
Fast and Complete Symbolic Plan Recognition:
Allowing for Duration, Interleaved Execution, and Lossy Observations

Dorit Avrahami-Zilberbrand and Gal A. Kaminka and Hila Zarosim
Computer Science Department Bar Ilan University, Israel

{avrahad1,galk,}@cs.biu.ac.il

Abstract

It is important for agents to model other agents’
unobserved plans and goals, based on their observ-
able actions. This process of modeling others based
on observations is known as plan-recognition. Plan
recognition has been studied for many years. It of-
ten takes the form of matching observations of an
agent’s actions to a plan-library, a model of possi-
ble plans selected by the agent. However, there are
several open key challenges in modern plan recog-
nition: (i) handling lossy observations (where an
observation or a component of an observation is
intermittently lost); (ii) dealing with plan execu-
tion duration constraints; and (iii) interleaved plans
(where an agent interrupts a plan for another, only
to return to the first later). In this paper, we present
efficient algorithms that address these challenges,
in the context of symbolic plan recognition. The
algorithms allow (i) efficient matching of (possibly
lossy) observations to a plan library; (ii) efficient
computation of all recognition hypotheses consis-
tent with the observations, subject to interleaving
and duration constraints.

1 Introduction
Plan recognition[Kautz and Allen, 1986; Charniak and Gold-
man, 1993; Carrbery, 2001] focuses on mechanisms for rec-
ognizing the unobservable state of an agent, given observa-
tions of its interaction with its environment. The ability to
perform plan recognition can be useful in a wide range of
applications. Such applications include intrusion detection
applications[Geib and Harp, 2004], virtual training environ-
ments[Tambe and Rosenbloom, 1995] and visual monitoring
[Bui, 2003].

Previous investigations leave several challenges open (see
Section 2 for details). First, many applications have complex
multi-feature observations, rather than a single atomic fea-
ture. Some or all of these features may be intermittently lost
due to noise or sensory failures (e.g., the recognizer may ob-
serve the position but not heading of an observed agent, or
may suddenly lose both, for a short time). However, existing
work typically assumes all features to be always observable,

with no intermittent failures, and fail catastrophically if ob-
servations are suddenly missing.

Second, previous investigations typically do not utilize in-
formation on the execution duration of plans. It is possible
to explicitly reason about time, and thus for example demand
minimum and maximum durations for each plan. This infor-
mation can be used to rule out hypotheses that match instan-
taneous observations, but whose hypothesized duration does
not match observations over time.

Third, most previous investigations are not capable of cop-
ing with agents that pursue multiple goals. The models con-
sider multiple goals only in sequence, where the observed
agent finishes a series of plan-steps in order to finish one goal,
and only then moves on to pursuing another goal. While
sequential goals are certainly common in some domains, in
many others agent can start with one goal, then move to an-
other goal, and finally return to accomplish the first goal, from
the point it has paused. One simple example of this is where
we attempt to recognize the goal of a web user, who stops in
the middle of navigating a web page and jumps to a news site,
only to return to her previous work afterwards.

An ideal plan recognition system would be able to ad-
dress the deficiencies above, while taking into account that
observations are not just atomic instantaneous actions. But
complex multi-featured tuples, involving symbolic, discrete,
and continuous components (e.g., multiple actuators of the
agent). The computational cost of matching such observa-
tions against all possible plan-steps is non-trivial, and also
should be taken into account. However, most existing inves-
tigations ignore this cost.

This paper address these challenges, in the context of a
set of algorithms for symbolic plan recognition[Avrahami-
Zilberbrand and Kaminka, 2005], where the system generates
plan recognition hypotheses consistent with the observations,
with no ordering. Symbolic plan recognition can be very ef-
ficient, and may thus serve as a basis for a hybrid symbolic-
probabilistic recognizer, where it would be useful for ruling
out hypotheses prior to a more computationally-intense prob-
abilistic reasoning process.

Specifically, this paper makes the following contributions.
First, we develop a method for automatically generating a
decision-tree that efficiently matches multi-featurelossyob-
servations to the plan library. Second, we provide algorithms
for efficiently answering the query of what is the current in-



ternal state of the observed robot (calledcurrent state query).
While, utilizing the durations of plans, and allowing for inter-
leaved plans.

The recognition algorithms we develop follow in the foot-
steps of[Avrahami-Zilberbrand and Kaminka, 2005] in their
focus on completeness and efficiency. They rely on lazy com-
mitment to hypotheses, to avoid computation of hypotheses
with every step (as other algorithms do, e.g.,[Geib and Harp,
2004]). Instead, they use linear-time bookkeeping with every
observation, which allows extraction of hypotheses only as
needed.

2 Background and Related Work
There has been considerable research exploring plan recog-
nition. Here we only address those efforts that relate directly
to the challenges addressed in this paper. YOYO*[Kaminka
et al., 2002] is a probabilistic plan recognition algorithm for
multi-agent overhearing. The plan-library used by YOYO*
included information about the average duration of plan steps,
which is used to calculate the liklihood of an agent terminat-
ing one step and selecting another without being observed
to do so. In this, YOYO* addressed missing observations
(though their liklihood of becoming lost is to be provided a-
priori). However, in contrast to our work, YOYO* did not ad-
dress matching multi-feature observations (where some fea-
tures may be intermittently lost), not did it allow for inter-
leaved plans.

[Geib and Harp, 2004] describe a hybrid symbolic-
probabilistic plan reconition system, allowing for interleaved
plans as well as some partial observability. However, the sys-
tem does not allow for taking durations into account, nor ad-
dresses efficient matching of (lossy) multi-feature observa-
tions.

There has been recent work on using hidden semi-Markov
models (HSMMs) in recognizing plans[Duonget al., 2005].
Hidden semi-markov models allow for providing some prob-
abilistic constraints over the duration of plans, as well as the
ability to detect anomalies. However, the model does not al-
low for interleaved activities, nor does it address matching
with multi-feature observations.

3 Fast and Complete Symbolic Plan
Recognition: The Basics

We focus on a specific model of symbolic plan recognition,
briefly described below. The reader is referred to[Avrahami-
Zilberbrand and Kaminka, 2005] for details.

The plan library is a single-root directed acyclic connected
graph, where vertices denoteplan steps, and edges can be
of two types: vertical edges decompose plan steps into sub-
steps, and sequential edges specify the expected temporal or-
der of execution. Each plan has an associated set of con-
ditions on observable features of the agent and its actions.
When these conditions hold, the observations are said to
match the plan. At any given time, the observed agent is as-
sumed to be executing aplan decomposition path, root-to-leaf
through decomposition edges.

Figure 1 shows an example portion of a plan library, in-
spired by the plan hierarchies of RoboCup soccer teams (e.g.

root

attackdefend score

position

clear

turn

Approach 
ball

position

without 
ball

position turn pass position turn kick

with 
ball

without 
ball

With
ball

with 
ball

without 
ball

2

1

3

1

1 1 2

2

2

22

2

222

2

2

31 1

Figure 1:Example plan library. Circled numbers denote times-
tamps (Section 3).

[Kaminka and Tambe, 2000]). An observed agent is assumed
to change its internal state in two ways. First, it may follow
a sequential edge to the next plan step. Second, it may reac-
tively interrupt plan execution at any time, and select a new
(first) plan (we later address the case of interleaving, where
the agent may resume an interrupted plan sequence).

The recognizer operates as follow: first, it matches obser-
vations to specific plan steps in the library, by using a spe-
cialized data-structure, a matching decision-tree called FDT
(Feature Decision Tree). The FDT is generated automati-
cally once prior to execution, and it efficiently matches multi-
feature observations, to the plan library. Then, after matching
plan steps are found, they are tagged by the time-stamp of
the observation. These tags are then propagated up the plan
library (see below for explanation of thepropagateUp algo-
rithm), so that complete plan-paths (root to leaf) are tagged to
indicate they constitute hypotheses as to the internal state of
the observed agent when the observations were made.

The inference process is done by theCSQ(Current State
Query) algorithm. The CSQ algorithm tags matching plan
steps with time-stamps, and try to propagate up these tags
along the plan library, so that complete paths (root to leaf) are
tagged. If the propagation fails due to temporal constraints
(see below), it deletes all tags it has generated in climbing up
the graph.

The propagation up process done by thepropagateUp al-
gorithm (algorithm 1), which tags paths in the plan library as
consistent with the current observation. To do this, it must
propagates these tags up along decomposition edges. How-
ever, the propagation process is not a simple matter of fol-
lowing from child to parent. A plan may match the current
observation, yet betemporally inconsistent, when a history
of observations is considered.

Figure 1 shows the process in action (the circled num-
bers in the figure denote the time-stamps). Assume that the
matching algorithm matches at timet = 1 the multiple in-
stances of theposition plan. At timet = 1, Propagate be-
gins with the fourposition instances. It immediately fails to
tag the instance that followsclear andapproachball, since
these were not tagged att = 0. Theposition instance un-
der score is initially tagged, but in propagating the tag up,



Algorithm 1 PropagateUp(Nodev, Plan Libraryg, Time-
stampt)

1: Tagged ← ∅
2: propagateUpSuccess ← true
3: v ← w
4: while v 6= root(g) ∧ propagateUpSuccess ∧
¬tagged(v, t) do

5: if isConsistent(v, g, t) then
6: Tagged ← tagged ∪ {v}
7: v ← parent(v)
8: propagateUpSuccess ← true
9: else

10: propagateUpSuccess ← false
11: if ¬propagateUpSuccess then
12: for all a ∈ Tagged do
13: delete_tag(a, t)

the parentscore fails, because it followsattack, andattack
is not taggedt = 0. Therefore, all tagst = 1 will be
removed fromscore and its childposition. The two re-
maining instances successfully tag up and down, and result
in possible hypothesesroot → defend → position and
root → attack → position.

To disqualify hypotheses that are inconsistent (e.g., given
a history of observations), it calls the algorithmisConsistent
(2) to make the decision of whether a proposed time-stamp
should be applied to a given plan step, given information in
the model. It assumes that the calls to it have been made in
order of increasing depth, from the parent to the children, to
avoid the case that the children are tagged, but their parent
does not

In [Avrahami-Zilberbrand and Kaminka, 2005], a version
of isConsistentalgorithm is presented which checks for tem-
poral consistency. It is repeated here in Algorithm 2. Line 2
checks whether time stampt is temporally consistent, i.e., if
one of three cases holds: (a) the node in question was tagged
at timet − 1 (i.e., it is continuing in a self-cycle); or (b) the
node follows a sequential edge from a plan that was success-
fully tagged at timet− 1; or (c) the node is a first child (there
is no sequential edge leading into it). A first child may be
selected at any time (e.g., if another plan was interrupted). If
neither of these cases is applicable, then the node is not part
of a temporally-consistent hypothesis, and its tag should be
deleted, along with all tags that it has generated in climbing
up the graph. This final deletion of all failing tags takes place
in the CSQ Algorithm. The CSQ is meant to be called with
every new observation. The tags made on the plan-library are
used to save information from one run to the next.

In sections 4.1 and 4.2, we modify this consistency check
and extend it, so that it takes additional constraints into ac-
count.

4 Accounting for Complex Temporal Plan
The basic model described above may be used to recognize
plan(s) that are ordered in time. It also allows for plans
to have self-cycles, and thus be non-instantaneous. How-
ever, it cannot recognize more complex forms of temporal

Algorithm 2 isConsistent(Nodev, Plan Library g, Time-
stampt)

1: if tagged(parent(v), t) ∨ features(parent(v)) = ∅
then

2: if tagged(v, t − 1) ∨
∃PreviousSeqEdgeTaggedWith(v, t − 1) ∨
NoSeqEdges(v) then

3: returntrue
4: returnfalse

plans, such as maintaining the selection of a specific plan-step
within some bounded interval, or interrupting a sequence of
plan steps under one node, to execute another, only to return
to it to the first sequence later (plan interleaving).

This section shows how the CSQ mechanisms can be ex-
tended to account for these temporal plans. Section 4.1 ex-
tends thepropagateUp algorithm to take duration bounds
(minimum and maximum time spent in a plan-step) into ac-
count. Section 4.2 independently explores modifications to
propagateUp for interleaving.

4.1 Managing Durations
Instances of the same plan step can vary in the duration of
their execution. For example, depending on the distance to
the ball, a soccer player may take a long time or short time to
execute theapproach ball plan in Figure 1. As a result, we
may have multiple observation time-stamps (t, t+1, . . . t+k)
that are all consistent with a single plan, and only reflect the
duration that its execution requires between one andk + 1
time-stamps.

However, often some bounds are known on execution dura-
tion. For instance, in an airport terminal, there exist a differ-
ence in the plans of a a passenger who stands at the check-in
area for a few minutes, and a security guard who stands there
for a few hours. Or, in a different example, a basketball player
is only allowed inside the basket zone for a limited amount of
time.

We thus want to take into account constraints on the dura-
tion of plan-steps. We can allow such constrains in the ap-
proach we presented. We extend the tagging mechanism to
allow two types of tags: (a)Hard tags, which signify that
a plan step is (or is not) consistent with respect to previous
plan-steps (theisConsistent algorithm, Algorithm 2), and
also consistent with duration constraints (minimum, maxi-
mum time); and (b)Soft tags, which signify that a plan-step is
(or is not) consistent with observations (and with prior plan-
steps), but is not within its duration constraints (e.g., this
plan-step has not been selected for sufficient amount of time,
but may be in few time-stamps).

We make the following additions to thepropagateUp
algorithm, and present the revised algorithm (Algo-
rithm 3): (1) Line 4 checks if v is not tagged
with hard tag (instead of checking if tagged); (2)
line 5: checks if the maximum duration holds, using
calcDuration algorithm (Algorithm 4); (3) Line 6: in the
isConsistent algorithm, all the occurrences oftagged(v, t)
should be replaced withtagged(v, t, Soft), and the
existsPreviousSeqEdgeTaggedWith(v, t − 1) should be



Algorithm 3 PropagateUp(Nodev, Plan Libraryg, Time-
stampt)

1: Tagged ← ∅
2: propagateUpSuccess ← true
3: v ← w
4: while v 6= root(g) ∧ propagateUpSuccess ∧
¬tagged(v, t, Hard) do

5: if calcDuration(v, t) < maxDuration(v) then
6: if isConsistent(v, g, t) then
7: if calcDuration(v, t) < minDuration(v) − 1

then
8: tag(v, t, Soft)
9: else

10: tagDuration(v, t, Hard)
11: Tagged ← tagged ∪ {v}
12: v ← parent(v)
13: propagateUpSuccess ← true
14: else
15: propagateUpSuccess ← false
16: else
17: propagateUpSuccess ← false
18: if ¬propagateUpSuccess then
19: for all a ∈ Tagged do
20: delete_tag(a, t)

Algorithm 4 calcDuration(Nodev, Time-stampt)
1: counter ← 0
2: time ← t
3: while time > 0 do
4: if tagged(v, t− 1, Soft) then
5: Counter ←counter+1
6: time ←time-1
7: else
8: break
9: return(counter)

replaced withexistsPreviousSeqEdgeTaggedWith(v, t−
1, Hard).; (4) lines 7-12 if the minimum duration constrain
holds, then the plan will be tagged in time-stampt with Hard
tag, otherwise withSoft tag.

The algorithmcalcDuration (Algorithm 4), calculates the
duration in which the plan was active. To calculate this, the
algorithm goes over the time-stamps of the plan from time
stampt, and counts the number of consecutive tags (time-
stamps with no temporal gaps). For example, if plan is tagged
with time-stamps 1,4,5,6 then the duration will be 3.

4.2 Interleaved plans
Many plan recognition algorithms cannot cope with mod-
elling an agent that is pursuing multiple plans (i.e., for mul-
tiple goals), by interleaving plan steps. Here, the agent may
begin with one plan, and interrupt its execution to execute an-
other, only to return to the remaining plan steps in the first
plan.

To handle interleaving, we add amemoryF lag in each of
the first children. this flag will hold the latest time-stamp tag,
in the sequential link chain from this child. We will use this

flag to disqualify plans that are in the middle of the chain and
are not the ones that we paused at. For example, in the 1
figure, the position plan under attack will holdmemoryF lag
that contain the time-stamp 2. Suppose that there is sequential
link also from turn to pass. Then we would like to return
exactly to pass and not to the turn plan step.

The approach we present above can deal with these
cases by making one change to theisConsistent
algorithm (algorithm 2). In line 2, the con-
dition: ∃IncomingSeqEdgeTagged(v, t − 1)
should be replaced with two conditions: First,
∃IncomingSeqEdgeTagged(v, t − 1orsmaller)). Mean-
ing that we check whether there is an incoming sequential
edge from a plan-step tagged with a time-stamp that is
smaller or equal tot − 1. This will allow a plan-step
to be considered consistent if it continues a previously
interrupted sequence of plan-steps. Second, we add the
condition ∃IncomingSeqEdgeTagged(v,MemoryF lag),
this condition forces a return to the interrupted plan-step.

Although we add recognition capabilities, we should re-
member that this change can influence the number of possi-
ble hypotheses. A partial solution is to tag those plans that
can be interrupted and resumed with ajump label. The
isConsistent algorithm will then check plans based on their
jump settings. For plans with ajump label, it will check that
the previous node had time equal tot− 1. For plans without
a jump label, it will check equal or smaller thant − 1 con-
straint. This allows greater control over the accuracy of the
model, and facilitates increased efficiency.

Another issue to discuss is the question of how many ticks
(time units) can pass from the time we interrupt a plan step,
until returning to it. To limit this time, we can add a flag
MaximumInterruptT ime, and add also the constraint that
the difference between a new observations’s time-stamp and
that of a node with an incoming sequential edge, must be
smaller thanMaximumInterruptT ime. This can disqual-
ify lingering hypotheses, and make the algorithm more accu-
rate.

5 Handling Lossy Observations
Real-world applications of plan recognition may violate the
assumption that the observed agent is always observable, and
that all relevant features are observable. Instead, real-world
settings often involve intermittent observation failures. This
section addresses this challenge. We differentiate between
two types of lossy observation: (a) Lossy features, where one
or more features in a multi-feature observation is temporarily
missing (Section 5.1); and (b) lossy observation, where an
entire observation is lost (5.2).

5.1 Lossy Features
We take each observation to consist of a tuple of observed
features, including states of the world that pertain to the agent
(e.g.,a soccer player’s uniform number), actions taken (e.g.,
kick), and execution conditions maintained (e.g.,speed =
200). In most applications an implicit assumption was made
(present also in most related work) that all relevant features
were in fact observable.



However, in realistic settings, some features may be inter-
mittently unobservable, e.g., due to hardware failures, com-
munication errors, etc. For instance, due to a sensor failure,
a plan recognition system might only know the position of
another agent, but not its velocity or heading. Observation
features that are lost would fail the conditions associated with
plan, and thus the matching phase will fail.

In [Avrahami-Zilberbrand and Kaminka, 2005], we
showed how to efficiently determine which plans match a set
of observations, using structure called FDT (Feature Deci-
sion Tree). The FDT allows efficient mapping from observa-
tions to plans that may match them, at a worst-case runtime of
O(F + l), whereF is the number of features, andl the max-
imal number of plans that may match a given observation.

An FDT is constructed similarly to a machine-learning de-
cision tree[Ross, 1992] (though with some differences). We
briefly review this process here. We map the plan library into
a set of fictitious training examples. Each plan step becomes
an example, where the conditions on feature values become
attribute values, and the class is the plan step. Features not
tested by a plan step are treated as specially markedall val-
ues. After generating the training set, the construction of the
FDT is done as by picking features in decreasing order of in-
formation gain, and constructing a decision tree which tests
these features. Leaves in the decision tree contain pointers
into the appropriate plan steps in the plan library (see Figure
2; theMissbranches are explained below).

To address lossy features, we propose to use an augmented
FDT, called LFDT (Lossy Feature Decision Tree), which has
the matching run-time of a non-lossy FDT, but deals with
lossy observations. An LFDT representation is the same as
FDT, except that for each node, we add an extra branch that
represents amissing value(Miss in Figure 2). During con-
struction of the LFDT, all plans that are consistent with the
node (and which are divided based on the value of the feature
associated with the node) would be passed as-is to the miss-
ing value branch. When the LFDT is traversed, if a feature is
temporarily unobservable, we will follow the missing value
branch instead of one of the normal branches.

To understand the LFDT construction process, we need
first to differentiate between two special values that each fea-
ture can take: amissvalue is used during the matching pro-
cess to denote that the value of this feature has lost. Anall
valuesvalue is used during the FDT and LFDT construction
process to denote that this feature is not relevant for the plan.
i.e., the plan does not test this feature. For Example, the fea-
ture uniform number is irrelevant to the approach ball plan;

The LFDT construction algorithm is presented below (Al-
gorithm 5). First, we check if the instances cannot be divided,
meaning that a node points at only a single plan, or there are
no more features that can differentiate between the plans as-
sociated with the instances. In this case we create a leaf (lines
1–2). Otherwise, we create a node, and associates it with the
feature that provides the greatest information gain (lines 3–
4) (intuitively, that divides plans that test it as uniformly as
possible). We then create children LFDT nodes for each of
its values including the potentialmiss value(lines 5–12), and
recursively repeat the process of selecting a feature that best
divides the plans associated with the node.

Miss

Have ball ?

Opp-Goal Visible?

destination 
from players

yes
no

yes
no

very farfarnear

kick

pass

Uniform-
number

Miss

32
1

turn

Miss

Miss

Figure 2: An example Lossy Feature decision Tree (LFDT).

To create the children LFDT, we follow the procedure for
handling missing values in decision trees (See[Ross, 1992]).
Briefly, the algorithm (in each step), divides the instances ac-
cording to the tested features. Each instance gets a weight,
that is initialized to one at the beginning of the algorithm.
This weight represents the fraction of the instances having
this value for the feature, and is used for the purpose of com-
puting the information gain. When there isallvalues value
for the tested feature in the instance, we divide this weight be-
tween all branches, therefore dividing its weight in the num-
ber of possible values that the feature can take. When having
value for the feature, the weight of the instance remains the
same.

The children are constructed as follows: For each possible
value of the selected feature, the instances will be divided to
the different branches and the weights will be updated in the
following manner: if this ismiss value(represents "missing
value" branch) then all instances remain as its parent (line 7),
and the weights also remain the same (line 8). This child is
different from its parent only in the best features that it can
select (line 12). If this is notmiss value, then the instances
will be divided to the different branches according to their
values with the same weights. In case this isallvalues value
the instance will be passed to all branches". And its weight
will be divided in the number of the values of this feature.
The algorithm also update theTested set with the new tested
feature. Then we recursively repeat on this process of select-
ing a feature that best divides the plans associated with the
node with the new instances, new weights and the new tested
features, dividing accordingly.

Thus the construction of the LFDT is done as in the FDT,
but with one small difference. For a missing value node, the
plan step examples remain as in its parent, and the weights
also remain the same. This missing value node differs only by
the set of features from which it selects (as it represents a fea-
ture that was missing). This process guarantees that all plan-
steps that are consistent with the partial observations will be
matched, even if some features are intermittently unobserv-
able.

Complexity Analysis. During matching runtime, the LFDT



Algorithm 5 formTree(Instances, weights, Tested)
1: if (there are no features to test)∨ (single plan)then
2: returncreateLeaf(Instances)
3: bestFeature ← best feature that was not tested
4: createNode(bestFeature)
5: for all possible valuesv of best featuredo
6: if v = missing valuethen
7: newInstances ← Instances
8: newWeights ← Weights
9: else

10: newInstances ← all instances with valuev
11: newWeights ← calculate weights of

newInstances
12: newTested ← Tested ∪ bestFeature
13: formTree(newInstances, newWeights, newTested)

Match algorithm operates as follows: When an observation
is made of an agent, we traverse on the LFDT according to
the values of the observed features. It the feature is observed,
its value is used as an index to select from one of the nor-
mal branches. However, if the value ismiss(meaning that
the feature’s value is unavailable), we take themissing value
branch. This process continues recursively, until we get to a
leaf. Then, after getting to the appropriate node in the LFDT,
we have pointers to the relevant plans in the plan library, the
same as we have in the FDT. These pointers are returned.

In a theoretical worst case, plans test all possible features,
and thus the height of the LFDT isO(F ). In the worst-case,
the leaf in the LFDT would point toO(l) plans, wherel is the
maximum number of plans that are ambiguously consistent
with a single observation (l << L, whereL is the number
of plans in the library). Thus the complexity of matching
observations to plans would be at worstO(F + l), similarly
to the FDT.

As with any decision tree, there is a one-time computa-
tional cost of constructing the LFDT, and storage overhead
in using it. The construction complexity of the LFDT is
O(FV L(V + 1)F+1 + l), whereF, l are defined as above,
andV is the maximum number of values in each feature, and
L is the number of different plans in the plan library. Since
for each node (O(V + 1)F+1), we go over all features to de-
cide which feature is the best to choose, by computing the
information gain (O(FV L)). However, building the LFDT
is a one-time offline cost, while matching takes place many
times in realistic settings.

While the runtime complexity of LFDT is the same as FDT,
its storage complexity would be greater, as it will have more
branches than FDT (extra branch for each feature), and its
height may be deeper than FDT (because of the need to han-
dle missing features at the leaves).

The space complexity of the LFDT isO((V + 1)F+1 + l)
in the worst case, whereV is the number of values for each
feature (full tree whose height isF + 1 and whose branching
factor isV + 1). To lower the size of the LFDT in practice,
we can add an extra branch just to lossy features, i.e., not in
all features, but only in features we know the observing agent
may miss.

Trading Time for Space. Given the increased space com-
plexity of the LFDT, we develop an alternative way to deal
with lossy features. Here, we use the FDT while accounting
for missing values. The difference is in the matching algo-
rithm. Instead of turning to themissing valuebranch, if we
do not have the observed feature value, we will traverse all
branches of this feature, collecting the pointers resulting from
each.

To demonstrate the lossy matching process with FDT, lets
take the example in Figure 2 without the "miss" branches.
Assume that the observation is: the value of thehave − ball
feature is yes, the value of theopp − goal − visible feature
is no, and the value of thedestinationfromplayers is un-
observable. In this case we will check all the branches un-
der the featuredestinationfromplayers, instead of taking
the missing value branch in the LFDT. We will traverse the
branches: near, far and very far, according to the observation,
collecting the pointers into the plan library, resulting from
each such branch.

The matching runtime complexity is then changed from
O(F + l) in the worst case, toO((V + 1)m+1 + l), where
m is the number of missing features. It depends now both
on the number of missing features in the observation and on
the number of values in each feature. However, it is trade
off between the space complexity and the matching runtime
complexity.

5.2 Missing Observations
An underlying assumption in previous investigations is that
every change in internal state (in our terms, change in plan
path) is somehow reflected in observations. However, in real-
istic settings, this assumption is sometimes violated (e.g., in
Overhearing applications[Kaminkaet al., 2002]. Some in-
ternal decision-making may be permanently or intermittently
unobservable, for all of the plans along a specific plan decom-
position path. In this case, an entire observation is essentially
missing (all features are unobservable).

We propose some small changes in the propagation algo-
rithms, to allow them to address this difficulty. The idea is to
mark potentially-unobservable plans with alossylabel in the
plan library (though the first and the last plans in a plan-step
sequence cannot have alossylabel).

We again modify the algorithmsisConsistent (Algorithm
2) andpropagateUp (Algorithm 1). In the propagating pro-
cess, nodes that are labelled withlossyand are part of a se-
quence will be skipped (if they are not tagged), when the
sequence is checked for temporal consistency. This is done
by replacing the methodtagged(X, t) with a new method:
AdvanceTagged(x, t) (Algorithm 6).

TheAdvanceTagged(v, t) algorithm exploits the sequen-
tial edges and thelossylabels. Planv will be considered as
tagged at time-stampt if one of two cases holds: (a) the plan
itself is tagged with time-stampt−1; (b) the plan is not tagged
with time-stampt−1, but it haslossylabel and the sequential
edge that points to it is tagged with time-stampt− 1. In case
that there are chains oflossylabels, we check if the first plan
that is not labelled withlossyis tagged with time-stampt−1.

It is important to note here that the time referred to by the
time-stamp is the observation time, not world time. Thust−1



Algorithm 6 AdvanceTagged(Nodev,Timestampt, Plan Li-
braryg)

1: if tagged(v, t) then
2: return true
3: else
4: while (v labelled as miss)∧ (∃X, s.t.(X, v) ∈ g) do
5: if tagged(X, t) then
6: return true
7: v ← X
8: return false

is the time of the previous observation, not a single tick ago.
This feature must be used carefully, since it can signifi-

cantly influence runtime, and the number of possible hypothe-
ses. Specifically, labelling many plan steps aslossywill result
in long backtracks through previous plan-step nodes, until we
arrive at node that was not labelled withlossyor that was
tagged with time stampt− 1. This can be significantly more
expensive to do than just checking whether the previous node
on the sequence was tagged with time stampt− 1. The num-
ber of output hypotheses also increases when adding many
lossylabels, because a behavior labeledlossycan be a part of
many hypotheses, without being observed.

6 Summary and Future Work
Agents must often rely on their observations of others, to in-
fer their unobservable internal state, such as goals, plans, or
selected plans. However, plan-recognition approaches to this
task leaves number of open challenges: (i) handling lossy ob-
servations; (ii) dealing with durations constrains ;(iii) facing
interleaved plans (behaviors).

This paper addresses this challenges in the context of sym-
bolic plan recognition, relaying on hierarchical plan-based
representation and a comprehensive set of algorithms that
can answer a variety of recognition queries. The algorithms
we propose are efficient, and can handle intermittent failures
in observations, plans with duration, and lossy observations,
both of complete observations and of only a subset of observ-
able features.

References
[Avrahami-Zilberbrand and Kaminka, 2005] Dorit.

Avrahami-Zilberbrand and Gal A. Kaminka. Fast
and complete symbolic plan recognition. InIJCAI-05,
Scotland, Edinburgh, 2005.

[Bui, 2003] H. Bui. A general model for online probabilistic
plan recognition. InIJCAI-03, 2003.

[Carrbery, 2001] S. Carrbery. Techniques for plan recog-
nition. User Modeling and User-Adapted Interaction,
11:31–48, 2001.

[Charniak and Goldman, 1993] Eugene Charniak and
Robert P. Goldman. A Bayesian model of plan recogni-
tion. AIJ, 64(1):53–79, November 1993.

[Duonget al., 2005] T. Duong, H. H. Bui, D. Phung, and
S. Venkatesh. Activity recognition and abnormality de-
tection with the switching hidden semi-markov models. In

IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR-2005), San Diego, CA, June
2005.

[Geib and Harp, 2004] Christopher W. Geib and Steven A.
Harp. Empirical analysis of a probalistic task tracking al-
gorithm. InAAMAS workshop on Modeling Other agents
from Observations (MOO-04), 2004.

[Kaminka and Tambe, 2000] Gal A. Kaminka and Milind
Tambe. Robust multi-agent teams via socially-attentive
monitoring.JAIR, 12:105–147, 2000.

[Kaminkaet al., 2002] Gal A. Kaminka, David V. Pynadath,
and Milind Tambe. Monitoring teams by overhearing: A
multi-agent plan recognition approach.Journal of Artifi-
cial Intelligence Research, 17, 2002.

[Kautz and Allen, 1986] Henry A. Kautz and James F. Allen.
Generalized plan recognition. InAAAI-86, pages 32–37.
AAAI press, 1986.

[Ross, 1992] Quinlan J. Ross.C4.5 Programs for machine
learning. Morgan Kaufmann Publishers,Inc, 1992.

[Tambe and Rosenbloom, 1995] M. Tambe and P. S. Rosen-
bloom. RESC: An approach to agent tracking in a real-
time, dynamic environment. InIJCAI-95, August 1995.


