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We present our work on using statistical, corpus- Total Sessions 457 °000
based machine learning techniques to pérfmm Gogl Schemas 19 10
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schema and its parameter values. The recognizer is

fast (linear in the number of goal schemas and ob- i\l;:%%%lgscgr%rgztsh wﬁ 322
served actions) and is able to make partial predic- Max Subgoal Depih NIA 9

tions by optionally predicting individual parameter
values for a goal schema. This allows it to make
more accurate predictions after observing fewer ac-
tions than all-or-nothing prediction.

Table 1: Plan Corpora Statistics

1 Introduction pervised machine-learning techniques to the taskstanti-

Much work has been done over the yearglian recognition fated goal recognitionthe recognition of a goal schema and
which is the task of inferring an agent’s goal and plan basedfS parameter values.

on observed actionsGoal recognitionis a special case of ~ Our recognizer has two nice features (which correspond to
plan recognition in which only the goal is recognized. Goalthe two desired traits of goal recognizers described above)
and plan recognition have been used in a variety of appliFirSt, recognition is fast and scalable, running in time lin
cations including intelligent user interfackBauer and Paul, €ar to the number of possible goal schemas and the number
1993; Horvitz and Paek, 1999; Leshal, 1999, traffic mon-  of observed actions. Second, the recognizer supportsaparti
itoring [Pynadath and Wellman, 199%nd dialogue systems goal recognition, allowing it to make predictions earliethie

[Carberry, 1990; Alleret al.,, 2001. agent’s task execution. It is able to predict just a goal sehe
For most applications, there are several properties reduir or a goal schema and only a subset of its parameter values.
in order for goal recognition to be useful: This allows the recognizer to make predictions much earlier

1. Speed:Most applications use goal recognition “online”, and more accurately than a strict full-prediction system.

meaning they use recognition results before the observed The remainder of the paper is as follows: Section 2 briefly
agent has completed its activity. Ideally, goal recogni-describes the plan corpora we use for training and testing.
tion should take a fraction of the time it takes for the Section 3 describes our goal recognizer and experimental re
observed agent to execute its next action. sults. In Section 4, we discuss related work and in Section 5,

2. Early/partial prediction: In a similar vein, applications We conclude and mention future work.
need accurate goal prediction as early as possible in the
observed agent’s task execution. Even if a recognizer is
fast computationally, if it is unable to predict the goal 2 Plan Corpora
until after it has seen the last action in the agent’s task, it

will not be suitable for applications which need recogni- 1 first thing needed to use a machine-learning approach is
tion resultsduring task execution. If full recognition is o7 “Anjan corpusis a set oflan sessions— collections of

not immediately available, applications can often make,,seryeqd actions from an agent. For our approach, we need
US? of partial information. ) _ plan sessions that are labeled with the top-level goal teatag

In this paper, we model goals as parameterized actiofyas pursuing during the session.

schemas (see examples in Figures 2 and 3). We apply su- We use two different goal-labeled plan corpora to train and

"Note that this is different from another common representationfest our recognizer: the Linux corpus and the Monroe corpus.
where goals are represented as conjunctions of state predicates. Statistics for the corpora are shown in Table 1.



2.1 The Linux Corpus tasks successfully. We have seen several cases in the corpus

We collected the Linux corpuiBlaylock and Allen, 200k where a user apparently misunderstood the task and reported
from human Linux users at the University of Rochedtén ~ SUCCESS where he had actually failed. Overall, howeves, thi
each session, a user was given an (English) description of 4°€S not appear to have happened very often.
Linux task (a goal) and was instructed to solve it using any,
Linux commands (with a few rules such as no pipesank, 2.2 The Monroe Corpus
etc.) The users’ commands and their results were recordeds human data collection is expensive (and oftentimes not
Also, as we had no automatic means to detect goal complgossible), we have developed a method of stochastically gen
tion, we required users, at the end of a session, to declamrating artificial plan corpora using an Al plani@&aylock
whether they had successfully completed the task. and Allen, 2005. The general method is to model a domain
Table 2 shows several of the goal schemas in the Linuylan library and then use a randomized planner to creats plan
corpus. We prefix parameter names with a dollar sign ($) t@iven stochastically generated goals and start states.
distinguish them from instantiated parameter values. Using this method, we created the Monroe corpus, which is
an emergency response domain based on a similar domain for

Post-Processing . adialogue systerfStent, 200 Examples of goal schemas
In creating the final corpus, we performed post-processing ti, ine corpus are shown in Table 3.

transform the raw corpus (of Linux commands and results) Tapie 1 shows a comparison of the contents of the Mon-

into a planning representation of the goals and actions. 46 ¢orpus and the (post-processed) Linux corpus. The Mon-

First, we excluded all sessions which were reported as failzoe corpus consists of 5000 plan sessions with an average of
ures, as well as sessions with no valid commands. Althougg 5 actions per session. The number of total sessions was, of
such data could possibly be useful for training a recognizer e artificially set and could have easily been changed.

| decided o | h h for f K fhe 5000 sessions were generated on a high-end desktop
alone, we decided to leave such research for future work. computer in under 10 minutes.

We also converted issued Linux commands into parame- -, "3 qgition to the information given for the Linux corpus,

terized actions. Unlike actions in many domains used in plagye 544 several fields here particular to hierarchical carpor

rsfcogniti(;n, Lr:nux comrrd1ands do not nicely mz(ajp onto a siM-ria Monroe corpus has, in addition to the 10 top-level goal
ple set of schemas and parameters, as we discuss In Ml a5 38 subgoal schemas. The plans in the corpus were
detail below. To do the mapping, we defined action schema

for the 43 valid Linux command types appearing in the cor-8n average 3.8 subgoals deep. This measures how many

This all q di d mi q d odes away each atomic action is from the top-level goal.
pus. This allowed us to discard mistyped commands as Weithe deepest atomic action in the corpus was 9 levels away
as many commands that resulted in errors.

from the top-level goal. Although the Monroe corpus pro-
Discussion vides hierarchical subgoal information, in this paper wiyon

As discussed above, the Linux corpus was gathered semfi€Port on results of trying to predict the top-level goal {evh
automatically from humans. As a consequence, it contain¥/€ termflat goal recognitioh. We are currently using the
mistakes. A frequent mistake was typographical errors. Thdlonroe corpus for training and testinghéerarchical goal
post-processing step described above helped amelioiiate tH€COgNIZEr.

somewhat — as it was able to detect incorrectly typed com-

mands (at least in cases where the mistyped command wasi3t  Statistical Goal Recognition

also a successful command). However, it only checked th L .
command itself, and not its parameter values. This I%@Ve model goals, not as monolithic entities, but rather a$ goa

X ; chemaswhich are instantiated with parameters. As stated
to cases of the user using unintended parameters (esg.,

flieinsteadof s fil ), which affected parameter recog- above, our goal is to dmstantiatedgoal recognition, which
nition as described below. is recognition of both the schema and its parameter values.

Another phenomenon that we were not able to automat. Towards this goal, we have previously built separate sys-

ically detect was the user’s lack of knowledge about com{ems for doing stand-alone statistical gsahemarecogni-

mands. For example, one user, upon getting the task of fin(iIon [Blaylock and Allen, 200Band goaparameterrecogni-

ing a file with a certain name tried several times in vain to Ig?f([)?rlr?grl]c():%koin%?E?r?dnggr lj"sr'd reported their separate
use the commangr ep to do so, where the command he was P pus.
likely looking for wasf i nd.2 This resulted in a red herring

The main contributions of the current paper are twofold:
for the recognizer, which, for the remainder of the session(l) we report the performance of the schema and parameter
predicted that the user was trying to locate text within a cer

tecognizers on a new corpus (Monroe), and (2) we describe
tain file our work on combining these recognizers to create a uni-
Finally, another source of noise in the corpus is that th

efied instantiated goal recognizer and report its perforrmanc
users themselves reported whether they had accomplishé) both the Linux and Monroe Corpora.

In the remainder of this section, we first present some pre-
2The Linux corpus is modeled after Lesh’s Unix corgussh,  liminary mathematical definitions and then a mathematical

1994. formulation of the goal recognition problem. We then briefly
3The commandyr ep is used to find text in a file or set of files, describe our goal schema and parameter recognizers and re-

not to find a file in a directory tree. port their performance on the Monroe corpus. We then de-



Goal Schema English Description

find-file-by-ext($extension) Find a file that ends in ".$extension’

find-file-by-nane($fil enane) Find a file named "$filename’

know-fil espace-usage-file($fil enane) Find out how much space file '$filename’ uses

know-fil espace-free($partiti on_nane) Find out how much filespace is used on
filesystem '$partitiooname’

nove-files-by-nanme($filenane, $di r nane) Move all files named '$filename’ to a

(preexisting) directory named '$dirname’
nove-files-by-size-T1t($nunbytes, $di rnane) | Move all files with less than $numbytes byte
to a (preexisting) directory named '$dirname

n

Table 2: A few goal schemas from the Linux corpus

Goal Schema English Description
fix-power-line($location) Repair a power line at $location

provi de- nedi cal - attenti on($person) | Attend to a medical emergency involving $perspn
provi de-t enp- heat ($per son) Provide temporary heating for $person

quel | -ri ot ($l ocati on) Break up a riot occurring at $location

set - up-shel ter ($l ocation) Set up an emergency shelter at $location

Table 3: A few goal schemas from the Monroe corpus

scribe our instantiated goal recognizer and report itsgperf 3.2 Problem Formulation

mance on both the Linux corpus and the Monroe Corpus.  \ye define goal recognition as a classification task: given an

observed sequence ofinstantiated actions observed thus far

3.1 Preliminary Definitions (A1), find the most likely instantiated goa
For a given domain, we define a set of goal schemas, each
takingq parameters, and a set of action schemas, each taking g = argmax; P(G|A; ) 1)

r parameters. If actual goal and action schemas do not have |t \ye expand the goal and actions into their schemas and
the same number of parameters as the others, we can eaSHXrameters this becom@s:

pad with '"dummy’ parameters which always take the same
value? AT ()
Given an instantiated goal or action, it is convenient to L
refer to the schema of which it is an instance as well as We make two simplifying assumptions at this point, in or-
each of its individual parameter values. We define a funcder to make recognition more tractable. We briefly mention
tion Schema that, for any instantiated action or goal, re- them here and then discuss them in more detail later on, First
turns the corresponding schema. As a shorthand, we ugge assume that goal parameters are independent of one an-
X3 = schema(X), whereX is an instantiated action or goal. other, and second, that goal schemas are independent from
To refer to parameter values, we define a funcienam action parameters (given their action schemas). Giverethes
which returns the value of theth parameter value of an in- assumptions, Equation 2 becomes:
stantiated goal or action. As a shorthand we U8t =
Param(X, k), whereX is again an instantiated action or goal. q
As another shorthand, we refer to number sequences by g = argmaxP(G*|A7,) [[ P(G7|G®, A7, A1) (3)
their endpoints: j=1

S
Al,n7

g = argmaxgs 1.« P(GS, G

L,n=1,2,....n In Equation 3, the first term describes the probability of the
) o _ ) goal schem&®, which we use for goal schema recognition.
This allows us to shorten definitions in the following ways:  The other terms describe the probability of each individual
goal parametef’, which we estimate with our goal parame-
Arn = A1, Az, An ter recognizer.

Ay = AL A3, AT AL AR LA AL AT, Independence Assumptions
In formulating the problem above, we noted that we make
“The requirement that goal and action schemas have the sant&o simplifying assumptions.
number of parameters is for convenience in the mathematicalanaly-—
sis. Below we report how this is circumstance is handled within the  °From now on we drop the argmax subscript when context makes
recognizer itself. it obvious.



First, we make the simplifying assumption that all goal pa-the remaining 500. The recognition results for the Linux cor
rameters are independent of one another. This allowed us fous and Monroe corpus are shown in Tabfe 4.
separate the probability of each parameter value into iexlep  We report results with metrics that are designed to measure
dent terms in Equation 3. This is, of course, not always thehe general goal recognition requirements described above
case — an obvious example from the Linux domain is thatPrecisionandrecall report the number of correct predictions
the source and destination parameters for a goal of copyingdivided by total predictions and total prediction opportun
file should not have the same value. However, in many caseges, respectively.Convergencend convergence poinstem
it appears that they are fairly independent. from the fact that, oftentimes, the recognizer will be uesur

We also assume that a goal schema is independent frornery early on in a session, but may at some point 'converge’
an action’s parameter values, given the action schemahwhioon the correct answer, predicting it from that point on until
allows us to simplify the first term in Equation 3. This is also the end of the plan sessio@onvergenceneasures the per-
admittedly not always the case. In the Monroe domain, theentage of plan sessions where the correct answer was con-
cal | action describes a telephone call, with one parametenerged upori. For those plan sessions which convergan-
the recipient of the call. This is used in the domain to tufn of vergence pointeports the average action observation after
power to a particular location or to declare a curfew, as wellwhich it converged divided by the average number of actions
as other things. The first use always has a power company &sr the converged sessions. This is an attempt to measure how
a parameter value whereas the second use includes a callgarlyin the plan session the recognizer was able to zero in on
the local police chief. the correct answer.

Although conditioning on parameter values could be infor- Results on the Monroe corpus were exceptionally better
mative, it is likely that it would introduce sparsity probls  than those of the Linux corpus. This is likely due to several
because of the large number of possible parameter values. factors. First, the Monroe corpus is much larger in terms of

We should also note that implicit in our definitions is the training data, yet smaller in terms of possible goal schemas
assumption that the agent only has a single goal which it i#\Iso, as the Monroe corpus was automatically generated, it
pursuing. As we discuss below, we are currently working to-does not include the kind of noisy data present in the Linux
wards extending our recognizer to perfohierarchicalgoal  corpus (see discussion above). In addition, we believe this
recognition, i.e., the recognition of all active subgoalaihi- can partly be attributed to the fact that the Linux domain is
erarchical plan. This should allow us to handle the caseevherdifficult to map onto a plan representation (cf. discussion i
an agent pursues several goals serially. It is unclear, vewe [Lesh, 1998). For example, many Linux commands (e.g.,
how our recognizer could be extended to handle the generdls) can take an (almost arbitrary) set of flags (e-@, - | ,
case where an agesimultaneoushpursues more than one - x), each of which changes the results (and thus the effects

goal. in a plan representation). For example, a file's size is lg@sib
usingl s with the-1 flag, but not without.
3.3 Goal Schema Recognition Although the results for the Linux corpus aren’t dismal

. . . te the jump in precision for 2-best prediction), we badie
In previous work, we built a goal schema recognizer base(gno ! oo P '
ong bigram approximation O?the first term frongquation 3good results in the Monrpe dome_un |nd|_cate that the method
[Blaylock and Allen, 200B may be more successful in domains which are more naturally

modelled by planning operators.
n In the Monroe domain, we get a precision of 95.6% for 1-
g° = argmaxP(G*) HP(Af|A§_1, G®) (4)  best prediction, which can be raised to 99.4% by predicting
the 2 best schemas. In 2-best prediction, the correct schema
] ) o is eventually predicted for 99.8% of sessions. For 1-bhst, t
The recognizer decides whether to make a prediction basa@cognizer converges on the correct schema after seeing an
on a confidence threshotd If the probability of the pre-  average of 5.4 of 10.2 actions (for those cases which con-
diction is greater tham, the recognizer makes a prediction; verge). This means that, on average, the recognizer is sure
otherwise, it doesn't. The recognizer can also make n-besihout the prediction a little more than halfway through the
predictions, instead of just a single best prediction. This  sessjon.
be useful, as many applications which use goal recognition Recall for 1-best is 55.2%, which increases to 69.6% for
can do further domain-specific processing on the n-best list_pest prediction. Although this may seem poor in compar-

=2

to make a better prediction. . ison to precision and convergence numbers in the 90’s, it is
The complexity of the schema recognize€i§ GG|), where  jmportant to consider that we are doing goal recognition. A
G is the set of goal schemas in the domain. recall of 100% would mean that the algorithm made the cor-

rect prediction directly after the first action in each sessi

Schema Recognition Experiments and converged on that prediction at that point. In all but the

We have elsewhere reported the results of training anahtesti

a bigram-based goal schema recognizer on the LinuX COrpus 61he threshold value needs to be individually set for each n-
[Blaylock and Allen, 2004 (repeated here for comparison). pest value. The values used here were chosen experimentally: i.e.,
Using the same methods, we trained and tested the bigragy trying several and picking the best one.

schema recognizer on the Monroe corpus. In doing so, we "This essentially measures how maagt predictions were cor-
randomly chose 4500 entries as training data, and tested aact, i.e., whether wendedpredicting the right answer.



Linux Monroe
N-best(r) || 1(0.4)] 2(0.6) | 3(0.9) 1(0.7)] 2.9 ] 3(0.9
Precision || 37.6% | 64.1% | 73.7% 95.6% | 99.4% | 98.9%
Recall || 22.9% | 40.6% | 41.4% 55.2% | 58.7%| 69.6%
Convergencel|| 37.4% | 56.5% | 59.7% 96.4% | 99.8% ]| 100.0%
Convergence Point|| 3.5/5.9| 4.0/7.2| 4.1/7.2 || 5.4/10.2| 5.4/10.3| 4.1/10.2

Table 4: Goal schema recognition results

simplest domains, such a feat is not likely possible (even foParameter Recognition Experiments

humans), given the inherent ambiguity in most plan recognif|sewhere, we have reported the results of the parameter pa-
tion domains. (As an example, many Linux sessions begarameter recognizer on the Linux corpus (repeated here for
with thepwd command, which gives little indication of what comparison)[Blaylock and Allen, 2004 In addition, we

the user’s goal is.) We believe 55.2% recall (or 69.6% fortested different values of the ignorance factpy &nd show

3-best) to be a good resiit. the results for) = 2.0. We also tested the parameter recog-
nizer for different values of) on the Monroe corpus, ran-

(500 sessions) as done above with the schema recognizer. The
We have also introduced a gqarameterrecognizer loosely results are shown in Table 5.
based on the second term of EquatidiB&ylock and Allen, For parameter recognition, we use the same metrics used
2004. Input to the parameter recognizer is the action sefor reporting schema recognition. In addition, we use two
quenceand the (known) goal schema for the session, as thedditional metrics:recall/feasibleand convergence/feasihle
parameter recognizer expectsktwwthe correct goal schema This stems from the fact that the parameter recognizer can
a priori. Additionally, the parameter recognizer works ononly recognize objects as parameter values that it has seen in
each parameter position in the goal schema independentifie observed actions in the sessfoithis means that if the
We deal with these constraints below in building our inte-goal parameter value is not used until the fifth action in the
grated instantiated goal recognizer. session, it is not feasible for the recognizer to correani

The parameter recognizer uses a tractable subset Gfy itin its first.fo'ur prediction;. In the Linux dom.ain, onl .
Dempster-Schafer Theory (DST) to estimate the probability>®-1% ©f pred|ct|(3)ns are feasible for the recognizer, and in
that action parameters seen so far are the values of goal pLonroe only 49.6%.Recall/Feasiblés a measure of recall
rameters. It also uses the measure of ignorance from BT ( 107 those predictions which were feasible for the recognize
to decide if it is confident enough to make a prediction. |ftheConvergeonce/Feas[blworI_(s similarly for convergence. In
probability of the prediction is greater thah the recognizer ©Nly 82.1% of sessions did the goal parameter value ever oc-
predics. cur as an action parameter value, and for Monroe in 79.4% of
As we discuss in more detail below, precision in parametersezssl(?gss'hown precision for both Linux and Monroe was
recognition turns out to be a big factor in the overall perfor greatly improved by using the highervalue, although at a

nlgrc]ics?oorf ovljg 'gjgaggagggiggﬁ;ﬁ;ﬁgﬂ'fggd? Orrgfigfsm:reamcost to recall (as would be expected). This is especially tru
P ' P P for the 1-best case for the Monroe domain, where precision

eter recognizer which we cafjnorance weigh{(z). In de- moves from 77.1% to 94.3%.

ciding whether or not to make a predictidn,is multiplied In comparing the domains in the = 2 case, performance
by «» before it is compared with the probability of the pre- on the Monroe domain is slightly better than that for Linux,

diction. Higher values of> will cause the recognizer only to with, for example, 94.3% precision for the 1-best case in

predict when more sure of the prediction. Using this faCtor'([e\/lonroe versus 90.9% in Linux. In this case. recall is lower
we were able to use this to raise the precision of the paramete Monroe (27.8% versus 32.1%). Recall is less than 40% for

recogngr considerably, as repor'ted belovy. ) both corpora for 2-best, although, as mentioned above, low
For a single parameter prediction, the time complexity ofyacq)l is to be expected in general for goal recognition.

the parameter recognizerd¥i) wherei is the number of ac-

tions observed so far. Note that this is scalable, asittheei 35 |nstantiated Goal Recognition

dependent on the number of goal schemas in the donmain W . buildi . iatedgoal

the number of potential values for the parameter (e.g. ottbje Ve NOW turn our attention to bullding anstantiatedgoal =

in the domain). recognizer using the schema and parameter recognizess. Thi

question brings us back to our original formulation of goal

- recognition above, particularly to Equation 3. We have d goa
8t is been difficult to compare plan recognizers, giventhe his-—

torical lack of data and even common metrics for reporting results.  °This is because the parameter recognizer works on probabilities

We hope that the introduction of plan corpora as test sets and stanf parameterelationsbetween goal and action parameters. The ad-

dard performance measurements will allow closer comparison in theantages and disadvantages of this approach are discud&idyin

future. lock and Allen, 2004



Linux Monroe
1-best 2-best 1-best 2-best

Ignorance weight @) 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0
Precision || 84.3% | 90.9% | 84.4% | 93.2% | 77.1%| 94.3% | 88.6% | 97.6%
Recall || 37.2% | 32.1%| 42.1%| 35.8%/| 38.5%| 27.8%| 44.9%| 39.2%
Recall/Feasible|| 66.3% | 57.1% | 75.0% | 63.8% | 77.5% | 55.9% | 90.5% | 78.9%
Convergence|| 64.4% | 54.4% | 70.5% | 60.3% | 61.2% | 46.9% | 76.2% | 76.2%
Conv./Feasible|| 78.4% | 66.2% | 85.9% | 73.5%]| 77.1%| 59.1%| 96.1%| 96.1%
Convergence Point|| 3.2/5.8| 3.5/6.2| 3.0/5.8| 3.4/6.2 || 4.4/9.4| 5.1/10.0| 3.8/9.1| 4.7/9.0

Table 5: Goal parameter recognition results on the Linupgsiand Monroe corpus

schema recognizer which estimates the first term, and a goatore predicted parameters than the other.
parameter recognizer which estimates the each of the terms Because of these problems, we have decided to take a
for each parameter position in a goal schema. Mathematilightly different approach to building our instantiatedag
cally, we simply need to compute the argmax to get the mostecognizer which capitalizes on the prediction ability loé t
likely instantiated goal, although, as we will see, thisasso  schema and parameter recognizers as they are.
straightforward, especially if we want to support n-besd an  Our instantiated goal recognizer works as follows: at each
partial prediction. observed action, we first run the goal schema recognizes. Thi
The argmax in Equation 3 above is an optimization prob-makes an n-best prediction of schemas (or doesn't if the con-
lem over several variablesi¢, G9), wheregq is the arity  fidence threshold isn't reached). If no prediction is made by
of the goal schema. Although this could mean a big searckthe schema recognizer, the instantiated recognizer alkesna
space, it remains tractable in the 1-best case because of an prediction. If the schema recognizer does make a predic-
assumption made above: namely, that goal parameter vaiion, we use the parameter recognizer to make (or not make)
ues are independent of one another (given the goal schemd)-best predictions for each of the parameter positions#one
This means that, given a goal schegriathe set of individual  of the n-best schemas. This automatically gives us partal p
argmax results for each goal paramegéis guaranteed to be diction if a prediction is not made for one or more parameter
the maximum for that goal schema. This now becomes an ogositions in a schema. The combined results then form the
timization problem over just two variables: the goal scheman-best instantiated prediction.
and its parameters. The complexity of the instantiated recognizeld§|G|iq)
Although this works well in theory, there are several prob-as the main loop runs the parameter recogniza()) for
lems with using it in practice. First, the argmax only gives u each parameterg) for each goal schema(|).!* If we
the 1-best prediction. The search space gets larger if we waassume thay is relatively small, the complexity becomes
the n-best predictions. Second is the problem mentioned eaf(|G|i), which is linear in the number of goal schemas and
lier about goal schema arity. Straight probability compams  the number of actions observed so far.
will not work for goals with different arities, as lower-gyi A final item we must mention is that this algorithm does
goals will tend to be favored. not give us true n-best results for the search space. Itidste
Partial prediction is also a problem. We want to supportchooses the n-best goal schemas, and then (selectively) pre
partial predictions by allowing the recognizer to predict adicts parameters for them. A true n-best result would inelud
(possible empty) subset of the parameter values for a godhe possibility of having a goal schema twice, with diffetren
schema. This allows us to make predictions even in casggredictions for parameters. However, as mentioned above,
where the parameter recognizer is unsure about a specific pg/e did not see an obvious way of deciding between, for ex-
rameter, and capitalizes on the ability of the stand-alare p ample, a goal schema with no parameters predicted, and that
rameter recognizer to not make a prediction in cases where §ame goal schema with one parameter predicted. The latter
is not certain. is guaranteed to not have a lower probability, but it is a more
In doing partial predictions, however, we encounter a natSpecific prediction. Although we don't provide true n-best
ural tension. On one hand, we want the predictions to bgrediction, we believe our algorithm provides a natural way
as specific as possible (e.g., predict as many parameter va}f deciding between such cases by appealing to the parameter
ues as possible). On the other hand, we want high precisiof¢cognizer itself.
and recall for prediction® The full-prediction recognizer Goal Recognition Experiments

gives us specific predictions (with all parameters predjgte We tested the instantiated recognizer on the Linux corpds an

but would likely have low precision/recall. At the other ex- ) - . >
treme. we cou)lld just predri)ct the goal schema which WouldVIonroe corpus in a similar way to the experiments described
! I;:1bove. The results are shown in Table 6.

give us the best chance for high precision/recall. Anothe
dilemma is how to compare two predictions when one has !Note that, although we only need run the parameter recognizer
- on the n-best schemas to get immediate results, we still need to run

1%n a way, specificity adds a third dimension to the existing ten-it to keep the probability assignments for the other parameters up to
sion between precision and recall. date.



Linux Monroe
N-best(r /) || 1(0.4/2.0)| 2(0.6/2.0)| 3(0.9/2.0) || 1(0.7/2.0) | 2(0.9/2.0)| 3(0.9/2.0)
Precision 36.2% 60.2% 68.8% 93.1% 94.6% 96.4%
Recall 22.1% 38.1% 38.7% 53.7% 56.6% 67.5%
ParamPctg 51.5% 50.0% 51.6% 20.6% 21.8% 22.3%
Convergence 36.1% 53.8% 56.5% 94.2% 97.4% 98.6%
ConvParamPctg 51.8% 49.0% 49.4% 40.6% 41.1% 48.4%
Convergence Point 3.6/5.8 4.0/7.0 4.1/7.0 5.4/10.0] 5.5/10.1| 4.4/10.2

Table 6: Instantiated goal recognition results

We report results with the same measures used for schemeould be tractable in general. Several groups (d@har-
recognition. In addition, we use two new measureatam-  niak and Goldman, 1993; Hubet al, 1994; Horvitz and
Pctgreports, for all correct predictions, the percentage of thePaek, 199P use Belief Networks (BNs) to do goal recog-
goal parameters that were predict€hnvParamPctgeports  nition. However, the size of these networks must either be
the same for all sessions which converged. These are an darge from the start, or they grow as the number of observed
tempt to measure the specificity of correct predictions Wwhic actions increases; reasoning with (large) BNs is intrdetab
are made. general.

Results followed the performance of the schema recognizer [Albrecht et al, 1999 use a Dynamic Belief Network
quite closely, being of course slightly lower with the addi- (DBN) to do goal schema recognitithin a way similar to
tion of parameter recognition, although the relationshgsw our schema recognizer. However, the system did not perform
not linear. Interestingly enough, ParamPctg and ConvParaninstantiatedrecognition, and treated goals as atomic units.
Pctg stayed fairly constant over n-best values for eachusorp The recognizer also did not perform n-best, partial préafict
In the Linux corpus, correct predictions had around 50% otbut rather returned a probability distribution over thelgoa
their parameters instantiated, while the Monroe corpus had [Pynadath and Wellman, 20pa@nd[Bui, 2003 use DBNs
only about 21%. Although both corpora had fairly compa-to cast (hierarchical) goal schema recognition as somgthin
rable performance in (stand-alone) parameter recogniiion akin to parsing. Both, however, are dependent on the abil-
appears that a greater portion of the correctly predictedisgo ity of the system to be able to perceive or accurately esémat
in the Monroe domain happened to be goals for which thavhen higher-level goals (constituents) terminate, angltini-
parameter recognizer didn’'t have as high of recall. clear if the recognizers would be accurate in domains where

Although space precludes us from reporting all experimenthis is difficult to predict. In addition, these systems atlgo
tal results, we should mention that we found it to be extrgmel not work on goal parameters.
important to have high precision from the parameter recog- Although parameter prediction has been included in
nizer. As an example, in our experiments with the unchangeébgical-based (e.g[Kautz, 199]) and case-based (e.fCox
parameter recognizer (i.ay, = 1.0), precision for the 3-best and Kerkez, to appeBrplan recognizers, relatively little at-
case for the Monroe corpus was only 73.0% (compared teention has been given it in work on probabilistic plan rec-
96.4%) and recall was only 51.3% (compared to 67.5%). Obgnizers. Probabilistic systems which do include this-typi
course, the lower threshold to parameter prediction bdostecally use probabilities for goal schema prediction, butdal
ParamPctg to 36.9% (from 22.3%). based methods for filling in parameters (e[Bauer, 1995).

Recognition times averaged about 0.4 seconds per actiofhe recognizer ifCharniak and Goldman, 19P8lynami-
for Linux and 0.2 seconds per action for Monroe, runningcally constructs a Belief Network (BN) with nodes for action

unoptimized Perl code on a high-end desktop PC. and goal schemas, objects (possible parameter values), and
relations that use the latter to fill slots in the former. For a
4 Related Work given parameter slot, however, they consider all objects of

. ) o ] the correct type to be equally likely, whereas we distiniguis
Goal and plan recognizers are typically divided into thosethese using probabilities learned from a corpus. As the net-
based on logical consistency, and those that are probabilis ork grows at least with the number of observed actions (and
Logical-consistency recognizers typically cannot digtiish  |ikely the number of goal schemas), it is unclear if this ap-
among goals that are consistent with the observations, angtoach would be scalable in general.
usually do not have the predictive power needed for online
recognition. We will, therefore, concentrate our comment .
on probabilistic goal recognizers. 35 Conclusions and Future Work

There has been much work on probabilistic goal schem&ve have presented an instantiated goal recognizer based on

recognition, although very little experimental resultssdna machine learning which is fast, scalable, and able to make
been reported (likely due to a lack of corpora in thepartial predictions. We reported the performance of the rec
field). [Bauer, 1995 uses Dempster-Shafer Theory to do ognizer on two plan corpora.
goal schema recognition, but, as the recognizer uses full
Dempster-Shafer Theory, it is not clear if the recognizer *2as well as next state and action schema prediction



We are currently extending the recognizer to perftier-  [Blaylock and Allen, 200b Nate Blaylock and James Allen.
archical goal recognition, which we define to be the recog- Generating artificial corpora for plan recognition. Im
nition of the chain of active subgoals up to the top goal (cf. ternational Conference on User Modeling (UM’Q&din-
[Bui, 2003). Complex plans covering longer time-scales are  burgh, July 2005. To appear.
less likely to be identifiable from a few observations alone[gy; 20034 Hung H. Bui. A general model for online prob-
(which tend to reflect more immediate subgoals). Ideally, We  apalistic plan recognition. In Georg Gottlob and Toby
would want to recognize subgoals for partial results, e¥en i Walsh, editors,Proceedings of the Eighteenth Interna-

itis not immediately clear what high-level goal is. tional Joint Conference on Artificial IntelligenceAca-
pulco, Mexico, August 9—15 2003.
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