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Abstract maximum entropy probability distribution is “the least bi-
ased estimate possible on the given information; i.e. it is

An ‘information-based’ agent is proposed for com- maximally noncommittal with regard to missing information”
petitive multi-issue negotiation, where speculation [Jaynes, 1957

about an opponent’s motivation necessarily leads to
an endless counter-speculation spiral of question-
able value. Information-based agents model other
agents by observing their behaviour andt by
making assumptions concerning their motivations
or internal reasoning. The integrity of these agents’
information decays with time, and so these obser-
vations are represented as beliefs qualified with de-
caying epistemic probabilities. Entropy-based in-
ference methods are applied to form expectations
about the other agents’ future actions.

The basic architecture of an “information-based” agent is
presented in Sec. 2 — and its entropy-based inference ma-
chinery is described in Sec. 2.1. The integrity of the agent’s
information is in a permanent state of decay, Sec. 3 describes
the agent’s machinery for managing this decay leading to a
characterisation of the “value” of information. An agent for
bilateral bargaining is described in Sec. 4, and a market agent
in Sec. 6. Sec. 7 describes a semi co-operative agent in a
process management application. Each of these three agents
derives its actions from its observations. Sec. 8 concludes.

2 Information-Based Agent Architecture

1 Introduction The essence of “information-based agency” is described fol-
An agent,II, attempts to fuse negotiation with the informa- lowing. An agent observes events in its environment includ-
tion that is generated both by and because of it. To achieving what other agents actually do. It chooses to represent
this, it draws on ideas from information theory rather thansome of those observations in its world model as beliefs. As
game theory.I decides what to do — such as what deal totime passes, an agent may not be prepared to accept such be-
propose — on the basis of its information that may be qualiefs as being “true”, and qualifies those representations with
ified by expressions of degrees of belidl. uses this infor-  epistemic probabilities. Those qualified representations of
mation to calculate, and continually revise, probability dis-prior observations are the agenti$ormation This informa-
tributions for that which it does not know. Two probability tion is primitive — it is the agent’s representation of its be-
distributions form the foundation of competitive interaction liefs about prior events in the environment and about the other
— they are both over the set of all deals. The first distributionagents prior actions. It is independent of what the agent is try-
is the probability that any deal is acceptable to an opponerihg to achieve, or what the agent believes the other agents are
;. The second distribution is the probability that any dealtrying to achieve. Given this information, an agent may then
will prove to be acceptable id — this is concerned with the choose to adopt goals and strategies. Those strategies may
integrity of the information about the deal as much as withbe based on game theory, for example. To enable the agent’s
the value of the deal itself. These distributions are calculatedtrategies to make good use of its information, tools from in-
from II's knowledge and beliefs using maximum entropy in- formation theory are applied to summarise and process that
ference ME. IT makes no assumptions about the internals ofinformation. Such an agent is calledormation-based
its opponents, including whether they have, or are even aware An agent calledI is the subject of this discussioil en-
of the concept of, utility functionslII is purely concerned gages in multi-issue negotiation with a set of other agents:
with its opponents’ behaviour — what they do — and not{Qy,--- ,Q,}. The foundation fofI's operation is the infor-
with assumptions about their motivations. mation that is generated both by and because of its negotia-
Maximum entropy inference is chosen because it enablefion exchanges — any message from one agent to another re-
inferences to be drawn from incomplete and uncertain inforveals information about the sendér.also acquires informa-
mation, and because of its encapsulation of common seng®n from the environment — including general information
reasoningParis, 1999 Unknown probability distributions sources — to support its action$l uses ideas from infor-
are inferred usingmaximum entropy inferencBMacKay,  mation theory to process and summarise its informafiba.
2009 that is based on random worlfidalpern, 2008 The  aim may not be “utility optimisation” — it may not be aware



time?”, medium-term such as striking a deal with one of its

Figure 1: Basic architecture of agelit opponents, or, rather longer-term such as building a (busi-

Information Sources Other Agents ness) relationship with one of its opponents. For each goal

9, 2} Q fe) thatII commits to, it has a mechanism for selecting a plan to
R seee, 82,

achieve it.Il's plans reside in a plan libratgt. Once a plarng,
has been activated, it extracts those sentences from the repos-
itory ) that are relevant to it, instantiates each of those sen-
tences’ integrity decay functions to the current timeand
selects a consistent sub-set of these sentences using its belief
revisiort function R. Those instantiated sentences that have
no decay function are placed into tkeowledge bask®, and
those that have decay functions are placed along with their
sentence probabilities into thelief setBy. XL*UBY = Z7 is
theinformation basesreated by plam at timet. Plana then
uses tools from information theory, including maximum en-
\_ Y, tropy inference), to derive a set of probability distributions,
. {P,---, Py}, fromZy. The way in which these derivations

Action 2y Agent IT are performed are described in Sec. 2.1 following. Then plan
a invokes some strategy that uses th¢ P{, - - - , P} to de-
terminell’s actionz € Z.

of a utility function. IfII doesknow its utility functionandif )

it aims to optimise its utilitythenII may apply the principles 2.1 II's Reasoning

of game theory to achieve its aim. The information-based apOnceIl has selected a plam € A it uses maximum en-
proach does not to reject utility optimisation — in general, thetropy inference to derive theP?}"_, [see Fig. 1] and mini-

K3

selection of a goal and strategy is secondary to the processingum relative entropy inference to update those distributions

and summarising of the information. as new data becomes availablntropy, H, is a measure of
In addition to the information derived from its opponents, uncertaintyfMacKay, 2003 in a probability distribution for a
IT has access to a set of information sour¢es,--- ,0;}  discrete random variabl&: H(X) £ — ", p(z;) log p(z;)

that may include the marketplace in which trading takeswhere p(z;) = P(X = z;). Maximum entropy infer-
place, and general information sources such as news-feedsice is used to derive sentence probabilities for that which
accessed via the Internet. TogethHr, {2;,--- ,€,} and s not known by constructing the “maximally noncommittal”
{©1,---,0,} make up a multi-agent system. The integrity [Jaynes, 2003robability distribution.
of IT's information, including information extracted from the  Let G be the set of all positive ground literals that can be
Internet, will decay in time. The way in which this decay constructed usind@l's languagel. A possible worldv, is a
occurs will depend on the type of information, and on thevaluation function:g — {T, L}. V|K* = {v;} is the set
source from which it was drawn. Little appears to be knownof all possible worlds that are consistent wilts knowledge
about how the integrity of real information, such as news-paseX® that contains statements whithbelieves are true.
feeds, decays, although its validity can often be checked —A random worldfor K¢, W|K® = {p;} is a probability distri-
“Is company X taking over company Y?” — by proactive ac- bution overV|K® = {v;}, wherep; expressesl’s degree of
tion given a co-operative information sour@e. Soll hasto  belief that each of the possible worlds, is the actual world.
consider how and when to refresh its decaying information. The derived sentence probabilitf anyo € £, with respect

IT has two languageg: andZ. C is an illocutionary-based to a random worldV [ is:
language for communication and is not described hérie.a A . )
firsfq-oré]er language for internal representation — precisely it (77 € £)Fgwixe} (o) = dApn i oisTinv,} (1)
is a first-order language with sentence probabilities optionally "
attached to each sentence represeriisgepistemic beliefin  The agent'sbelief setB = {3;}}1, contains statements
the truth of that sentence. Fig. 1 shows a high-level view oo which II attaches ajiven sentence probabilitB(.). A
how IT operates. Messages expressed ifftom {©;} and random world W|K* is consistentwith B¢ if: (V5 €
{€;} are received, time-stamped, source-stamped and placesf )(B(8) = Py« (3)). Let{p;} = {W|K, B¢} be the
in anin-box X'. The messages il are then translated using “maximum entropy probability distribution ovét|K® that is
animport function/ into sentences expresseddrthat have  consistent with32”. Given an agent withC® and B¢, maxi-
integrity decay functions (usually of time) attached to eachmum entropy inferencstates that theerived sentence prob-
sentence, they are stored irrepository)). And that is all ability for any sentences € £, is:
that happens untlll triggers a goal. . ) ,

11 triggers a goal in two ways: first in response to a mes- (79 € £)P(wwjce 5y (0) = Z{ Po : ois Tinv,} (2)
sage received from an opponeff?;} “I'd like to purchase "
an apple from you”, and second in response to some need, !Thjs belief revision — consistency checking — exercise is non-
N, “goodness, we've run out of coffeell's goals could be trivial, and is not described here. For sake of illustration only, the
short-term such as obtaining some information “what is thestrategy “discard the old in favour of the new” is sufficient.



From Eqgn. 2, each belief imposes a linear constraint on thenay mean that valuable information is destroyed by the be-
{pi}. The maximum entropy distributionarg max, H(p), lief revision process that copes with the continuous arrival of
p=(p1,...,pn), subject toM + 1 linear constraints: new information. Third, its knowledge base is expressed in
- first-order logic. So issues that have unbounded domains —
N such as price — can only be dealt with either exactly as a
gi(p) = Z cjipi —B(B;) =0, j=1,...,M. large quantity of constants for each possible price, or approx-
i=1 imately as price intervals. This decision will effect the infer-
N ences drawn and is referred to as representation dependence
go(p) = Zpi —-1=0 [Halpern, 2008 Fourth, maximum entropy is not simple to
I calculate — numerical solutions are obtained by applying the
Newton-Raphson method to as many non-linear, simultane-
0,2 =1,...,N, is found by introducing Lagrange multipli- ou[s) eqqaﬂohns as% therCigﬁarelpellefs |n.the knowledgg kaase.
ers, and then obtaining a numerical solution using the multi- esplntet efse oulr y |cuft|es, maximum entropy inference
variate Newton-Raphson method. In Sec. 3.1 we'll see ho |3 an elegant formulation of common sense reasoffiagis,

an agent updates its sentence probabilities as new informati 999. Maximum entropy inference IS also mdependent of
is received any structure on the set of all possible deals. So it copes

. . TR with single-issue and multi-issue negotiation without modifi-
Given a prior probability distribution = (¢;)7, and a set : ; e . .
of constraintsC, the principle of minimum relative entropy cation. It may also be applied to the probabilistic belief logic

chooses the posterior probability distributijer= (p;);-, that that is used here.

wherec;; = 1if 3;is T inv; and0 otherwise, ang; >

has the leagelative entropy with respect tay: 2.2 An Exemplar Application
n s An exemplar application is used followindl is attempting to
{W|q,C} & arg miani log = purchase of a second-hand motor vehicle, with some period
a L i of warranty, for cash. So the two issues in this negotiation are:

the period of the warranty, and the cash consideration. A deal
0 consists of this pair of issues, and the deal set has no natural
ordering. IT observes its opponents’ actions and uses these
observations to estimate the probability that an offer of deal

and that satisfies the constrairtfs This may be found by

introducing Lagrange multipliers as above. Given a prior dis

tribution ¢ over {v;} — the set of all possible worlds, and a

set of constraint€' (that could have been derived as above: ™. .

from a set of new beliefghinimum relative entropy inference ¢ will be accepted for various. Suppose that the warranty
eriod is simplyo, - - - , 4 years, and that the cash amount for

states that the derived sentence probability for any sentencg1is car will certainly be at least $5,000 with no warranty, and

o €L, is: is unlikely to be more than $7,000 with four year's warranty.
(Vo € L)Ppwq.01(0) £ Z{ pn i ois Tinv, } (3)  Inwhatfollows all price units are in thousands of dollars.
- - To represent the application in first-order logic, a finite set
- . . of intervals is chosen for the issue price. This choice will ef-
where{p;} = {Wl|q, C'}. The principle of minimum relative  fot the results of th&/E calculations, andE is criticised
entropy is a generalisation of the principle of maximum en-[\y51hern, 2008 because the way in which the knowledge is
tropy. If the prior distributiong is uniform, then the relative represented ifC® andB¢ determines the values derived. This
entropy ofp with respect tay differs from —H(p) only by a  property is promoted here as a strength of the method because
constant. So the principle of maximum entropy is equivalenthe correct representation, using the rich expressive power of
to the principle of minimum relative entropy with a uniform first-order probabilistic logic, encapsulates features of the ap-
prior distribution. plication at a fine level of detail. Suppose then that the set of
Discussion on entropy-based inference intervals chosen for price contains the eleven intervals:

Entropy-based inference is chosen because it enables co 15.0, 5.2), [5.2, 5.4), [5.4, 5.6), [5.6, 5.8), [5.8, 6.0), [6.0,
plete probability distributions to be constructed from a small 2) [6.2, 6.4), [6.4, 6.6), [6.6, 6.8), [6'8' 7'0).’ [74) }.
number of observations. In such a case the distributions coul@'.Ven some value fpr the warranty perlodghat IS the least
not be expected to be accurate. But the technique does deriP&ce thell expects its opponent to accept? In the absence of

the unique distribution that is least biased with respect to wha@lY informationME concludes that these eleven intervals are
is as yet unknown. equi-probable with a probability oﬁ If any other complete

Maximum entropy inference presents four difficulties and disjoint set of intervals had been chosen the answer would
First, it assumes that what the agent knows is “the sum totd}2V¢ bef:err:_ the salme_. Rather than cor;]qlemn the met“m)d on the
of the agent’s knowledge, it is not a summary of the agent’ has[sto t IIS cohnc lljg"gn' vr\1/e promott(?]t tltshas a strerigiher
knowledge, it is all there is[Paris, 1999 This assumption € INte€rvais snould be chosen so that theyaapeior equi-
referred to as Watt's Assumptiddaeger, 1996 So ifknowl- ~ Probableor knowledge should be included ¥ to express

; : Is%py that are not. The choice of intervals enables fine-grained
it may only be applied to a consistent set of beliefs — thism2delling of the application domain. o o
Suppose then that the deal set chosen in this application
20therwise calledross entropyr theKullback-Leiblerdistance ~ consists of 55 individual deals in the form of pairs of warranty
between the two probability distributions. periods and price intervalsv, p) wherew =0, --- ;4 andp €



D. Suppose thdi has previously received two offers frafh  satisfying the constraing!, = ¢(©), and whereé = (bj)le.
The first was to offer 6.0 with no warranty, and the second torhat s, the new distribution is the closéti the previous one
offer 6.9 with one year’s warranty. Suppddeelieves thaf)  that satisfies the constraint. But, this depend$Idmowing

still stands by these two offers with probablllty 0.8. Then thng(@), ie: the Strength of belief thal allocates ta®’s infor-

leads to two beliefss; : Acc(€,11, (0, [6.0,6.2))); B(B1) =  mation. The issue here is not, for example, forecasting the
0.8, A2 : Acc(21L,(1,[6.8,7.0))); B(f2) = 0.8, where  clearing price of a stock, it is estimating the confidence that
Acc(€2,11, 6) means I believes thaf) will accept deab™. 1T has in the integrity of9’s information. IfIT can confirm

Before “switching on"ME, II should consider whether it be-  the validity of ©'s adviceex postthen a very simple way of
lieves thatP(Acc(2, 11, 6)) is uniform overs. If it does then  estimatingg(©) is by:

it includes both3; and 3, in B, and calculate§W |, B¢}

that yields estimates fdf(Acc(Q, I1, §)) for all 4. If it does o)1V Jo1d(©) + (1 —v) whenoO is correct

not then it should include further knowledgefir andBy.  9ne(®) =1 9o1a(©) when® is incorrect
For example]T may believe thaf) prefers a greater warranty

period the higher the price. If so, then this is a multi-issuefor a learning rates € [0, 1].

constraint, that is represented B, and may be qualified

with a sentence probability. 3.2 Valuing Information
A chunk of information is valued only by the way that it en-
3 Managing Integrity Decay ableslI to do somethinty So information is valued in relation

to the plans thall is executing. A plang, is designed in the

IT's information baseZy contains sentences in first-order context of a particular representation, or environmen@ne
logic each with a sentence probabiliBt-), representing the way in which a chunk of information assidikis by altering

agent’s strength of belief in the truth of that statement. Main—One ofa’s distributions{ P*} — see Fig. 1. As a chunk of
taining the integrity ofZ is not just a matter of looking up informgtion could be “ oéd” for one d?étribution and “bad”
information. Information may be temporarily unavailable, ac- 9 ) . .
quiring it may cost money, the information may be inherentlyfor another, the appropriate way to value information is by its

unreliable, and its availability may be beyond the control ofeﬁeCt on each_ d's”'b‘!“o.”- For a pI@m thevalueto_ aofa
the agent. For example, if a chunk of information representgneSsage received at times the resulting decrease in entropy

the action of another agent then that information can only bal @S distributions{ '} in Fig. 1. In general, suppose that a
Set of stamped messag&s= {«;,} is imported by plaru to
refreshed when the other agent acts. . . -
the information bas&;* where they are represented as the set

3.1 Updating the probability distributions of statementd) = {d;} = R(I(X)), wherel is the import

IT's ol ty dri by th bability distributi function andR the belief revision function. Thimformation

S pians are partly driven by th€ probabliity diSbutions ;. -y ot time ¢ with respect to a particulaP?, plana and
{Pr,---, Py}tinFig. 1. These distributions are derived from .00 ment is: '
the information in the repository. The integrity of the in- ’
formation in)’ will decay in accordance with the decay func-  1(D | P*(Z{), a,e) = H(P(Z{")) — H(P*(Z{ U D))
tions — unless it is refreshed. As the integrity decays, the Lo
entropy of the distribution§P¢, - - - , P%} increases. fori =1,.--,n, where the argument of thé’(-) is the state

Suppose thar contains a unary predicaté,(-), whose  Of II's information base from whicl#* was derived. And we
domain is represented by the finite set of logical constant§lefine the information in the set of messageat timet with
{c;},. Attimetletp! = B(A(c;))fori =1,---,d. As respect to a particulaF’, a ande) to be the information in
time ¢ increase®ither no information is received and the en- D = R(I(X)). Itis reasonable to aggregate the information
tropy of (p!) should increasegr information is received and in D over the distributions used hy and to aggregate again
the distribution(p!) should be refreshed. If no information is Over all plans to obtain the (potential) information in a state-
is achieved by: environment is:

1 I(D|e) = (D | P*(ZI}),a,e 5
a1 p). L @ (D]e)£ 3D UD | PAT)ae)  (5)
d acA 1

for a .decafyglga)ctorp € [0,1] whose value depends on the 4 A Bargaining Agent
meaning ofA(-).

Now guppose that at timg 11 receives a message from _[Debenham, 2_00{]kn1escribesamulti-issue, bilateral bargain-
source® that asserts the truth of(c;), and suppose that N9 agentl, with just one opponeri2, whose strategies are
II decides to attach the given sentence probabiiip) to all based on the three distribution8(Acc(IL €2, 9)) for all
B(A(cy)), where the valug(®©) is IT's confidence in the in- dealsé [ie: the probability thatl should a_ccept’ded from
tegrity of ©'s advice. Then the updated distribution is calcu- 29ent€], P(Acc(€,11,4)) for all deals [ie: IT's estimate

lated by applyingninimum relative entropy inference 3Precisely, it is the distribution that minimises the Kullback-

d b Leibler distance from the prior distributiofp: "), whilst satisfying
d . i i i
(pz) - =arg m1n§ :bi log til the4g|ven_constra|nt. - _ _
Jj= b . That is we do not try to attach any intrinsic value to information.

- =1 ?



of the probability that) would accept deal from agentlI],
andpy o [ie: the probability of breakdown — the probabil-
ity that Q2 will “walk away” in the next negotiation round].

These three complete probability distributions are derived bysa. g following estimates the probability distribution

observing the information in the signals received.

IT has do two different things. First, it must respond to
offers received fronf) — this is described in Sec. 6. Sec-
ond, it must send offers, and possibly informationQtoT his

5 Negotiation Strategies

Sec. 4 estimated the
P(Acc

probability  distribution,

(Q,II,w,p)), that Q will accept an offer, and
P(Acc(I1,,0)), that II should be prepared to accepf
an offer §. These two probability distributions repre-
sent the opposing interests of the two agehtsand Q.
P(Acc(Q2,I1, w, p)) will change every time an offer is made,

section describes machinery for estimating the probabilitie$ejected or acceptedP(Acc(II, 2, §)) will change as the

P(Acc(,11,9)). Herell is attempting to purchase of a par-

background information changes. This section discuB&es

ticular second-hand motor vehicle, with some period of warstrategys. Sec. 5.2 considers the risk of breakdown.

ranty, for cash fronf2 as described in Sec. 2.2. So a déal
will be represented by the pait, p) wherew is the period
of warranty in years anfip is the price.

IT assumes the following two preference relations for
andK® contains:
k1 Vayz((z < y) —

(Acc(,11, (y, 2)) — Ace(, 11, (2, 2))))
Ko Vayz((z <y) —

(Ace(Q 11, (2, 7)) — Acc(,11, (2,9))))

Bargaining can be a game of bluff and counter-bluff in
which an agent may even not intend to close the deal if one
should be reached. A basic conundrum in any offer-exchange
bargaining is: it is impossible to force your opponent to reveal
information about their position without revealing informa-
tion about your own position. Further, by revealing informa-
tion about your own position you may change your opponents
position — and so of. This infinite regress, of speculation
and counter-speculation, is avoided here by ignoring the in-

These sentences conveniently reduce the number of possérnals of the opponent and by focussing on what is known

ble worlds. The two preference relatiors and x5 in-

for certain — that is:what information is contained in the

duce a partial ordering on the sentence probabilities in thgignals received andthendid those signals arrive.

P(Acc(Q2,I1,w, p)) array from the top-left where the proba-
bilities are~ 1, to the bottom-right where the probabilities

A fundamental principle of competitive bargaining is
“never reveal your best price”, and another is “never reveal

are~ 0. There are fifty-one possible worlds that are consisyour deadline — if you have ondSandholm and Vulkan,

tent with 2.

1999. Itis not possible to be prescriptive about what an agent

Suppose that the offer exchange has proceeded as followshouldreveal. All that can be achieved is to provide strate-

2 asked for $6,900 with one year warranty anidefused,
thenII offered $5,000 with two years warranty afdefused,
and ther? asked for $6,500 with three years warranty &hd
refused. Then at the next time stBp contains:
B3+ Ace(,11, (3, 16.8,7.0))),
B4 : Acc(Q,11, (2,[5.0,5.2))) and
B : Acc(Q,11, (1, [6.4,6.6))),
and with a 10% decay in integrity for each time st@pf3;) =
0.7, P(34) = 0.2 andP(B35) = 0.9

Eqgn. 2 is used to calculate the distributi§p/ |, B¢}
which shows that there are just five different probabil-
ities in it. The probability matrix for the proposition
Acc(Q,11, (w, p)) is:

p= w=0 w=1 w=2 w=3 w=4
[7.0,00) 0.9967 0.9607 0.8428 0.7066 0.3533
6.8,7.0) 0.9803 0.9476 0.8330 0.7000 0.3500
6.6,6.8) 0.9533 0.9238 0.8125 0.6828 0.3414
6.4,6.6) 0.9262 0.9000 0.7920 0.6655 0.3328
6.2,6.4) 0.8249 0.8019 0.7074 0.5945 0.2972
6.0,6.2) 0.7235 0.7039 0.6228 0.5234 0.2617
5.8,6.0) 0.6222 0.6058 0.5383 0.4523 0.2262
5.6,5.8) 0.5208 0.5077 0.4537 0.3813 0.1906
5.4,5.6) 0.4195 0.4096 0.3691 0.3102 0.1551
5.2,5.4) 0.3181 0.3116 0.2846 0.2391 0.1196
5.0,5.2) 0.2168 0.2135 0.2000 0.1681 0.0840

In this array, the derived sentence probabilities for the thregl"

sentences B¢ are shown in bold type; they are exactly their

gies that an agent may choose to employ. The following are
examples of such strategies.

5.1 Without Breakdown

An agent’s strategy is a function of the informatiof; that

is has at time. That information will be represented in the
agent'sC® and By. Simple strategies choose an offer only
on the basis oP(Acc(I1, €, §)), P(Acc(2,11,0)) anda. The
greedy strategy ™ chooses:

arg mgxx{IP’(Acc(H,Q,(S)) | P(Acc(Q,11,6)) > 0},

it is appropriate for an agent that believess desperate to
trade. Theexpected-acceptability-th-optimizing strategy
S* chooses:

argmgxx{IP’(Acc(Q,H,é))x]P’(Acc(H,975)) |
P(Acc(I1, 2, 4)) > o}

it is appropriate for a confident agent that is not desperate to
trade. The strateg§~ chooses:

arg m?x{IF’(ACC(Q,H, 0)) | P(Ace(IL, Q,0)) > o}

it optimizes the likelihood of trade — it is a good strategy for
an agent that is keen to trade without compromising its own
standards of acceptability.

An approach to issue-tradeoffs is describedRaratinet
20093. The bargaining strategy described there attempts

5This a reminiscent of Werner Heisenberg’s indeterminacy rela-

given values. This matrix simplifies the expression of bar-tion, or unbestimmtheitsrelationefiyou can’t measure one feature

gaining strategies such Hgaratinet al, 2003.

of an object without changing another” — with apologies.



to make an acceptable offer by “walking round” the iso-and Quit(.) messages t€. If II sendsOffer(.), Accept.)
curve ofII's previous offer (that has, say, an acceptability or Rejecf.) messages tf then she is giving information
of a,, > «) towardsQ2's subsequent counter offer. In terms about herself. In an infinite-horizon bargaining game where
of the machinery described here, an analogue is to use thhere is no incentive to trade now rather than later, a self-
strategyS~—: interested agent will “sit and wait”, and do nothing except,
arg max{P(Acc(Il, 2, §)) | P(Acc(I1, €, ) | Zy) = ana } perhaps, to ask for information. The well known bargaining

s response to an approach by an interested party “Well make
for « = a,,. This is reasonable for an agent that is at-me an offer” illustrates how a shrewd bargainer may behave
tempting to be accommodating without compromising itsin this situation.
own interests. Presumably such an agent will have a policy An agent may be motivated to act for various reasons —
for reducing the valuey,,, if her deals fail to be accepted. three are mentioned. First, if there are costs involved in the
The complexity of the strategy ifFaratinet al, 2003 is  bargaining process dugther to changes in the value of the
linear with the number of issues. The strategy describegegotiation object with timer to the intrinsic cost of con-
here does not have that property, but it benefits from usinglucting the negotiation itself. Second, if there is a risk of
P(Acc(£2,11, 6)) that contains foot prints of the prior offer se- breakdown caused by the opponent walking away from the
guence — see Sec. 4 — in that distribution more recent offerpargaining table. Third, if the agent is concerned with es-
have stronger weights. tablishing a sense of truBRamchurnet al, 2003 with the

. opponent —this could be the case in the establishment of a

5.2 W_'th Breakdown _ bgginess relationship. Of these three reasons the last two are
A negotiation may break down because one agent is not pregddressed here. The risk of breakdown may be reduced, and
pared to continue for some reasqn is the probability that 3 sense of trust may be established, if the agent appears to
the opponentwnl_qwt the negotiation mthe nextround. Therejtg opponent to be “approaching the negotiation in an even-
are three ways in whichil models the risk of breakdown. handed manner”. One dimension of “appearing to be even-
First, pp is a constant determined exogenously to the negotihanded” is to be equitable with the value of information given
ation, in which case at any stage in a continuing negotiatiog the opponent. Various bargaining strategies, both with and
the expected number of rounds until breakdown occug%ts without breakdown, are described[Debenham, 2004bbut
Second,pp is a monotonic increasing function of time — they do not address this issue. A bargaining strategy is de-
this attempts to model an impatient opponent. Thirglis a  scribed here that is founded on a principle of “equitable infor-

monotonic increasing function ¢t — P(Acc(£2,1I1,4))) —  mation gain”. That is]I attempts to respond 's messages
this attempts to model an opponent who will react to unattracso that2's expected information gain similar to that whith
tive offers. has received.

At any stage in a negotiatioll may be prepared to gam-  IT models() by observing her actions, and by representing
ble on the expectation th& will remain in the game for beliefs about her future actions in the probability distribution
the nextn rounds. This would occur if there is a constant P(Acc(€, 11, §)). II measures the value of information that
probability of breakdowms = 1. LetZ, denote the infor- it receives from2 by the change in the entropy of this distri-
mation stored inlI's K¢ and By at timet. S is II's strat-  bution. More generallyiI measures the value of information
egy. IfII offered to trade with2 at S(Z;) thenQ2 may ac-  received in a messagg, by the change in the entropy in its
cept this offer, but may have also been prepared to settle fagntire representatiof, = K; U B;, as a result of the receipt
terms more favorable than this I If 1T offered to trade at  of that message; this is denoted bgx, | 7|, where| 71|
S(Zy U {Acc(,11, 5(Z1))}) thenQ will either accept this  denotes the value (as negative entropy)lf information in
offer or reject it. In the former case trade occurs at more7 at timet — see Sec. 3.2. Although boffi and Q will
favorable terms thai$(Z,), and in the latter case a useful build their models of each other using the same data — the
piece of information has been acquiredlAcc(S(Q,11,Z;)) messages exchanged — the observed information gain will
which is added t&; before calculating the next offer. This depend on the way in which each agent has represented this
process can be applied twice to generate the dff@; U  information. It is “not unreasonable to suggest” that these
{=Acc(Q, 1L, S(Z1 U{—Acc(Q,II,S(Z1))}))}), orany num-  two representations should be similar. To support its attempts
ber of times, optimistically working backwards on the as-to achieve “equitable information gaidl assumes tha®’s
sumption that2 will remain in the game fon rounds. The reasoning apparatus mirrors its own, and so is able to esti-
strategyS(™), whereS(") = S* the expected-acceptability- mate the change ift’s entropy as a result of sending a mes-
to-I1-optimizing strategy defined in Sec. 54" is the strat-  sage to Q: A,[7,%|. Suppose thall receives a message
egy of working back from6() (n — 1) times. At each stage # = Offer(.) from €2 and observes an information gain of
S™ will benefit also from the information in the interven- 2x|J: |- Suppose thalll wishes to reject this offer by send-
ing counter offers presented Iy The strategys™ is rea- N9 a counter-offerOffer(¢), that will give Q2 expected “equi-

sonable for a risk-taking, expected-acceptability-optimizingtaPle information gain”.
agent. 0 = {arg max P(Acc(I1,Q,9) | Z) > « |
5.3 Information Revelation
(Aoterts)| T | =~ AulTY

IT's negotiation strategys a functionS : K x B — A where
A is the set of actions that se@iffer(.), Accept.), Rejecf.)  That isII chooses the most acceptable deal to herself that



gives her opponent expected “equitable information gain’g; : Fair(3,[5.4,5.6)); B(3;) = 0.8. In an open-cry auction
provided that there is such a deal. If there is not tlhien one source of market data is the bids made by other agents.
chooses the best available compromise: The sentence probabilities that are attached to this data may
o be derived from knowing the identity, and so too the reputa-

6 = {arg m(?X(AOffer(éﬂjt ) [ P(Acc(I, ,6) | Z;) > a} tion, of the bidding agent. In this way the acceptability value

. ) . . is continually adjusted as information becomes available. In
provided there is such a deal — this strategy is rather genefyqgition tog, ands;, there are three chunks of knowledge in
ous, it rates information gain ahead of personal acceptabilityy-a First, 5 : Fair(4, 4999) that determines a base value for
I there is not theril does nothing. which P(Fair(-)) = 1, and two other chunks that represent

_The “equitable information gain” strategy generalizes theyy's preferences concerning price and warranty:
simple-minded alternating offers strategy. Supposelthist

trying to buy something fronf2 with bilateral bargaining in kg Yo,y z((x > y) — (Fair(z,z) — Fair(z,y)))
which all offers and responses stand — ie: there is no de- . )
cay of offer integrity. Suppose that has offered $1 and K5 Ve, y, 2((x > y) — (Fair(y, 2) — Fair(z, 2)))

{1 has refused, an@ has asked $10 anid has refused. If ~The geal setis & x 11 matrix. The three statements ff

amounts are limited to whole dollars only then the deal sefyean that there args possible worlds. The two beliefs are
D = {1,---,10}. I knows thatP(Acc(€,11,1)) = 0 and  congjstent with each other and wikif. A complete matrix

P(Acc(2,11,10)) = 1. The remaining eight values in this for p(Fair(5) | Z,) is derived by solving two simultaneous
distribution are provided by Egn. 2, and the entropy of the repquations of degree two using Eqn. 2:

sulting distribution i2.2020. To apply the “equitable infor-

mation gain” strategyil assumes tha®’s decision-making p= w=0 w=1 w=2 w=3 w=4
machinery mirrors its own. In which caseis assumed to [7.0,00) 0.0924 0.1849 0.2049 0.2250 0.2263
have constructed a mirror-image distribution to mddehat 6.8,7.0) 0.1849 0.3697 0.4099 0.4500 0.4526
will have the same entropy. At this stage, time= 0, cal- 6.6,6.8) 0.2773 0.5546 0.6148 0.6750 0.6789
ibrate the amount of information held by each agent at zerd6.4,6.6) 0.3697 0.7394 0.8197 0.9000 0.9053
—ie: |78 = |J5 = 0. Now if, at timet = 1, Q asks  [6.2,6.4) 0.3758 0.7516 0.8331 0.9147 0.9213
II for $9 then( gives information tdI and | 7| = 0.2548. 6.0,6.2) 0.3818 0.7637 0.8466 0.9295 0.9374
If II rejects this offer then she gives information (dand 5.8,6.0) 0.3879 0.7758 0.8600 0.9442 0.9534
|7{¥| = 0.2548. Suppose thall wishes to counter with an  [5.6,5.8) 0.3939  0.7879  0.8734 0.9590 0.9695
“equitable information gain” offer. If, at time = 2, 11 offers 5.4,5.6) 0.4000 0.8000 0.8869 0.9737 0.9855
Q) $2 then| J5?| = 0.2548 4+ 0.2559. Alternatively, ifIT offers 5.2,5.4) 0.4013 0.8026 0.8908 0.9790 0.9921
Q $3 then|J5!| = 0.2548 + 0.5136. And so $2 is a near [5.0,5.2) 0.4026 0.8053 0.8947 0.9842 0.9987
“equitable information gain” response byat timet = 2.

The two evidence values are shown above in bold face. As
6 A Market Agent new evidence becomes available it is representesf'inand

the matrix is refreshed using Eqn. 3. If new evidence renders
We now consider hol values a deal in the context of multi- 3¢ inconsistent then this inconsistency will be detected by the
issue auctions where, for protocols with a truth telling dom-fajlure of the process to yield values for the probabilities in
inant strategyI1 only constructsP(Acc(I1, €2, 6)) [ie: the [0 1) — if that occurs then the revision functidd identifies
probability thatl should bid dead]. For protocols with equi-  and removes inconsistencies.
librium solutions that are expressed in terms of the number The examples discussed above for competitive interac-
of bidders I1 also requires a probability distribution over the tion have been related to the basic offer exchange process.
various possible number of bidders. From the auctioneer'shese information-theoretic tools may also be applied to cap-
point of view, the distribution(WinningBid(¢)) [ie: the  ture deeper issues in negotiation such as ttRgtmchurn
probability thats will be the winning bid] may be expressed et al, 2003. For example, by definintrust as a measure
analytically in terms of the number of bidders, and the size 0bf expected deviations in behaviour, the Kullback-Leibler
the domain chosen to represent the various possible deals. distancé may be used to measure the deviation between a

The distributionP(Acc(IL, €, 5)) is II's analogue of a contract and its execution, and so to estimate trust.
game-theoretic agent’s utility function, but it is quite differ-

ent. P(Acc(Il,Q,6)) is II's estimate of her certainty that :
deal ¢ (is aéceptab)l)e. That isl's estimate of the valid- 7 ACo-operative Agent

ity of her information, and not an estimate of the intrinsic Here information-based agents are applied to managing the
value of§. This estimate will be based on various factorscollaboration in emergent process management. Although
one of which may bdI’s estimate of whethe# is consid-  the agents in process management systems should attempt to
ered acceptable in the open markBhir(d), that may be co-operate, the management of emergent processes relies on
determined by reference to market data. Suppose that rgood will. One operation is the delegation of responsibility
cently a similar vehicle sold with three year’s warranty for for a process by one agent to another. Hérestimates the
$6,500, and another less similar was sold for $5,500 with on@robability that one of its collaborators will accept such re-
year’s warranty. These are fed inff and are represented sponsibility — again this estimate is made solely on the basis
as two beliefs inBf: Gs : Fair(3,[6.4,6.6)); B(fs) = 0.9,  of observations of past actions.



IT interacts with its collaborator§;}* ;. It is assumed In this array, the derived sentence probabilities for the three
that processes are initially triggered externally to the systemsentences i are shown in bold type; they are exactly their
For example]T’s ‘owner’ may have an idea that she believes given values. As described in Sec. 6, as new information be-
has value, and triggers an emergent process to explore tl®mes available this matrix may be refreshed using Eqn. 3.
idea’s worth. The interaction protocol is simple Ilfsends
a Delegaté¢-) message t6; then interaction continues until 8 Discussion
one agent sends accept-) or aQuit(-) message. This as-
sumes that agents respond in reasonable time which is fair
an essentially co-operative system.

i‘ﬁhe object of this paper is to promote discussion on the value
of this approach that treats the integrity of an agent’s in-

To support the agreement-exchange proddssas do two formation as fundamental. This leads to the issue of mod-

. X . X . lling integrity decay. Entropy-based inference and informa-
different th|ngs._F|rst, it must respond to propos_als recelve(ﬁon ?heor)g/] isyused t>:) mode%ther agents on the basis of ob-
from Q; — that is not described here. Second, it must con-

struct proposals, and possibly information, to sen@fo— servatio_ns of thejr actions. T.hi.s approe}c'h has beep applied
that is describeél now. Maximum entropy ’inference is used® multi-issue bilateral bargaining, multi-issue auctions and

to fill in’ missing values with the “maximally noncommit- multi-issue semi co-operative negotiation in process manage-
tal” probability distribution. To illustrate this suppose that ~MENt: Currentwork is extending these ideas to argumentation
proposes to delegate a sub-proces€o That sub-process including the estimation of the trust that one agent has for an-

involves ; delivering — using arinform(-) message — other, and to modelling inter-agent relationships.

chapters for a report in so-many daysWe describe the ma-
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