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Abstract

An ‘information-based’ agent is proposed for com-
petitive multi-issue negotiation, where speculation
about an opponent’s motivation necessarily leads to
an endless counter-speculation spiral of question-
able value. Information-based agents model other
agents by observing their behaviour andnot by
making assumptions concerning their motivations
or internal reasoning. The integrity of these agents’
information decays with time, and so these obser-
vations are represented as beliefs qualified with de-
caying epistemic probabilities. Entropy-based in-
ference methods are applied to form expectations
about the other agents’ future actions.

1 Introduction
An agent,Π, attempts to fuse negotiation with the informa-
tion that is generated both by and because of it. To achieve
this, it draws on ideas from information theory rather than
game theory.Π decides what to do — such as what deal to
propose — on the basis of its information that may be qual-
ified by expressions of degrees of belief.Π uses this infor-
mation to calculate, and continually revise, probability dis-
tributions for that which it does not know. Two probability
distributions form the foundation of competitive interaction
— they are both over the set of all deals. The first distribution
is the probability that any deal is acceptable to an opponent
Ωi. The second distribution is the probability that any deal
will prove to be acceptable toΠ — this is concerned with the
integrity of the information about the deal as much as with
the value of the deal itself. These distributions are calculated
from Π’s knowledge and beliefs using maximum entropy in-
ference,ME. Π makes no assumptions about the internals of
its opponents, including whether they have, or are even aware
of the concept of, utility functions.Π is purely concerned
with its opponents’ behaviour — what they do — and not
with assumptions about their motivations.

Maximum entropy inference is chosen because it enables
inferences to be drawn from incomplete and uncertain infor-
mation, and because of its encapsulation of common sense
reasoning[Paris, 1999]. Unknown probability distributions
are inferred usingmaximum entropy inference[MacKay,
2003] that is based on random worlds[Halpern, 2003]. The

maximum entropy probability distribution is “the least bi-
ased estimate possible on the given information; i.e. it is
maximally noncommittal with regard to missing information”
[Jaynes, 1957].

The basic architecture of an “information-based” agent is
presented in Sec. 2 — and its entropy-based inference ma-
chinery is described in Sec. 2.1. The integrity of the agent’s
information is in a permanent state of decay, Sec. 3 describes
the agent’s machinery for managing this decay leading to a
characterisation of the “value” of information. An agent for
bilateral bargaining is described in Sec. 4, and a market agent
in Sec. 6. Sec. 7 describes a semi co-operative agent in a
process management application. Each of these three agents
derives its actions from its observations. Sec. 8 concludes.

2 Information-Based Agent Architecture
The essence of “information-based agency” is described fol-
lowing. An agent observes events in its environment includ-
ing what other agents actually do. It chooses to represent
some of those observations in its world model as beliefs. As
time passes, an agent may not be prepared to accept such be-
liefs as being “true”, and qualifies those representations with
epistemic probabilities. Those qualified representations of
prior observations are the agent’sinformation. This informa-
tion is primitive — it is the agent’s representation of its be-
liefs about prior events in the environment and about the other
agents prior actions. It is independent of what the agent is try-
ing to achieve, or what the agent believes the other agents are
trying to achieve. Given this information, an agent may then
choose to adopt goals and strategies. Those strategies may
be based on game theory, for example. To enable the agent’s
strategies to make good use of its information, tools from in-
formation theory are applied to summarise and process that
information. Such an agent is calledinformation-based.

An agent calledΠ is the subject of this discussion.Π en-
gages in multi-issue negotiation with a set of other agents:
{Ω1, · · · ,Ωo}. The foundation forΠ’s operation is the infor-
mation that is generated both by and because of its negotia-
tion exchanges — any message from one agent to another re-
veals information about the sender.Π also acquires informa-
tion from the environment — including general information
sources — to support its actions.Π uses ideas from infor-
mation theory to process and summarise its information.Π’s
aim may not be “utility optimisation” — it may not be aware



Figure 1: Basic architecture of agentΠ

Other AgentsInformation Sources
Ω1 , . . . , ΩoΘ1 , . . . , Θt

X

a  ∈   A

Y N

K Bt
It

P1 P2 Pn

Action  z

a a a

I

R

Agent Π

a a a

S

M

of a utility function. IfΠ doesknow its utility functionand if
it aims to optimise its utilitythenΠ may apply the principles
of game theory to achieve its aim. The information-based ap-
proach does not to reject utility optimisation — in general, the
selection of a goal and strategy is secondary to the processing
and summarising of the information.

In addition to the information derived from its opponents,
Π has access to a set of information sources{Θ1, · · · ,Θt}
that may include the marketplace in which trading takes
place, and general information sources such as news-feeds
accessed via the Internet. Together,Π, {Ω1, · · · ,Ωo} and
{Θ1, · · · ,Θt} make up a multi-agent system. The integrity
of Π’s information, including information extracted from the
Internet, will decay in time. The way in which this decay
occurs will depend on the type of information, and on the
source from which it was drawn. Little appears to be known
about how the integrity of real information, such as news-
feeds, decays, although its validity can often be checked —
“Is company X taking over company Y?” — by proactive ac-
tion given a co-operative information sourceΘj . SoΠ has to
consider how and when to refresh its decaying information.

Π has two languages:C andL. C is an illocutionary-based
language for communication and is not described here.L is a
first-order language for internal representation — precisely it
is a first-order language with sentence probabilities optionally
attached to each sentence representingΠ’s epistemic belief in
the truth of that sentence. Fig. 1 shows a high-level view of
how Π operates. Messages expressed inC from {Θi} and
{Ωi} are received, time-stamped, source-stamped and placed
in an in-boxX . The messages inX are then translated using
an import functionI into sentences expressed inL that have
integrity decay functions (usually of time) attached to each
sentence, they are stored in arepositoryY. And that is all
that happens untilΠ triggers a goal.

Π triggers a goal in two ways: first in response to a mes-
sage received from an opponent{Ωi} “I’d like to purchase
an apple from you”, and second in response to some need,
N , “goodness, we’ve run out of coffee”.Π’s goals could be
short-term such as obtaining some information “what is the

time?”, medium-term such as striking a deal with one of its
opponents, or, rather longer-term such as building a (busi-
ness) relationship with one of its opponents. For each goal
thatΠ commits to, it has a mechanism for selecting a plan to
achieve it.Π’s plans reside in a plan libraryA. Once a plan,a,
has been activated, it extracts those sentences from the repos-
itory Y that are relevant to it, instantiates each of those sen-
tences’ integrity decay functions to the current timet, and
selects a consistent sub-set of these sentences using its belief
revision1 functionR. Those instantiated sentences that have
no decay function are placed into theknowledge baseKa, and
those that have decay functions are placed along with their
sentence probabilities into thebelief setBa

t . Ka∪Ba
t = Ia

t is
the information basecreated by plana at timet. Plana then
uses tools from information theory, including maximum en-
tropy inference,M , to derive a set of probability distributions,
{P a

1 , · · · , P a
n}, from Ia

t . The way in which these derivations
are performed are described in Sec. 2.1 following. Then plan
a invokes some strategyS that uses the{P a

1 , · · · , P a
n} to de-

termineΠ’s actionz ∈ Z.

2.1 Π’s Reasoning
OnceΠ has selected a plana ∈ A it uses maximum en-
tropy inference to derive the{P a

i }n
i=1 [see Fig. 1] and mini-

mum relative entropy inference to update those distributions
as new data becomes available.Entropy, H, is a measure of
uncertainty[MacKay, 2003] in a probability distribution for a
discrete random variableX: H(X) , −

∑
i p(xi) log p(xi)

where p(xi) = P(X = xi). Maximum entropy infer-
ence is used to derive sentence probabilities for that which
is not known by constructing the “maximally noncommittal”
[Jaynes, 2003] probability distribution.

Let G be the set of all positive ground literals that can be
constructed usingΠ’s languageL. A possible world, v, is a
valuation function:G → {>,⊥}. V|Ka = {vi} is the set
of all possible worlds that are consistent withΠ’s knowledge
baseKa that contains statements whichΠ believes are true.
A random worldforKa, W |Ka = {pi} is a probability distri-
bution overV|Ka = {vi}, wherepi expressesΠ’s degree of
belief that each of the possible worlds,vi, is the actual world.
Thederived sentence probabilityof anyσ ∈ L, with respect
to a random worldW |Ka is:

(∀σ ∈ L)P{W |Ka}(σ) ,
∑

n

{ pn : σ is> in vn } (1)

The agent’sbelief setBa
t = {βj}M

j=1 contains statements
to which Π attaches agiven sentence probabilityB(.). A
random world W |Ka is consistentwith Ba

t if: (∀β ∈
Ba

t )(B(β) = P{W |Ka}(β)). Let {pi} = {W |Ka,Ba
t } be the

“maximum entropy probability distribution overV|Ka that is
consistent withBa

t ”. Given an agent withKa andBa
t , maxi-

mum entropy inferencestates that thederived sentence prob-
ability for any sentence,σ ∈ L, is:

(∀σ ∈ L)P{W |Ka,Ba
t }

(σ) ,
∑

n

{ pn : σ is> in vn } (2)

1This belief revision — consistency checking — exercise is non-
trivial, and is not described here. For sake of illustration only, the
strategy “discard the old in favour of the new” is sufficient.



From Eqn. 2, each belief imposes a linear constraint on the
{pi}. The maximum entropy distribution:arg maxp H(p),
p = (p1, . . . , pN ), subject toM + 1 linear constraints:

gj(p) =
N∑

i=1

cjipi − B(βj) = 0, j = 1, . . . ,M.

g0(p) =
N∑

i=1

pi − 1 = 0

wherecji = 1 if βj is> in vi and 0 otherwise, andpi ≥
0, i = 1, . . . , N , is found by introducing Lagrange multipli-
ers, and then obtaining a numerical solution using the multi-
variate Newton-Raphson method. In Sec. 3.1 we’ll see how
an agent updates its sentence probabilities as new information
is received.

Given a prior probability distributionq = (qi)n
i=1 and a set

of constraintsC, the principle of minimum relative entropy
chooses the posterior probability distributionp = (pi)n

i=1 that
has the leastrelative entropy2 with respect toq:

{W |q, C} , arg min
p

n∑
i=1

pi log
pi

qi

and that satisfies the constraintsC. This may be found by
introducing Lagrange multipliers as above. Given a prior dis-
tribution q over{vi} — the set of all possible worlds, and a
set of constraintsC (that could have been derived as above
from a set of new beliefs)minimum relative entropy inference
states that the derived sentence probability for any sentence,
σ ∈ L, is:

(∀σ ∈ L)P{W |q,C}(σ) ,
∑

n

{ pn : σ is> in vn } (3)

where{pi} = {W |q, C}. The principle of minimum relative
entropy is a generalisation of the principle of maximum en-
tropy. If the prior distributionq is uniform, then the relative
entropy ofp with respect toq differs from−H(p) only by a
constant. So the principle of maximum entropy is equivalent
to the principle of minimum relative entropy with a uniform
prior distribution.

Discussion on entropy-based inference
Entropy-based inference is chosen because it enables com-
plete probability distributions to be constructed from a small
number of observations. In such a case the distributions could
not be expected to be accurate. But the technique does derive
the unique distribution that is least biased with respect to what
is as yet unknown.

Maximum entropy inference presents four difficulties.
First, it assumes that what the agent knows is “the sum total
of the agent’s knowledge, it is not a summary of the agent’s
knowledge, it is all there is”[Paris, 1999]. This assumption
referred to as Watt’s Assumption[Jaeger, 1996]. So if knowl-
edge is absent then the agent may do strange things. Second,
it may only be applied to a consistent set of beliefs — this

2Otherwise calledcross entropyor theKullback-Leiblerdistance
between the two probability distributions.

may mean that valuable information is destroyed by the be-
lief revision process that copes with the continuous arrival of
new information. Third, its knowledge base is expressed in
first-order logic. So issues that have unbounded domains —
such as price — can only be dealt with either exactly as a
large quantity of constants for each possible price, or approx-
imately as price intervals. This decision will effect the infer-
ences drawn and is referred to as representation dependence
[Halpern, 2003]. Fourth, maximum entropy is not simple to
calculate — numerical solutions are obtained by applying the
Newton-Raphson method to as many non-linear, simultane-
ous equations as there are beliefs in the knowledge base.

Despite these four difficulties, maximum entropy inference
is an elegant formulation of common sense reasoning[Paris,
1999]. Maximum entropy inference is also independent of
any structure on the set of all possible deals. So it copes
with single-issue and multi-issue negotiation without modifi-
cation. It may also be applied to the probabilistic belief logic
that is used here.

2.2 An Exemplar Application
An exemplar application is used following.Π is attempting to
purchase of a second-hand motor vehicle, with some period
of warranty, for cash. So the two issues in this negotiation are:
the period of the warranty, and the cash consideration. A deal
δ consists of this pair of issues, and the deal set has no natural
ordering. Π observes its opponents’ actions and uses these
observations to estimate the probability that an offer of deal
δ will be accepted for variousδ. Suppose that the warranty
period is simply0, · · · , 4 years, and that the cash amount for
this car will certainly be at least $5,000 with no warranty, and
is unlikely to be more than $7,000 with four year’s warranty.
In what follows all price units are in thousands of dollars.

To represent the application in first-order logic, a finite set
of intervals is chosen for the issue price. This choice will ef-
fect the results of theME calculations, andME is criticised
[Halpern, 2003] because the way in which the knowledge is
represented inKa andBa

t determines the values derived. This
property is promoted here as a strength of the method because
the correct representation, using the rich expressive power of
first-order probabilistic logic, encapsulates features of the ap-
plication at a fine level of detail. Suppose then that the set of
intervals chosen for price contains the eleven intervals:D =
{ [5.0, 5.2), [5.2, 5.4), [5.4, 5.6), [5.6, 5.8), [5.8, 6.0), [6.0,
6.2), [6.2, 6.4), [6.4, 6.6), [6.6, 6.8), [6.8, 7.0), [7.0,∞) }.
Given some value for the warranty periodw what is the least
price theΠ expects its opponent to accept? In the absence of
any information,ME concludes that these eleven intervals are
equi-probable with a probability of111 . If any other complete
and disjoint set of intervals had been chosen the answer would
have been the same. Rather than condemn the method on the
basis of this conclusion, we promote this as a strength.Either
the intervals should be chosen so that they area priori equi-
probable,or knowledge should be included inIa

t to express
why that are not. The choice of intervals enables fine-grained
modelling of the application domain.

Suppose then that the deal set chosen in this application
consists of 55 individual deals in the form of pairs of warranty
periods and price intervals(w, p) wherew = 0, · · · , 4 andp ∈



D. Suppose thatΠ has previously received two offers fromΩ.
The first was to offer 6.0 with no warranty, and the second to
offer 6.9 with one year’s warranty. SupposeΠ believes thatΩ
still stands by these two offers with probability 0.8. Then this
leads to two beliefs:β1 : Acc(Ω,Π, (0, [6.0, 6.2))); B(β1) =
0.8, β2 : Acc(Ω,Π, (1, [6.8, 7.0))); B(β2) = 0.8, where
Acc(Ω,Π, δ) means “Π believes thatΩ will accept dealδ”.
Before “switching on”ME, Π should consider whether it be-
lieves thatP(Acc(Ω,Π, δ)) is uniform overδ. If it does then
it includes bothβ1 andβ2 in B, and calculates{W |Ka,Ba

t }
that yields estimates forP(Acc(Ω,Π, δ)) for all δ. If it does
not then it should include further knowledge inKa andBa

t .
For example,Π may believe thatΩ prefers a greater warranty
period the higher the price. If so, then this is a multi-issue
constraint, that is represented inBa

t , and may be qualified
with a sentence probability.

3 Managing Integrity Decay
Π’s information baseIa

t contains sentences in first-order
logic each with a sentence probability,B(·), representing the
agent’s strength of belief in the truth of that statement. Main-
taining the integrity ofIa

t is not just a matter of looking up
information. Information may be temporarily unavailable, ac-
quiring it may cost money, the information may be inherently
unreliable, and its availability may be beyond the control of
the agent. For example, if a chunk of information represents
the action of another agent then that information can only be
refreshed when the other agent acts.

3.1 Updating the probability distributions
Π’s plans are partly driven by the probability distributions
{P a

1 , · · · , P a
n} in Fig. 1. These distributions are derived from

the information in the repositoryY. The integrity of the in-
formation inY will decay in accordance with the decay func-
tions — unless it is refreshed. As the integrity decays, the
entropy of the distributions{P a

1 , · · · , P a
n} increases.

Suppose thatL contains a unary predicate,A(·), whose
domain is represented by the finite set of logical constants
{ci}d

i=1. At time t let pt
i = B (A(ci)) for i = 1, · · · , d. As

time t increaseseitherno information is received and the en-
tropy of (pt

i) should increase,or information is received and
the distribution(pt

i) should be refreshed. If no information is
received, a geometric decay to (maximum entropy) ignorance
is achieved by:

pt+1
i = ρ · pt

i + (1− ρ) · 1
d

(4)

for a decay factorρ ∈ [0, 1] whose value depends on the
meaning ofA(·).

Now suppose that at timet, Π receives a message from
sourceΘ that asserts the truth ofA(ck), and suppose that
Π decides to attach the given sentence probabilityg(Θ) to
B(A(ck)), where the valueg(Θ) is Π’s confidence in the in-
tegrity of Θ’s advice. Then the updated distribution is calcu-
lated by applyingminimum relative entropy inference:

(
pt

j

)d

j=1
= arg min

b

d∑
i=1

bi log
bi

pt−1
i

satisfying the constraint:pt
k = g(Θ), and whereb = (bj)d

j=1.
That is, the new distribution is the closest3 to the previous one
that satisfies the constraint. But, this depends onΠ knowing
g(Θ), ie: the strength of belief thatΠ allocates toΘ’s infor-
mation. The issue here is not, for example, forecasting the
clearing price of a stock, it is estimating the confidence that
Π has in the integrity ofΘ’s information. If Π can confirm
the validity ofΘ’s adviceex postthen a very simple way of
estimatingg(Θ) is by:

gnew(Θ) =
{

ν · gold(Θ) + (1− ν) whenΘ is correct
ν · gold(Θ) whenΘ is incorrect

for a learning rateν ∈ [0, 1].

3.2 Valuing Information
A chunk of information is valued only by the way that it en-
ablesΠ to do something4. So information is valued in relation
to the plans thatΠ is executing. A plan,a, is designed in the
context of a particular representation, or environment,e. One
way in which a chunk of information assistsΠ is by altering
one ofa’s distributions{P a

i } — see Fig. 1. As a chunk of
information could be “good” for one distribution and “bad”
for another, the appropriate way to value information is by its
effect on each distribution. For a plana, thevalueto a of a
message received at timet is the resulting decrease in entropy
in a’s distributions{P a

i } in Fig. 1. In general, suppose that a
set of stamped messagesX = {xi} is imported by plana to
the information baseIa

t where they are represented as the set
of statementsD = {di} = R(I(X)), whereI is the import
function andR the belief revision function. Theinformation
in D at time t with respect to a particularP a

i , plan a and
environmente is:

I(D | P a
i (Ia

t ), a, e) , H(P a
i (Ia

t ))−H(P a
i (Ia

t ∪D))

for i = 1, · · · , n, where the argument of theP a
i (·) is the state

of Π’s information base from whichP a
i was derived. And we

define the information in the set of messagesX (at timet with
respect to a particularP a

i , a ande) to be the information in
D = R(I(X)). It is reasonable to aggregate the information
in D over the distributions used bya, and to aggregate again
over all plans to obtain the (potential) information in a state-
ment. That is, thepotential informationin D with respect to
environmente is:

I(D | e) ,
∑
a∈A

∑
i

I(D | P a
i (Ia

t ), a, e) (5)

4 A Bargaining Agent
[Debenham, 2004b] describes a multi-issue, bilateral bargain-
ing agentΠ, with just one opponentΩ, whose strategies are
all based on the three distributions:P(Acc(Π,Ω, δ)) for all
dealsδ [ie: the probability thatΠ should accept dealδ from
agentΩ], P(Acc(Ω,Π, δ)) for all dealsδ [ie: Π’s estimate

3Precisely, it is the distribution that minimises the Kullback-
Leibler distance from the prior distribution,(pt−1

i ), whilst satisfying
the given constraint.

4That is we do not try to attach any intrinsic value to information.



of the probability thatΩ would accept dealδ from agentΠ],
andpb,Ω [ie: the probability of breakdown — the probabil-
ity that Ω will “walk away” in the next negotiation round].
These three complete probability distributions are derived by
observing the information in the signals received.

Π has do two different things. First, it must respond to
offers received fromΩ — this is described in Sec. 6. Sec-
ond, it must send offers, and possibly information, toΩ. This
section describes machinery for estimating the probabilities
P(Acc(Ω,Π, δ)). HereΠ is attempting to purchase of a par-
ticular second-hand motor vehicle, with some period of war-
ranty, for cash fromΩ as described in Sec. 2.2. So a dealδ
will be represented by the pair(w, p) wherew is the period
of warranty in years and$p is the price.

Π assumes the following two preference relations forΩ,
andKa contains:
κ1 : ∀xyz((x < y) →

(Acc(Ω,Π, (y, z)) → Acc(Ω,Π, (x, z))))
κ2 : ∀xyz((x < y) →

(Acc(Ω,Π, (z, x)) → Acc(Ω,Π, (z, y))))
These sentences conveniently reduce the number of possi-
ble worlds. The two preference relationsκ1 and κ2 in-
duce a partial ordering on the sentence probabilities in the
P(Acc(Ω,Π, w, p)) array from the top-left where the proba-
bilities are≈ 1, to the bottom-right where the probabilities
are≈ 0. There are fifty-one possible worlds that are consis-
tent withKa.

Suppose that the offer exchange has proceeded as follows:
Ω asked for $6,900 with one year warranty andΠ refused,
thenΠ offered $5,000 with two years warranty andΩ refused,
and thenΩ asked for $6,500 with three years warranty andΠ
refused. Then at the next time stepBa

t contains:
β3 : Acc(Ω,Π, (3, [6.8, 7.0))),
β4 : Acc(Ω,Π, (2, [5.0, 5.2))) and
β5 : Acc(Ω,Π, (1, [6.4, 6.6))),
and with a 10% decay in integrity for each time step:P(β3) =
0.7, P(β4) = 0.2 andP(β5) = 0.9

Eqn. 2 is used to calculate the distribution{W |Ka,Ba
t }

which shows that there are just five different probabil-
ities in it. The probability matrix for the proposition
Acc(Ω,Π, (w, p)) is:

p = w = 0 w = 1 w = 2 w = 3 w = 4
[7.0,∞) 0.9967 0.9607 0.8428 0.7066 0.3533
[6.8, 7.0) 0.9803 0.9476 0.8330 0.7000 0.3500
[6.6, 6.8) 0.9533 0.9238 0.8125 0.6828 0.3414
[6.4, 6.6) 0.9262 0.9000 0.7920 0.6655 0.3328
[6.2, 6.4) 0.8249 0.8019 0.7074 0.5945 0.2972
[6.0, 6.2) 0.7235 0.7039 0.6228 0.5234 0.2617
[5.8, 6.0) 0.6222 0.6058 0.5383 0.4523 0.2262
[5.6, 5.8) 0.5208 0.5077 0.4537 0.3813 0.1906
[5.4, 5.6) 0.4195 0.4096 0.3691 0.3102 0.1551
[5.2, 5.4) 0.3181 0.3116 0.2846 0.2391 0.1196
[5.0, 5.2) 0.2168 0.2135 0.2000 0.1681 0.0840

In this array, the derived sentence probabilities for the three
sentences inBa

t are shown in bold type; they are exactly their
given values. This matrix simplifies the expression of bar-
gaining strategies such as[Faratinet al., 2003].

5 Negotiation Strategies
Sec. 4 estimated the probability distribution,
P(Acc(Ω,Π, w, p)), that Ω will accept an offer, and
Sec. 6 following estimates the probability distribution,
P(Acc(Π,Ω, δ)), that Π should be prepared to accept
an offer δ. These two probability distributions repre-
sent the opposing interests of the two agentsΠ and Ω.
P(Acc(Ω,Π, w, p)) will change every time an offer is made,
rejected or accepted.P(Acc(Π,Ω, δ)) will change as the
background information changes. This section discussesΠ’s
strategyS. Sec. 5.2 considers the risk of breakdown.

Bargaining can be a game of bluff and counter-bluff in
which an agent may even not intend to close the deal if one
should be reached. A basic conundrum in any offer-exchange
bargaining is: it is impossible to force your opponent to reveal
information about their position without revealing informa-
tion about your own position. Further, by revealing informa-
tion about your own position you may change your opponents
position — and so on.5 This infinite regress, of speculation
and counter-speculation, is avoided here by ignoring the in-
ternals of the opponent and by focussing on what is known
for certain — that is:what information is contained in the
signals received andwhendid those signals arrive.

A fundamental principle of competitive bargaining is
“never reveal your best price”, and another is “never reveal
your deadline — if you have one”[Sandholm and Vulkan,
1999]. It is not possible to be prescriptive about what an agent
shouldreveal. All that can be achieved is to provide strate-
gies that an agent may choose to employ. The following are
examples of such strategies.

5.1 Without Breakdown
An agent’s strategyS is a function of the informationIt that
is has at timet. That information will be represented in the
agent’sKa andBa

t . Simple strategies choose an offer only
on the basis ofP(Acc(Π,Ω, δ)), P(Acc(Ω,Π, δ)) andα. The
greedy strategyS+ chooses:

arg max
δ
{P(Acc(Π,Ω, δ)) | P(Acc(Ω,Π, δ)) � 0},

it is appropriate for an agent that believesΩ is desperate to
trade. Theexpected-acceptability-to-Π-optimizing strategy
S∗ chooses:

arg max
δ
{P(Acc(Ω,Π, δ))×P(Acc(Π,Ω, δ)) |

P(Acc(Π,Ω, δ)) ≥ α}
it is appropriate for a confident agent that is not desperate to
trade. The strategyS− chooses:

arg max
δ
{P(Acc(Ω,Π, δ)) | P(Acc(Π,Ω, δ)) ≥ α}

it optimizes the likelihood of trade — it is a good strategy for
an agent that is keen to trade without compromising its own
standards of acceptability.

An approach to issue-tradeoffs is described in[Faratinet
al., 2003]. The bargaining strategy described there attempts

5This a reminiscent of Werner Heisenberg’s indeterminacy rela-
tion, or unbestimmtheitsrelationen: “you can’t measure one feature
of an object without changing another” — with apologies.



to make an acceptable offer by “walking round” the iso-
curve of Π’s previous offer (that has, say, an acceptability
of αna ≥ α) towardsΩ’s subsequent counter offer. In terms
of the machinery described here, an analogue is to use the
strategyS−:
arg max

δ
{P(Acc(Π,Ω, δ)) | P(Acc(Π,Ω, δ) | It) & αna }

for α = αna. This is reasonable for an agent that is at-
tempting to be accommodating without compromising its
own interests. Presumably such an agent will have a policy
for reducing the valueαna if her deals fail to be accepted.
The complexity of the strategy in[Faratinet al., 2003] is
linear with the number of issues. The strategy described
here does not have that property, but it benefits from using
P(Acc(Ω,Π, δ)) that contains foot prints of the prior offer se-
quence — see Sec. 4 — in that distribution more recent offers
have stronger weights.

5.2 With Breakdown
A negotiation may break down because one agent is not pre-
pared to continue for some reason.pB is the probability that
the opponent will quit the negotiation in the next round. There
are three ways in whichΠ models the risk of breakdown.
First,pB is a constant determined exogenously to the negoti-
ation, in which case at any stage in a continuing negotiation
the expected number of rounds until breakdown occurs is1

pB
.

Second,pB is a monotonic increasing function of time —
this attempts to model an impatient opponent. Third,pB is a
monotonic increasing function of(1 − P(Acc(Ω,Π, δ))) —
this attempts to model an opponent who will react to unattrac-
tive offers.

At any stage in a negotiationΠ may be prepared to gam-
ble on the expectation thatΩ will remain in the game for
the nextn rounds. This would occur if there is a constant
probability of breakdownpB = 1

n . Let It denote the infor-
mation stored inΠ’s Ka andBa

t at time t. S is Π’s strat-
egy. If Π offered to trade withΩ at S(I1) thenΩ may ac-
cept this offer, but may have also been prepared to settle for
terms more favorable than this toΠ. If Π offered to trade at
S(I1 ∪ {Acc(Ω,Π, S(I1))}) thenΩ will either accept this
offer or reject it. In the former case trade occurs at more
favorable terms thanS(I1), and in the latter case a useful
piece of information has been acquired:¬Acc(S(Ω,Π, I1))
which is added toI1 before calculating the next offer. This
process can be applied twice to generate the offerS(I1 ∪
{¬Acc(Ω,Π, S(I1∪{¬Acc(Ω,Π, S(I1))}))}), or any num-
ber of times, optimistically working backwards on the as-
sumption thatΩ will remain in the game forn rounds. The
strategyS(n), whereS(1) = S∗ the expected-acceptability-
to-Π-optimizing strategy defined in Sec. 5.1.S(n) is the strat-
egy of working back fromS(1) (n − 1) times. At each stage
S(n) will benefit also from the information in the interven-
ing counter offers presented byΩ. The strategyS(n) is rea-
sonable for a risk-taking, expected-acceptability-optimizing
agent.

5.3 Information Revelation
Π’s negotiation strategyis a functionS : K × B → A where
A is the set of actions that sendOffer(.), Accept(.), Reject(.)

and Quit(.) messages toΩ. If Π sendsOffer(.), Accept(.)
or Reject(.) messages toΩ then she is givingΩ information
about herself. In an infinite-horizon bargaining game where
there is no incentive to trade now rather than later, a self-
interested agent will “sit and wait”, and do nothing except,
perhaps, to ask for information. The well known bargaining
response to an approach by an interested party “Well make
me an offer” illustrates how a shrewd bargainer may behave
in this situation.

An agent may be motivated to act for various reasons —
three are mentioned. First, if there are costs involved in the
bargaining process dueeither to changes in the value of the
negotiation object with timeor to the intrinsic cost of con-
ducting the negotiation itself. Second, if there is a risk of
breakdown caused by the opponent walking away from the
bargaining table. Third, if the agent is concerned with es-
tablishing a sense of trust[Ramchurnet al., 2003] with the
opponent —this could be the case in the establishment of a
business relationship. Of these three reasons the last two are
addressed here. The risk of breakdown may be reduced, and
a sense of trust may be established, if the agent appears to
its opponent to be “approaching the negotiation in an even-
handed manner”. One dimension of “appearing to be even-
handed” is to be equitable with the value of information given
to the opponent. Various bargaining strategies, both with and
without breakdown, are described in[Debenham, 2004b], but
they do not address this issue. A bargaining strategy is de-
scribed here that is founded on a principle of “equitable infor-
mation gain”. That is,Π attempts to respond toΩ’s messages
so thatΩ’s expected information gain similar to that whichΠ
has received.

Π modelsΩ by observing her actions, and by representing
beliefs about her future actions in the probability distribution
P(Acc(Ω,Π, δ)). Π measures the value of information that
it receives fromΩ by the change in the entropy of this distri-
bution. More generally,Π measures the value of information
received in a message,µ, by the change in the entropy in its
entire representation,Jt = Kt ∪ Bt, as a result of the receipt
of that message; this is denoted by:∆µ|J Π

t |, where|J Π
t |

denotes the value (as negative entropy) ofΠ’s information in
J at time t — see Sec. 3.2. Although bothΠ andΩ will
build their models of each other using the same data — the
messages exchanged — the observed information gain will
depend on the way in which each agent has represented this
information. It is “not unreasonable to suggest” that these
two representations should be similar. To support its attempts
to achieve “equitable information gain”Π assumes thatΩ’s
reasoning apparatus mirrors its own, and so is able to esti-
mate the change inΩ’s entropy as a result of sending a mes-
sageµ to Ω: ∆µ|J Ω

t |. Suppose thatΠ receives a message
µ = Offer(.) from Ω and observes an information gain of
∆µ|J Π

t |. Suppose thatΠ wishes to reject this offer by send-
ing a counter-offer,Offer(δ), that will giveΩ expected “equi-
table information gain”.

δ = {arg max
δ

P(Acc(Π,Ω, δ) | It) ≥ α |

(∆Offer(δ)|J Ω
t | ≈ ∆µ|J Π

t |)}.

That is Π chooses the most acceptable deal to herself that



gives her opponent expected “equitable information gain”
provided that there is such a deal. If there is not thenΠ
chooses the best available compromise:

δ = {arg max
δ

(∆Offer(δ)|J Ω
t |) | P(Acc(Π,Ω, δ) | It) ≥ α}

provided there is such a deal — this strategy is rather gener-
ous, it rates information gain ahead of personal acceptability.
If there is not thenΠ does nothing.

The “equitable information gain” strategy generalizes the
simple-minded alternating offers strategy. Suppose thatΠ is
trying to buy something fromΩ with bilateral bargaining in
which all offers and responses stand — ie: there is no de-
cay of offer integrity. Suppose thatΠ has offered $1 and
Ω has refused, andΩ has asked $10 andΠ has refused. If
amounts are limited to whole dollars only then the deal set
D = {1, · · · , 10}. Π knows thatP(Acc(Ω,Π, 1)) = 0 and
P(Acc(Ω,Π, 10)) = 1. The remaining eight values in this
distribution are provided by Eqn. 2, and the entropy of the re-
sulting distribution is2.2020. To apply the “equitable infor-
mation gain” strategyΠ assumes thatΩ’s decision-making
machinery mirrors its own. In which caseΩ is assumed to
have constructed a mirror-image distribution to modelΠ that
will have the same entropy. At this stage, timet = 0, cal-
ibrate the amount of information held by each agent at zero
— ie: |J Π

0 | = |J Ω
0 | = 0. Now if, at time t = 1, Ω asks

Π for $9 thenΩ gives information toΠ and|J Π
1 | = 0.2548.

If Π rejects this offer then she gives information toΩ and
|J Ω

1 | = 0.2548. Suppose thatΠ wishes to counter with an
“equitable information gain” offer. If, at timet = 2, Π offers
Ω $2 then|J Ω

2 | = 0.2548+0.2559. Alternatively, ifΠ offers
Ω $3 then|J Ω

2 | = 0.2548 + 0.5136. And so $2 is a near
“equitable information gain” response byΠ at timet = 2.

6 A Market Agent
We now consider howΠ values a deal in the context of multi-
issue auctions where, for protocols with a truth telling dom-
inant strategy,Π only constructsP(Acc(Π,Ω, δ)) [ie: the
probability thatΠ should bid dealδ]. For protocols with equi-
librium solutions that are expressed in terms of the number
of bidders,Π also requires a probability distribution over the
various possible number of bidders. From the auctioneer’s
point of view, the distributionP(WinningBid(δ)) [ie: the
probability thatδ will be the winning bid] may be expressed
analytically in terms of the number of bidders, and the size of
the domain chosen to represent the various possible deals.

The distributionP(Acc(Π,Ω, δ)) is Π’s analogue of a
game-theoretic agent’s utility function, but it is quite differ-
ent. P(Acc(Π,Ω, δ)) is Π’s estimate of her certainty that
deal δ is acceptable. That is,Π’s estimate of the valid-
ity of her information, and not an estimate of the intrinsic
value of δ. This estimate will be based on various factors
one of which may beΠ’s estimate of whetherδ is consid-
ered acceptable in the open market,Fair(δ), that may be
determined by reference to market data. Suppose that re-
cently a similar vehicle sold with three year’s warranty for
$6,500, and another less similar was sold for $5,500 with one
year’s warranty. These are fed intoIa

t and are represented
as two beliefs inBa

t : β6 : Fair(3, [6.4, 6.6)); B(β6) = 0.9,

β7 : Fair(3, [5.4, 5.6)); B(β7) = 0.8. In an open-cry auction
one source of market data is the bids made by other agents.
The sentence probabilities that are attached to this data may
be derived from knowing the identity, and so too the reputa-
tion, of the bidding agent. In this way the acceptability value
is continually adjusted as information becomes available. In
addition toβ6 andβ7, there are three chunks of knowledge in
Ka. First,κ3 : Fair(4, 4999) that determines a base value for
which P(Fair(·)) = 1, and two other chunks that represent
Π’s preferences concerning price and warranty:

κ4 : ∀x, y, z((x > y) → (Fair(z, x) → Fair(z, y)))

κ5 : ∀x, y, z((x > y) → (Fair(y, z) → Fair(x, z)))

The deal set is a5 × 11 matrix. The three statements inKa

mean that there are56 possible worlds. The two beliefs are
consistent with each other and withKa. A complete matrix
for P(Fair(δ) | It) is derived by solving two simultaneous
equations of degree two using Eqn. 2:

p = w = 0 w = 1 w = 2 w = 3 w = 4
[7.0,∞) 0.0924 0.1849 0.2049 0.2250 0.2263
[6.8, 7.0) 0.1849 0.3697 0.4099 0.4500 0.4526
[6.6, 6.8) 0.2773 0.5546 0.6148 0.6750 0.6789
[6.4, 6.6) 0.3697 0.7394 0.8197 0.9000 0.9053
[6.2, 6.4) 0.3758 0.7516 0.8331 0.9147 0.9213
[6.0, 6.2) 0.3818 0.7637 0.8466 0.9295 0.9374
[5.8, 6.0) 0.3879 0.7758 0.8600 0.9442 0.9534
[5.6, 5.8) 0.3939 0.7879 0.8734 0.9590 0.9695
[5.4, 5.6) 0.4000 0.8000 0.8869 0.9737 0.9855
[5.2, 5.4) 0.4013 0.8026 0.8908 0.9790 0.9921
[5.0, 5.2) 0.4026 0.8053 0.8947 0.9842 0.9987

The two evidence values are shown above in bold face. As
new evidence becomes available it is represented inBa

t , and
the matrix is refreshed using Eqn. 3. If new evidence renders
Ba

t inconsistent then this inconsistency will be detected by the
failure of the process to yield values for the probabilities in
[0, 1] — if that occurs then the revision functionR identifies
and removes inconsistencies.

The examples discussed above for competitive interac-
tion have been related to the basic offer exchange process.
These information-theoretic tools may also be applied to cap-
ture deeper issues in negotiation such as trust[Ramchurn
et al., 2003]. For example, by definingtrust as a measure
of expected deviations in behaviour, the Kullback-Leibler
distance2 may be used to measure the deviation between a
contract and its execution, and so to estimate trust.

7 A Co-operative Agent
Here information-based agents are applied to managing the
collaboration in emergent process management. Although
the agents in process management systems should attempt to
co-operate, the management of emergent processes relies on
good will. One operation is the delegation of responsibility
for a process by one agent to another. HereΠ estimates the
probability that one of its collaborators will accept such re-
sponsibility — again this estimate is made solely on the basis
of observations of past actions.



Π interacts with its collaborators{Ωi}n
i=1. It is assumed

that processes are initially triggered externally to the system.
For example,Π’s ‘owner’ may have an idea that she believes
has value, and triggers an emergent process to explore the
idea’s worth. The interaction protocol is simple, ifΠ sends
a Delegate(·) message toΩi then interaction continues until
one agent sends anAccept(·) or aQuit(·) message. This as-
sumes that agents respond in reasonable time which is fair in
an essentially co-operative system.

To support the agreement-exchange process,Π has do two
different things. First, it must respond to proposals received
from Ωi — that is not described here. Second, it must con-
struct proposals, and possibly information, to send toΩi —
that is described now. Maximum entropy inference is used
to ‘fill in’ missing values with the “maximally noncommit-
tal” probability distribution. To illustrate this suppose thatΠ
proposes to delegate a sub-process toΩi. That sub-process
involvesΩi delivering — using anInform(·) message —u
chapters for a report in so-many daysv. We describe the ma-
chinery for estimating the probabilitiesP(Acc(Ωi,Π, (u, v)))
where the predicateAcc(Ωi,Π, (u, v)) means “Ωi will accept
Π’s delegation proposal(u, v)”.

Π assumes the following two preference relations forΩi,
andKa contains:

κ6 : ∀xyz((x < y) →
(Acc(Ωi,Π, (y, z)) → Acc(Ωi,Π, (x, z))))

κ7 : ∀x, y, z((x < y) →
(Acc(Ωi,Π, (z, x)) → Acc(Ωi,Π, (z, y))))

As noted in Sec. 4, these sentences conveniently reduce the
number of possible worlds. The two preference relationsκ6

andκ7 induce a partial ordering on the sentence probabilities
in theP(Acc(Ωi,Π, u, v)) array. There are fifty-one possible
worlds that are consistent withKa.

Suppose thatΠ has the following historical data on sim-
ilar dealings withΩi. Two weeks agoΠ askedΩi to de-
liver five chapters in three days —Ωi refused, and offered
to deliver four chapters in nine days. One week agoΠ
askedΩi to deliver two chapters in six days andΩi accepted
this responsibility. Ba

t contains: β8 : Acc(Ωi,Π, (5, 3));
β9 : Acc(Ωi,Π, (4, 9)) andβ10 : Acc(Ωi,Π, (2, 6)), and as-
suming a 20% decay in integrity for each week:P(β8) = 0.4,
P(β9) = 0.6 andP(β10) = 0.8

Eqn. 2 is used to calculate the distribution{W |Ka,Ba
t }

which shows that there are just five different probabilities in
it. The probability matrix for the propositionAcc(Ωi,Π, u, v)
is:

v � u 1 2 3 4 5
11 0.9937 0.9240 0.7747 0.6253 0.4852
10 0.9620 0.8987 0.7557 0.6127 0.4789
9 0.9304 0.8734 0.7367 0.6000 0.4726
8 0.8996 0.8489 0.7186 0.5882 0.4667
7 0.8688 0.8245 0.7004 0.5764 0.4608
6 0.8380 0.8000 0.6823 0.5646 0.4549
5 0.7558 0.7242 0.6261 0.5280 0.4366
4 0.6737 0.6484 0.5699 0.4914 0.4183
3 0.5916 0.5726 0.5137 0.4549 0.4000
2 0.3944 0.3817 0.3425 0.3032 0.2667
1 0.1972 0.1909 0.1712 0.1516 0.1333

In this array, the derived sentence probabilities for the three
sentences inBa

t are shown in bold type; they are exactly their
given values. As described in Sec. 6, as new information be-
comes available this matrix may be refreshed using Eqn. 3.

8 Discussion
The object of this paper is to promote discussion on the value
of this approach that treats the integrity of an agent’s in-
formation as fundamental. This leads to the issue of mod-
elling integrity decay. Entropy-based inference and informa-
tion theory is used to model other agents on the basis of ob-
servations of their actions. This approach has been applied
to: multi-issue bilateral bargaining, multi-issue auctions and
multi-issue semi co-operative negotiation in process manage-
ment. Current work is extending these ideas to argumentation
including the estimation of the trust that one agent has for an-
other, and to modelling inter-agent relationships.
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