relevance information: precision is computed
for the whole data set. Asterisks indicate statistical significance by two-tailed t-test with p < 0.05.

Data Set worst best RF(+100t) F1(D, d) F2(D, d) F3(D, d)
Full 15.64 94.00 42.58 46.06 (8.18*%) 47.58 (11.75*%) 48.19 (13.17*%)

TREC-5 Desc 12.56 90.00 44.31 44.65 ( 0.77 %) 45.77 ( 3.31 %) 47.27 ( 6.68* %)
Title 11.24 84.00 39.15 42.01 (7.31*%) 42.88 ( 9.53* %) 43.37 (10.77*%)
Title+Desc 12.34 68.00 34.82 36.21 ( 4.00 %) 40.01 (14.90*%) 40.32 (15.80*%)
Full 20.92 94.00 54.66 57.15 ( 4.55 %) 62.44 (14.24*%) 60.46 (10.61*%)

TREC-6 Desc 17.15 96.00 58.59 58.95 ( 0.62 %) 60.09 ( 2.56 %) 60.45 ( 3.19 %)
Title 16.35 92.00 57.27 57.95 ( 1.19 %) 59.19 ( 3.34 %) 60.24 ( 5.18* %)
Title+Desc 18.55 92.00 55.18 58.37 (5.78*%) 60.09 ( 8.89* %) 60.16 ( 9.02* %)

total average 15.59 88.75 48.32 50.17 (3.83*%) 52.26 ( 8.15* %) 52.56 ( 8.77* %)

with the training data set. We have experimented with an
idea of allowing the agent to learn while running it on the
evaluation set. Specifically, at each time step during the
evaluation phase the agent was allowed to learn for several
iterations using only the examined subset of the data. Af-
ter each query the agent parameters were restored to their
initial (learned on the training set) values. We observed
that this learning did not have any effect on average: we
saw an increase in average precision for some queries and a
degradation for others.

There are several key points that made the reinforcement
learning and TD-learning in particular a good choice for
our problem. Firstly, the search strategy is learned from
experience by interacting with the training examples. That
interaction has an intuitive connection to how a user would
interact with the system.

Secondly, the exhaustive knowledge about the problem space
is not required – the TD-learning method allows the search
strategy to be learned from samples. Several theoretical re-
sults guarantee convergence of the learning process to an op-
timal search strategy – the strategy that maximizes the ex-
pected total reward. These results are based on the assump-
tion that the problem satisfies the Markov property [33].
We did not study if and by how much the problem in our
formulation violates the Markov property. However, our ex-
perimental results show that convergence does occur and
we leave the question about the Markov property for future
work.

Lastly, unlike supervised learning, the reinforcement learn-
ing does not require knowledge about the perfect search
strategy. The learning process is directed by means of pro-
viding rewards and punishments for each choice made by the
search strategy. Such a framework is very flexible – differ-
ent reward schemes will result in the search strategies max-
imizing different utility functions. It also requires a careful
consideration while selecting a particular reward function.
An intuitive choice of using the relevance value as the re-
ward number requires from the search strategy to maximize
“total discounted relevance” (TDR):

TDR(ρ) =
�
∀dt∈R

ρt

while we evaluate the performance using the average preci-

sion (P):

P =
1

|R|
�
∀dt∈R

|Rt|
|Rt|+ |Nt|

where R is the subset of all relevant documents in the data
set and dt is the document examined at time step t. Notice
that |Rt|+ |Nt| = t.

Despite that these are two different measures, the resulting
search strategies exhibit high values of average precision in
our experiments. That can probably be explained by a high
correlation between TDR(ρ) and P for low values of ρ. An
alternative would be to use P as the reward at the end of
the search (r|D|+1) with all intermediate rewards set to zero.
Then the search strategy should learn to maximize the aver-
age precision. However, we have observed that using such a
reward function results in a very slow learning process and a
very similar search strategy. Currently we are experiment-
ing with other different forms for the reward function and
evaluation measure.
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