
Recognizing Instantiated Goals using Statistical Methods

Nate Blaylock
Saarland University

Saarbr̈ucken, Germany
blaylock@coli.uni-sb.de

James Allen
University of Rochester

Rochester, New York, USA
james@cs.rochester.edu

Abstract
We present our work on using statistical, corpus-
based machine learning techniques to performin-
stantiated goal recognition— recognition of a goal
schema and its parameter values. The recognizer is
fast (linear in the number of goal schemas and ob-
served actions) and is able to make partial predic-
tions by optionally predicting individual parameter
values for a goal schema. This allows it to make
more accurate predictions after observing fewer ac-
tions than all-or-nothing prediction.

1 Introduction
Much work has been done over the years inplan recognition
which is the task of inferring an agent’s goal and plan based
on observed actions.Goal recognitionis a special case of
plan recognition in which only the goal is recognized. Goal
and plan recognition have been used in a variety of appli-
cations including intelligent user interfaces[Bauer and Paul,
1993; Horvitz and Paek, 1999; Leshet al., 1999], traffic mon-
itoring [Pynadath and Wellman, 1995], and dialogue systems
[Carberry, 1990; Allenet al., 2001].

For most applications, there are several properties required
in order for goal recognition to be useful:

1. Speed:Most applications use goal recognition “online”,
meaning they use recognition results before the observed
agent has completed its activity. Ideally, goal recogni-
tion should take a fraction of the time it takes for the
observed agent to execute its next action.

2. Early/partial prediction: In a similar vein, applications
need accurate goal prediction as early as possible in the
observed agent’s task execution. Even if a recognizer is
fast computationally, if it is unable to predict the goal
until after it has seen the last action in the agent’s task, it
will not be suitable for applications which need recogni-
tion resultsduring task execution. If full recognition is
not immediately available, applications can often make
use of partial information.

In this paper, we model goals as parameterized action
schemas1 (see examples in Figures 2 and 3). We apply su-

1Note that this is different from another common representation,
where goals are represented as conjunctions of state predicates.

Linux Monroe
Total Sessions 457 5000
Goal Schemas 19 10
Action Schemas 43 30
Ave Actions/Session 6.1 9.5
Subgoal Schemas N/A 28
Ave Subgoal Depth N/A 3.8
Max Subgoal Depth N/A 9

Table 1: Plan Corpora Statistics

pervised machine-learning techniques to the task ofinstanti-
ated goal recognition: the recognition of a goal schema and
its parameter values.

Our recognizer has two nice features (which correspond to
the two desired traits of goal recognizers described above).
First, recognition is fast and scalable, running in time lin-
ear to the number of possible goal schemas and the number
of observed actions. Second, the recognizer supports partial
goal recognition, allowing it to make predictions earlier in the
agent’s task execution. It is able to predict just a goal schema
or a goal schema and only a subset of its parameter values.
This allows the recognizer to make predictions much earlier
and more accurately than a strict full-prediction system.

The remainder of the paper is as follows: Section 2 briefly
describes the plan corpora we use for training and testing.
Section 3 describes our goal recognizer and experimental re-
sults. In Section 4, we discuss related work and in Section 5,
we conclude and mention future work.

2 Plan Corpora

The first thing needed to use a machine-learning approach is
data. Aplan corpusis a set ofplan sessions— collections of
observed actions from an agent. For our approach, we need
plan sessions that are labeled with the top-level goal the agent
was pursuing during the session.

We use two different goal-labeled plan corpora to train and
test our recognizer: the Linux corpus and the Monroe corpus.
Statistics for the corpora are shown in Table 1.



2.1 The Linux Corpus
We collected the Linux corpus[Blaylock and Allen, 2004]
from human Linux users at the University of Rochester.2 In
each session, a user was given an (English) description of a
Linux task (a goal) and was instructed to solve it using any
Linux commands (with a few rules such as no pipes, noawk,
etc.) The users’ commands and their results were recorded.
Also, as we had no automatic means to detect goal comple-
tion, we required users, at the end of a session, to declare
whether they had successfully completed the task.

Table 2 shows several of the goal schemas in the Linux
corpus. We prefix parameter names with a dollar sign ($) to
distinguish them from instantiated parameter values.

Post-Processing
In creating the final corpus, we performed post-processing to
transform the raw corpus (of Linux commands and results)
into a planning representation of the goals and actions.

First, we excluded all sessions which were reported as fail-
ures, as well as sessions with no valid commands. Although
such data could possibly be useful for training a recognizerto
recognize goals which will not be accomplished by the user
alone, we decided to leave such research for future work.

We also converted issued Linux commands into parame-
terized actions. Unlike actions in many domains used in plan
recognition, Linux commands do not nicely map onto a sim-
ple set of schemas and parameters, as we discuss in more
detail below. To do the mapping, we defined action schemas
for the 43 valid Linux command types appearing in the cor-
pus. This allowed us to discard mistyped commands as well
as many commands that resulted in errors.

Discussion
As discussed above, the Linux corpus was gathered semi-
automatically from humans. As a consequence, it contains
mistakes. A frequent mistake was typographical errors. The
post-processing step described above helped ameliorate this
somewhat — as it was able to detect incorrectly typed com-
mands (at least in cases where the mistyped command wasn’t
also a successful command). However, it only checked the
command itself, and not its parameter values. This lead
to cases of the user using unintended parameters (e.g.,ls
flie instead ofls file), which affected parameter recog-
nition as described below.

Another phenomenon that we were not able to automat-
ically detect was the user’s lack of knowledge about com-
mands. For example, one user, upon getting the task of find-
ing a file with a certain name tried several times in vain to
use the commandgrep to do so, where the command he was
likely looking for wasfind.3 This resulted in a red herring
for the recognizer, which, for the remainder of the session,
predicted that the user was trying to locate text within a cer-
tain file.

Finally, another source of noise in the corpus is that the
users themselves reported whether they had accomplished

2The Linux corpus is modeled after Lesh’s Unix corpus[Lesh,
1998].

3The commandgrep is used to find text in a file or set of files,
not to find a file in a directory tree.

tasks successfully. We have seen several cases in the corpus
where a user apparently misunderstood the task and reported
success where he had actually failed. Overall, however, this
does not appear to have happened very often.

2.2 The Monroe Corpus
As human data collection is expensive (and oftentimes not
possible), we have developed a method of stochastically gen-
erating artificial plan corpora using an AI planner[Blaylock
and Allen, 2005]. The general method is to model a domain
plan library and then use a randomized planner to create plans
given stochastically generated goals and start states.

Using this method, we created the Monroe corpus, which is
an emergency response domain based on a similar domain for
a dialogue system[Stent, 2000]. Examples of goal schemas
in the corpus are shown in Table 3.

Table 1 shows a comparison of the contents of the Mon-
roe corpus and the (post-processed) Linux corpus. The Mon-
roe corpus consists of 5000 plan sessions with an average of
9.5 actions per session. The number of total sessions was, of
course, artificially set and could have easily been changed.
The 5000 sessions were generated on a high-end desktop
computer in under 10 minutes.

In addition to the information given for the Linux corpus,
we add several fields here particular to hierarchical corpora.
The Monroe corpus has, in addition to the 10 top-level goal
schemas, 38 subgoal schemas. The plans in the corpus were
on average 3.8 subgoals deep. This measures how many
nodes away each atomic action is from the top-level goal.
The deepest atomic action in the corpus was 9 levels away
from the top-level goal. Although the Monroe corpus pro-
vides hierarchical subgoal information, in this paper we only
report on results of trying to predict the top-level goal (which
we termflat goal recognition). We are currently using the
Monroe corpus for training and testing ahierarchical goal
recognizer.

3 Statistical Goal Recognition
We model goals, not as monolithic entities, but rather as goal
schemaswhich are instantiated with parameters. As stated
above, our goal is to doinstantiatedgoal recognition, which
is recognition of both the schema and its parameter values.

Towards this goal, we have previously built separate sys-
tems for doing stand-alone statistical goalschemarecogni-
tion [Blaylock and Allen, 2003] and goalparameterrecogni-
tion [Blaylock and Allen, 2004], and reported their separate
performance on the Linux corpus.

The main contributions of the current paper are twofold:
(1) we report the performance of the schema and parameter
recognizers on a new corpus (Monroe), and (2) we describe
our work on combining these recognizers to create a uni-
fied instantiated goal recognizer and report its performance
on both the Linux and Monroe Corpora.

In the remainder of this section, we first present some pre-
liminary mathematical definitions and then a mathematical
formulation of the goal recognition problem. We then briefly
describe our goal schema and parameter recognizers and re-
port their performance on the Monroe corpus. We then de-



Goal Schema English Description
find-file-by-ext($extension) Find a file that ends in ’.$extension’
find-file-by-name($filename) Find a file named ’$filename’
know-filespace-usage-file($filename) Find out how much space file ’$filename’ uses
know-filespace-free($partition name) Find out how much filespace is used on

filesystem ’$partitionname’
move-files-by-name($filename,$dirname) Move all files named ’$filename’ to a

(preexisting) directory named ’$dirname’
move-files-by-size-lt($numbytes,$dirname) Move all files with less than $numbytes bytes

to a (preexisting) directory named ’$dirname’

Table 2: A few goal schemas from the Linux corpus

Goal Schema English Description
fix-power-line($location) Repair a power line at $location
provide-medical-attention($person) Attend to a medical emergency involving $person
provide-temp-heat($person) Provide temporary heating for $person
quell-riot($location) Break up a riot occurring at $location
set-up-shelter($location) Set up an emergency shelter at $location

Table 3: A few goal schemas from the Monroe corpus

scribe our instantiated goal recognizer and report its perfor-
mance on both the Linux corpus and the Monroe corpus.

3.1 Preliminary Definitions

For a given domain, we define a set of goal schemas, each
takingq parameters, and a set of action schemas, each taking
r parameters. If actual goal and action schemas do not have
the same number of parameters as the others, we can easily
pad with ’dummy’ parameters which always take the same
value.4

Given an instantiated goal or action, it is convenient to
refer to the schema of which it is an instance as well as
each of its individual parameter values. We define a func-
tion Schema that, for any instantiated action or goal, re-
turns the corresponding schema. As a shorthand, we use
XS ≡ Schema(X), whereX is an instantiated action or goal.

To refer to parameter values, we define a functionParam

which returns the value of thekth parameter value of an in-
stantiated goal or action. As a shorthand we useXk ≡
Param(X, k), whereX is again an instantiated action or goal.

As another shorthand, we refer to number sequences by
their endpoints:

1, n ≡ 1, 2, . . . , n

This allows us to shorten definitions in the following ways:

A1,n ≡ A1, A2, . . . , An

A1,r
1,n ≡ A1

1
, A2

1
, . . . , Ar

1
, A1

2
, A2

2
, . . . , Ar

n−1
, A1

n, . . . , A
r
n

4The requirement that goal and action schemas have the same
number of parameters is for convenience in the mathematical analy-
sis. Below we report how this is circumstance is handled within the
recognizer itself.

3.2 Problem Formulation
We define goal recognition as a classification task: given an
observed sequence ofn instantiated actions observed thus far
(A1,n), find the most likely instantiated goalg:

g = argmaxG P (G|A1,n) (1)

If we expand the goal and actions into their schemas and
parameters, this becomes:5

g = argmaxGS ,G1,q P (GS , G1,q|AS
1,n, A

1,r
1,n) (2)

We make two simplifying assumptions at this point, in or-
der to make recognition more tractable. We briefly mention
them here and then discuss them in more detail later on. First,
we assume that goal parameters are independent of one an-
other, and second, that goal schemas are independent from
action parameters (given their action schemas). Given these
assumptions, Equation 2 becomes:

g = argmaxP (GS |AS
1,n)

q∏

j=1

P (Gj |GS , AS
1,n, A

1,r
1,n) (3)

In Equation 3, the first term describes the probability of the
goal schemaGS , which we use for goal schema recognition.
The other terms describe the probability of each individual
goal parameterGj , which we estimate with our goal parame-
ter recognizer.

Independence Assumptions
In formulating the problem above, we noted that we make
two simplifying assumptions.

5From now on we drop the argmax subscript when context makes
it obvious.



First, we make the simplifying assumption that all goal pa-
rameters are independent of one another. This allowed us to
separate the probability of each parameter value into indepen-
dent terms in Equation 3. This is, of course, not always the
case — an obvious example from the Linux domain is that
the source and destination parameters for a goal of copying a
file should not have the same value. However, in many cases
it appears that they are fairly independent.

We also assume that a goal schema is independent from
an action’s parameter values, given the action schema, which
allows us to simplify the first term in Equation 3. This is also
admittedly not always the case. In the Monroe domain, the
call action describes a telephone call, with one parameter:
the recipient of the call. This is used in the domain to turn off
power to a particular location or to declare a curfew, as well
as other things. The first use always has a power company as
a parameter value whereas the second use includes a call to
the local police chief.

Although conditioning on parameter values could be infor-
mative, it is likely that it would introduce sparsity problems
because of the large number of possible parameter values.

We should also note that implicit in our definitions is the
assumption that the agent only has a single goal which it is
pursuing. As we discuss below, we are currently working to-
wards extending our recognizer to performhierarchicalgoal
recognition, i.e., the recognition of all active subgoals in a hi-
erarchical plan. This should allow us to handle the case where
an agent pursues several goals serially. It is unclear, however,
how our recognizer could be extended to handle the general
case where an agentsimultaneouslypursues more than one
goal.

3.3 Goal Schema Recognition

In previous work, we built a goal schema recognizer based
on a bigram approximation of the first term from Equation 3
[Blaylock and Allen, 2003]:

gS = argmaxP (GS)

n∏

i=2

P (AS
i |A

S
i−1

, GS) (4)

The recognizer decides whether to make a prediction based
on a confidence thresholdτ . If the probability of the pre-
diction is greater thanτ , the recognizer makes a prediction;
otherwise, it doesn’t. The recognizer can also make n-best
predictions, instead of just a single best prediction. Thiscan
be useful, as many applications which use goal recognition
can do further domain-specific processing on the n-best list
to make a better prediction.

The complexity of the schema recognizer isO(|G|), where
G is the set of goal schemas in the domain.

Schema Recognition Experiments
We have elsewhere reported the results of training and testing
a bigram-based goal schema recognizer on the Linux corpus
[Blaylock and Allen, 2004] (repeated here for comparison).
Using the same methods, we trained and tested the bigram
schema recognizer on the Monroe corpus. In doing so, we
randomly chose 4500 entries as training data, and tested on

the remaining 500. The recognition results for the Linux cor-
pus and Monroe corpus are shown in Table 4.6

We report results with metrics that are designed to measure
the general goal recognition requirements described above.
Precisionandrecall report the number of correct predictions
divided by total predictions and total prediction opportuni-
ties, respectively.Convergenceandconvergence pointstem
from the fact that, oftentimes, the recognizer will be unsure
very early on in a session, but may at some point ’converge’
on the correct answer, predicting it from that point on until
the end of the plan session.Convergencemeasures the per-
centage of plan sessions where the correct answer was con-
verged upon.7 For those plan sessions which converge,con-
vergence pointreports the average action observation after
which it converged divided by the average number of actions
for the converged sessions. This is an attempt to measure how
early in the plan session the recognizer was able to zero in on
the correct answer.

Results on the Monroe corpus were exceptionally better
than those of the Linux corpus. This is likely due to several
factors. First, the Monroe corpus is much larger in terms of
training data, yet smaller in terms of possible goal schemas.
Also, as the Monroe corpus was automatically generated, it
does not include the kind of noisy data present in the Linux
corpus (see discussion above). In addition, we believe this
can partly be attributed to the fact that the Linux domain is
difficult to map onto a plan representation (cf. discussion in
[Lesh, 1998]). For example, many Linux commands (e.g.,
ls) can take an (almost arbitrary) set of flags (e.g.,-a, -l,
-x), each of which changes the results (and thus the effects
in a plan representation). For example, a file’s size is visible
usingls with the-l flag, but not without.

Although the results for the Linux corpus aren’t dismal
(note the jump in precision for 2-best prediction), we believe
good results in the Monroe domain indicate that the method
may be more successful in domains which are more naturally
modelled by planning operators.

In the Monroe domain, we get a precision of 95.6% for 1-
best prediction, which can be raised to 99.4% by predicting
the 2 best schemas. In 2-best prediction, the correct schema
is eventually predicted for 99.8% of sessions. For 1-best, the
recognizer converges on the correct schema after seeing an
average of 5.4 of 10.2 actions (for those cases which con-
verge). This means that, on average, the recognizer is sure
about the prediction a little more than halfway through the
session.

Recall for 1-best is 55.2%, which increases to 69.6% for
3-best prediction. Although this may seem poor in compar-
ison to precision and convergence numbers in the 90’s, it is
important to consider that we are doing goal recognition. A
recall of 100% would mean that the algorithm made the cor-
rect prediction directly after the first action in each session
and converged on that prediction at that point. In all but the

6The threshold valueτ needs to be individually set for each n-
best value. Theτ values used here were chosen experimentally: i.e.,
by trying several and picking the best one.

7This essentially measures how manylast predictions were cor-
rect, i.e., whether weendedpredicting the right answer.



Linux Monroe
N-best(τ ) 1 (0.4) 2 (0.6) 3 (0.9) 1 (0.7) 2 (0.9) 3 (0.9)
Precision 37.6% 64.1% 73.7% 95.6% 99.4% 98.9%

Recall 22.9% 40.6% 41.4% 55.2% 58.7% 69.6%
Convergence 37.4% 56.5% 59.7% 96.4% 99.8% 100.0%

Convergence Point 3.5/5.9 4.0/7.2 4.1/7.2 5.4/10.2 5.4/10.3 4.1/10.2

Table 4: Goal schema recognition results

simplest domains, such a feat is not likely possible (even for
humans), given the inherent ambiguity in most plan recogni-
tion domains. (As an example, many Linux sessions began
with thepwd command, which gives little indication of what
the user’s goal is.) We believe 55.2% recall (or 69.6% for
3-best) to be a good result.8

3.4 Goal Parameter Recognition

We have also introduced a goalparameterrecognizer loosely
based on the second term of Equation 3[Blaylock and Allen,
2004]. Input to the parameter recognizer is the action se-
quenceand the (known) goal schema for the session, as the
parameter recognizer expects toknowthe correct goal schema
a priori. Additionally, the parameter recognizer works on
each parameter position in the goal schema independently.
We deal with these constraints below in building our inte-
grated instantiated goal recognizer.

The parameter recognizer uses a tractable subset of
Dempster-Schafer Theory (DST) to estimate the probability
that action parameters seen so far are the values of goal pa-
rameters. It also uses the measure of ignorance from DST (Ω)
to decide if it is confident enough to make a prediction. If the
probability of the prediction is greater thanΩ, the recognizer
predicts.

As we discuss in more detail below, precision in parameter
recognition turns out to be a big factor in the overall perfor-
mance of our instantiated goal recognizer. In order to increase
precision, we add an additional factor to our previous param-
eter recognizer which we callignorance weight(ψ). In de-
ciding whether or not to make a prediction,Ω is multiplied
by ψ before it is compared with the probability of the pre-
diction. Higher values ofψ will cause the recognizer only to
predict when more sure of the prediction. Using this factor,
we were able to use this to raise the precision of the parameter
recognizer considerably, as reported below.

For a single parameter prediction, the time complexity of
the parameter recognizer isO(i) wherei is the number of ac-
tions observed so far. Note that this is scalable, as it is neither
dependent on the number of goal schemas in the domainnor
the number of potential values for the parameter (e.g., objects
in the domain).

8It is been difficult to compare plan recognizers, given the his-
torical lack of data and even common metrics for reporting results.
We hope that the introduction of plan corpora as test sets and stan-
dard performance measurements will allow closer comparison in the
future.

Parameter Recognition Experiments
Elsewhere, we have reported the results of the parameter pa-
rameter recognizer on the Linux corpus (repeated here for
comparison)[Blaylock and Allen, 2004]. In addition, we
tested different values of the ignorance factor (ψ) and show
the results forψ = 2.0. We also tested the parameter recog-
nizer for different values ofψ on the Monroe corpus, ran-
domly dividing it into training (4500 sessions) and testing
(500 sessions) as done above with the schema recognizer. The
results are shown in Table 5.

For parameter recognition, we use the same metrics used
for reporting schema recognition. In addition, we use two
additional metrics:recall/feasibleandconvergence/feasible.
This stems from the fact that the parameter recognizer can
only recognize objects as parameter values that it has seen in
the observed actions in the session.9 This means that if the
goal parameter value is not used until the fifth action in the
session, it is not feasible for the recognizer to correctly iden-
tify it in its first four predictions. In the Linux domain, only
56.1% of predictions are feasible for the recognizer, and in
Monroe only 49.6%.Recall/Feasibleis a measure of recall
for those predictions which were feasible for the recognizer.
Convergence/Feasibleworks similarly for convergence. In
only 82.1% of sessions did the goal parameter value ever oc-
cur as an action parameter value, and for Monroe in 79.4% of
sessions.

As is shown, precision for both Linux and Monroe was
greatly improved by using the higherψ value, although at a
cost to recall (as would be expected). This is especially true
for the 1-best case for the Monroe domain, where precision
moves from 77.1% to 94.3%.

In comparing the domains in theψ = 2 case, performance
on the Monroe domain is slightly better than that for Linux,
with, for example, 94.3% precision for the 1-best case in
Monroe versus 90.9% in Linux. In this case, recall is lower
in Monroe (27.8% versus 32.1%). Recall is less than 40% for
both corpora for 2-best, although, as mentioned above, low
recall is to be expected in general for goal recognition.

3.5 Instantiated Goal Recognition
We now turn our attention to building aninstantiatedgoal
recognizer using the schema and parameter recognizers. This
question brings us back to our original formulation of goal
recognition above, particularly to Equation 3. We have a goal

9This is because the parameter recognizer works on probabilities
of parameterrelationsbetween goal and action parameters. The ad-
vantages and disadvantages of this approach are discussed in[Blay-
lock and Allen, 2004].



Linux Monroe
1-best 2-best 1-best 2-best

Ignorance weight (ψ) 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0
Precision 84.3% 90.9% 84.4% 93.2% 77.1% 94.3% 88.6% 97.6%

Recall 37.2% 32.1% 42.1% 35.8% 38.5% 27.8% 44.9% 39.2%
Recall/Feasible 66.3% 57.1% 75.0% 63.8% 77.5% 55.9% 90.5% 78.9%

Convergence 64.4% 54.4% 70.5% 60.3% 61.2% 46.9% 76.2% 76.2%
Conv./Feasible 78.4% 66.2% 85.9% 73.5% 77.1% 59.1% 96.1% 96.1%

Convergence Point 3.2/5.8 3.5/6.2 3.0/5.8 3.4/6.2 4.4/9.4 5.1/10.0 3.8/9.1 4.7/9.0

Table 5: Goal parameter recognition results on the Linux corpus and Monroe corpus

schema recognizer which estimates the first term, and a goal
parameter recognizer which estimates the each of the terms
for each parameter position in a goal schema. Mathemati-
cally, we simply need to compute the argmax to get the most
likely instantiated goal, although, as we will see, this is not so
straightforward, especially if we want to support n-best and
partial prediction.

The argmax in Equation 3 above is an optimization prob-
lem over several variables (GS , G1,q), whereq is the arity
of the goal schema. Although this could mean a big search
space, it remains tractable in the 1-best case because of an
assumption made above: namely, that goal parameter val-
ues are independent of one another (given the goal schema).
This means that, given a goal schemags, the set of individual
argmax results for each goal parametergj is guaranteed to be
the maximum for that goal schema. This now becomes an op-
timization problem over just two variables: the goal schema
and its parameters.

Although this works well in theory, there are several prob-
lems with using it in practice. First, the argmax only gives us
the 1-best prediction. The search space gets larger if we want
the n-best predictions. Second is the problem mentioned ear-
lier about goal schema arity. Straight probability comparisons
will not work for goals with different arities, as lower-arity
goals will tend to be favored.

Partial prediction is also a problem. We want to support
partial predictions by allowing the recognizer to predict a
(possible empty) subset of the parameter values for a goal
schema. This allows us to make predictions even in cases
where the parameter recognizer is unsure about a specific pa-
rameter, and capitalizes on the ability of the stand-alone pa-
rameter recognizer to not make a prediction in cases where it
is not certain.

In doing partial predictions, however, we encounter a nat-
ural tension. On one hand, we want the predictions to be
as specific as possible (e.g., predict as many parameter val-
ues as possible). On the other hand, we want high precision
and recall for predictions.10 The full-prediction recognizer
gives us specific predictions (with all parameters predicted),
but would likely have low precision/recall. At the other ex-
treme, we could just predict the goal schema which would
give us the best chance for high precision/recall. Another
dilemma is how to compare two predictions when one has

10In a way, specificity adds a third dimension to the existing ten-
sion between precision and recall.

more predicted parameters than the other.
Because of these problems, we have decided to take a

slightly different approach to building our instantiated goal
recognizer which capitalizes on the prediction ability of the
schema and parameter recognizers as they are.

Our instantiated goal recognizer works as follows: at each
observed action, we first run the goal schema recognizer. This
makes an n-best prediction of schemas (or doesn’t if the con-
fidence threshold isn’t reached). If no prediction is made by
the schema recognizer, the instantiated recognizer also makes
no prediction. If the schema recognizer does make a predic-
tion, we use the parameter recognizer to make (or not make)
1-best predictions for each of the parameter positions for each
of the n-best schemas. This automatically gives us partial pre-
diction if a prediction is not made for one or more parameter
positions in a schema. The combined results then form the
n-best instantiated prediction.

The complexity of the instantiated recognizer isO(|G|iq)
as the main loop runs the parameter recognizer (O(i)) for
each parameter (q) for each goal schema (|G|).11 If we
assume thatq is relatively small, the complexity becomes
O(|G|i), which is linear in the number of goal schemas and
the number of actions observed so far.

A final item we must mention is that this algorithm does
not give us true n-best results for the search space. It instead
chooses the n-best goal schemas, and then (selectively) pre-
dicts parameters for them. A true n-best result would include
the possibility of having a goal schema twice, with different
predictions for parameters. However, as mentioned above,
we did not see an obvious way of deciding between, for ex-
ample, a goal schema with no parameters predicted, and that
same goal schema with one parameter predicted. The latter
is guaranteed to not have a lower probability, but it is a more
specific prediction. Although we don’t provide true n-best
prediction, we believe our algorithm provides a natural way
of deciding between such cases by appealing to the parameter
recognizer itself.

Goal Recognition Experiments
We tested the instantiated recognizer on the Linux corpus and
Monroe corpus in a similar way to the experiments described
above. The results are shown in Table 6.

11Note that, although we only need run the parameter recognizer
on the n-best schemas to get immediate results, we still need to run
it to keep the probability assignments for the other parameters up to
date.



Linux Monroe
N-best(τ/ψ) 1 (0.4/2.0) 2 (0.6/2.0) 3 (0.9/2.0) 1 (0.7/2.0) 2 (0.9/2.0) 3 (0.9/2.0)

Precision 36.2% 60.2% 68.8% 93.1% 94.6% 96.4%
Recall 22.1% 38.1% 38.7% 53.7% 56.6% 67.5%

ParamPctg 51.5% 50.0% 51.6% 20.6% 21.8% 22.3%
Convergence 36.1% 53.8% 56.5% 94.2% 97.4% 98.6%

ConvParamPctg 51.8% 49.0% 49.4% 40.6% 41.1% 48.4%
Convergence Point 3.6/5.8 4.0/7.0 4.1/7.0 5.4/10.0 5.5/10.1 4.4/10.2

Table 6: Instantiated goal recognition results

We report results with the same measures used for schema
recognition. In addition, we use two new measures.Param-
Pctgreports, for all correct predictions, the percentage of the
goal parameters that were predicted.ConvParamPctgreports
the same for all sessions which converged. These are an at-
tempt to measure the specificity of correct predictions which
are made.

Results followed the performance of the schema recognizer
quite closely, being of course slightly lower with the addi-
tion of parameter recognition, although the relationship was
not linear. Interestingly enough, ParamPctg and ConvParam-
Pctg stayed fairly constant over n-best values for each corpus.
In the Linux corpus, correct predictions had around 50% of
their parameters instantiated, while the Monroe corpus had
only about 21%. Although both corpora had fairly compa-
rable performance in (stand-alone) parameter recognition, it
appears that a greater portion of the correctly predicted goals
in the Monroe domain happened to be goals for which the
parameter recognizer didn’t have as high of recall.

Although space precludes us from reporting all experimen-
tal results, we should mention that we found it to be extremely
important to have high precision from the parameter recog-
nizer. As an example, in our experiments with the unchanged
parameter recognizer (i.e.,ψ = 1.0), precision for the 3-best
case for the Monroe corpus was only 73.0% (compared to
96.4%) and recall was only 51.3% (compared to 67.5%). Of
course, the lower threshold to parameter prediction boosted
ParamPctg to 36.9% (from 22.3%).

Recognition times averaged about 0.4 seconds per action
for Linux and 0.2 seconds per action for Monroe, running
unoptimized Perl code on a high-end desktop PC.

4 Related Work
Goal and plan recognizers are typically divided into those
based on logical consistency, and those that are probabilistic.
Logical-consistency recognizers typically cannot distinguish
among goals that are consistent with the observations, and
usually do not have the predictive power needed for online
recognition. We will, therefore, concentrate our comments
on probabilistic goal recognizers.

There has been much work on probabilistic goal schema
recognition, although very little experimental results have
been reported (likely due to a lack of corpora in the
field). [Bauer, 1995] uses Dempster-Shafer Theory to do
goal schema recognition, but, as the recognizer uses full
Dempster-Shafer Theory, it is not clear if the recognizer

would be tractable in general. Several groups (e.g.,[Char-
niak and Goldman, 1993; Huberet al., 1994; Horvitz and
Paek, 1999]) use Belief Networks (BNs) to do goal recog-
nition. However, the size of these networks must either be
large from the start, or they grow as the number of observed
actions increases; reasoning with (large) BNs is intractable in
general.

[Albrecht et al., 1998] use a Dynamic Belief Network
(DBN) to do goal schema recognition12 in a way similar to
our schema recognizer. However, the system did not perform
instantiatedrecognition, and treated goals as atomic units.
The recognizer also did not perform n-best, partial prediction,
but rather returned a probability distribution over the goals.

[Pynadath and Wellman, 2000] and[Bui, 2003] use DBNs
to cast (hierarchical) goal schema recognition as something
akin to parsing. Both, however, are dependent on the abil-
ity of the system to be able to perceive or accurately estimate
when higher-level goals (constituents) terminate, and it is un-
clear if the recognizers would be accurate in domains where
this is difficult to predict. In addition, these systems alsodo
not work on goal parameters.

Although parameter prediction has been included in
logical-based (e.g.,[Kautz, 1991]) and case-based (e.g.,[Cox
and Kerkez, to appear]) plan recognizers, relatively little at-
tention has been given it in work on probabilistic plan rec-
ognizers. Probabilistic systems which do include this typi-
cally use probabilities for goal schema prediction, but logical-
based methods for filling in parameters (e.g.,[Bauer, 1995]).
The recognizer in[Charniak and Goldman, 1993] dynami-
cally constructs a Belief Network (BN) with nodes for action
and goal schemas, objects (possible parameter values), and
relations that use the latter to fill slots in the former. For a
given parameter slot, however, they consider all objects of
the correct type to be equally likely, whereas we distinguish
these using probabilities learned from a corpus. As the net-
work grows at least with the number of observed actions (and
likely the number of goal schemas), it is unclear if this ap-
proach would be scalable in general.

5 Conclusions and Future Work
We have presented an instantiated goal recognizer based on
machine learning which is fast, scalable, and able to make
partial predictions. We reported the performance of the rec-
ognizer on two plan corpora.

12as well as next state and action schema prediction



We are currently extending the recognizer to performhier-
archical goal recognition, which we define to be the recog-
nition of the chain of active subgoals up to the top goal (cf.
[Bui, 2003]). Complex plans covering longer time-scales are
less likely to be identifiable from a few observations alone
(which tend to reflect more immediate subgoals). Ideally, we
would want to recognize subgoals for partial results, even if
it is not immediately clear what high-level goal is.
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