
Tree-Based Policy Learning in Continuous Domains through Teaching by
Demonstration

Sonia Chernova and Manuela Veloso
Computer Science Department,

Carnegie Mellon University,
Pittsburgh, PA, USA

{soniac, veloso}@cs.cmu.edu

Abstract

This paper addresses the problem of reinforcement
learning in continuous domains through teaching by
demonstration. Our approach is based on the Contin-
uous U-Tree algorithm, which generates a tree-based
discretization of a continuous state space while apply-
ing general reinforcement learning techniques. We in-
troduce a method for generating a preliminary state dis-
cretization and policy from expert demonstration in the
form of a decision tree. This discretization is used to
bootstrap the Continuous U-Tree algorithm and guide
the autonomous learning process. In our experiments,
we show how a small number of demonstration trials
provided by an expert can significantly reduce the num-
ber of trials required to learn an optimal policy, resulting
in a significant improvement in both learning efficiency
and state space size.

Introduction
Reinforcement learning is a machine learning framework in
which an agent explores its environment through a series of
actions, and in return receives reward from the environment
(Kaelbling, Littman, & Moore 1996). The goal of the agent
is to find a policy mapping states to actions that will maxi-
mize its cumulative reward over time. This type of problem
is typically formalized as a Markov Decision Process (MDP)
(Howard 1960), with discrete timesteps and a finite number
of states and actions.

The above formulation is widely used in the field of
robotics, but its application leads to two considerable chal-
lenges. The first is that instead of discrete states, our world
is more naturally represented as a continuous, multidimen-
sional state space. The second is that the required number of
learning trials can often be prohibitively large for execution
on real robotic systems.

To address the problem of continuous state spaces, a
number of discretization techniques have been developed
that split the space into a smaller number of general states.
Known as variable resolution methods, these algorithms
generate non-uniform states where each discrete state region
generalizes over some number of similar real-world states.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Examples of such algorithms include the Parti-game algo-
rithm (Moore & Atkeson 1995), the Continuous U-Tree al-
gorithm (Uther & Veloso 1998), VQQL (Fernandez & Bor-
rajo 2000), and Variable Resolution Discretization (VRD)
(Munos & Moore 2002).

Additionally, a significant amount of research has fo-
cused on the challenge of reducing the number of trials re-
quired for learning. A powerful technique explored over the
years has been teaching by demonstration, or apprentice-
ship learning (Kaiser & Dillmann 1996; Atkeson & Schaal
1997; Chen & McCarragher 2000; Smart & Kaelbling 2002;
Nicolescu & Mataric 2003; Abbeel & Ng 2004). In this ap-
proach, human demonstration is used in combination with
autonomous learning techniques to reduce the learning time.

In this paper, we present a general framework designed
for high level, behavior-based control in continuous do-
mains, that naturally combines variable resolution dis-
cretization techniques with teaching by demonstration. We
validate our approach using the Continuous U-Tree dis-
cretization algorithm, an extension of the original U-Tree
algorithm for discrete state spaces (McCallum 1996). We
show how a small number of demonstrations effectively re-
duces the learning time of the algorithm, as well as the size
of the final state space.

The Continuous U-Tree Algorithm
The Continuous U-Tree algorithm (Uther & Veloso 1998)
is a variable-resolution discretization method for reinforce-
ment learning in continuous state spaces. The algorithm can
be applied to a mixture of continuous and ordered discrete
state values, and allows the application of any discrete-state
reinforcement learning algorithm to continuous domains.

The Continuous U-Tree algorithm relies on two distinct
but related concepts of state. The first type of state is the
current state of the agent in the environment, which we refer
to as the sensory input. The sensory input is characterized by
the observation o, a vector of continuous sensory attributes.
The second type of state relates to the discretization gener-
ated by the algorithm that is used to form an action policy.
We use the term state to refer specifically to these discrete
states, and use L(o) to represent the state associated with the
sensory input o.

Each state typically generalizes over multiple sensory in-
puts, and each sensory input can be classified into one of

the states using the state tree. The state tree is a binary tree
where each leaf node represents a single state. Each decision
node in the tree is used to classify sensory inputs by splitting
on one of the sensory input attributes. At the beginning, the
state tree is composed of a single leaf node which represents
the entire state space. The algorithm recursively grows the
tree as it iterates between two distinct phases: data gathering
and expansion.

Interactions between the agent and the environment are
recorded as a tuple of observations, actions and rewards.
Each action a belongs to a finite set of actions A, while re-
ward values r and observation attribute values in o can be
fully continuous. Each of the agent’s steps, or transitions, is
recorded by the four-tuple (o, a, r, o′), where o is the starting
sensory observation, a is the action performed by the agent,
o′ is the resulting sensory observation, and r is the reward
received from the environment.

Table 1 summarizes the Continuous U-Tree learning pro-
cess. The algorithm begins with a single state describing the
entire state space. During the gathering phase the agent ac-
cumulates experience and records the transition tuples. The
discretization is then updated by splitting the leaf nodes of
the state tree during the expansion phase. The split loca-
tion within a given state is determined by calculating the ex-
pected future discounted reward q(s, a) of each transition tu-
ple using equation 2. The algorithm considers each sensory
attribute in turn, sorting all of the transition tuples by this
attribute. The transition tuples are then repeatedly divided
into two sets by performing a temporary split between each
two consecutive pairs of tuples. The expected reward values
q(s, a) of each set are then compared using the Kolmogorov-
Smirnov (KS) statistical test. The trial split that results in
the largest difference between the two distributions is then
tested using the stopping criterion.

The stopping criterion is a rule used to determine when
to stop splitting the tree. The Continuous U-Tree stopping
criterion states that the algorithm should only split when a
statistically significant difference exists between the datasets
formed by the split. In our experiments we define statistical
significance at the P = 0.01 level for the KS test. States in
which the best trial split does not pass the stopping criterion
are not split.

The Continuous U-Tree algorithm also maintains an
MDP over the discretization, which is updated after every
split. Let T (s, a) represent the set of all transition tuples,
(o, a, r, o′), associated with state s and the action a. The
state transition function Pr(s, a, s′) and the expected future
discounted reward function R(s, a) are estimated from the
recorded transition tuples using the following formulas:

Pr(s, a, s′) =
|∀(o, a, r, o′) ∈ T (s, a)s.t.L(o′) = s′|

|T (s, a)| (3)

R(s, a) =

∑
(o,a,r,o′)∈T (s,a) r

|T (s, a)| (4)

Using this data, any standard discrete reinforcement learning
algorithm can be applied to find the Q function Q(s, a) and
the value function V (s) using the standard Bellman Equa-
tions (Bellman 1957):

Q(s, a)← R(s, a) + γ(Pr(s′|s, a)V (s′) (5)

Table 1: The Continuous U-Tree Algorithm.
• Initialization

– The algorithm begins with a single state representing
the entire state space. The tree has only one node.

– The transition history is empty.
• Data Gathering Phase

– Determine current state s

– Select action a to perform:
∗ With probability ε the agent explores by selecting a

random action.
∗ Otherwise, select a based on the expected reward as-

sociated with the actions leading from state s.

a = argmaxa′∈AQ(s, a′) (1)

– Perform action a and store the transition tuple (o,a,o′,r)
in leaf L(o)

– Update Pr(s, a, s′), R(s, a) and Q(s, a)
• Expansion Phase

– For every state (leaf node):
∗ For all datapoints in this state, update expected reward

value:
q(o, a) = r + γ(V (L(o′))) (2)

∗ Find the best split using the Kolmogorov-Smirnov test
∗ If the split satisfies the splitting criteria:
· Perform split.
· Update Pr(s, a, s′) and R(s, a) function using the

recorded transition tuples.
· Solve the MDP to find Q(s, a) and V (s).

V (s) = maxaQ(s, a) (6)

In our implementation we have used Prioritized Sweeping
(Moore & Atkeson 1993) for learning the policy.

Combining Teaching and the Continuous
U-Tree Algorithm

In this section, we present a method for generating a supple-
mentary state discretization using expert task demonstration.
We then show how this discretization can be used to boot-
strap the Continuous U-Tree learning process to reduce both
the number of learning trials and the size of the resulting
tree.

The agent is controlled using behavioral primitives (Arkin
1998), defined as basic actions that can be combined to-
gether to perform the overall task. The goal of the system
is to learn a policy over these behavioral primitives.

In our approach we use a demonstration technique
called learning by experienced demonstrations (Nicolescu &
Mataric 2003), in which the agent is fully under the expert’s
control while continuing to experience the task through its
own sensors. We assume the expert attempts to perform the
task optimally, without necessarily succeeding; our goal is
not to reproduce the exact behavior of the expert, but instead

to learn the task itself with the expert’s guidance. Addition-
ally, this approach can be extended to learning from observ-
ing the actions of other agents.

The Expert Demonstration
During the task demonstration, the expert fully controls the
agent’s action while observing its progress. The expert’s
perception is limited to watching the agent, and does not rely
on the numerical sensor values that the agent perceives. The
same set of actions is available to the expert and the agent
for both the demonstration and autonomous learning phases.
During the demonstration, the agent is able to perceive the
sensory input, the selected action, and the reward, allowing
it to record the transition tuples as if it was performing the
task on its own. All experience tuples are recorded through-
out the demonstration.

Upon the completion of the demonstration, the recorded
transition tuples are used to generate a classification tree,
called the expert tree, by applying the C4.5 algorithm (Quin-
lan 1993). The algorithm’s training data uses the initial sen-
sory observation of each tuple, o, as the input, and the action
selected by the expert, a, as the associated label. As a result,
the algorithm learns a mapping from the agent’s observa-
tions to the actions selected by the expert. Each decision
node of the expert tree encodes a binary split on one of the
sensory attributes, and each leaf node specifies the action to
be performed for all observations leading to this leaf.

The amount of training data required to generate the ex-
pert tree varies depending on the complexity of the domain
and the level of noise in the sensory inputs. For simple do-
mains, a small number of demonstration trials can result in
a decision tree that can execute the task with nearly optimal
performance. In these cases it may seem sufficient to simply
use the decision tree as the control policy, but this approach
would perform poorly in dynamic environments (Atkeson &
Schaal 1997). For complex domains, a significant number
of demonstrations may be required to obtain optimal per-
formance, turning the demonstration task into a tedious bur-
den for the expert. In the following sections we demonstrate
that although nearly optimal expert performance leads to the
most significant improvement, the performance of the algo-
rithm degrades gracefully for inaccurate or insufficient ex-
pert data.

Bootstrapping The U-Tree Algorithm
The expert tree provides a good approximate discretization,
but requires labeled data to further refine or adjust the tree
in response to environment changes. The state tree of the
Continuous U-Tree algorithm, on the other hand, generates
its state discretization from unlabeled training data, but typ-
ically takes a large number of trials, and generates trees with
a state space far larger than necessary even under a strict
stopping criterion. The matching structure of the two trees
enables us to combine the two discretizations to take advan-
tage of the strengths of both approaches.

We modify the initialization phase of the Continuous U-
Tree algorithm by replacing the single state tree with the
expert tree structure, and initializing the transition tuple his-
tory to include all of the tuples recorded during the demon-

Figure 1: The 3-Evasion domain. The learning agent moves
along a straight horizontal path from the Start to the Goal.
Opponent agents move back and forth along their respective
vertical paths marked by the dotted lines.

stration phase. The remainder of the learning phase remains
unchanged and proceeds normally by alternating the gather-
ing and expansion phases and recursively growing the tree
starting from the expert tree base. The combined tree is re-
ferred to as the Continuous Expert U-Tree, or EU-Tree.

The benefits of this approach are twofold. The base dis-
cretization provided by the expert tree provides a good start-
ing point for the U-Tree algorithm and helps guide fur-
ther splitting, while the transition tuples recoded from the
demonstration data are used to initialize the Q-table of the
reinforcement learning algorithm. The demonstration ex-
perience typically highlights the positive areas of the state
space, especially the goal areas, which helps guide further
exploration. Since the negative areas of the state space are
often avoided by the expert, the examples do not always
highlight some of the main danger zones, and as a result the
demonstration examples alone are not sufficient for learning
a good policy.

Experimental Results
The N-Evasion Domain

To test the algorithm we introduce the N-Evasion domain.
The domain environment consists of a single learning agent
and N opponent agents. The learning agent’s task is to move
from the starting location to the goal location, using one of
two available actions - stop and go, where go always moves
the agent directly towards the goal. Each opponent agent
traverses its own path, which intersects the main path of
the learning agent at some location between the start and
goal. The learning agent must reach the goal without collid-
ing with any opponent agents. A small amount of noise is
added to the forward movements of all of the agents to sim-
ulate uncertainty. An example of the domain for N = 3 can
be seen in Figure 1.

The N-Evasion domain can provide a number of interest-
ing challenges as various factors affect the difficulty of the
problem. In addition to the value of N , the frequency with
which an opponent agent intersects the main path also af-
fects the difficulty. This factor can be controlled by chang-
ing the path length or speed of the opponent. The problem
is simpler if the opponent only rarely crosses the path of

the learning agent as collision becomes less likely. Another
possible factor is the spacing between the opponent agents.
In our example the opponent agents are spaced far enough
apart to allow the learning agent to stop in between them in
order to time its approach. The domain can also be designed
without this space to force the agent to consider multiple
opponents simultaneously.

The representation for the N-Evasion domain can be en-
coded in a variety of ways. In our implementation, it is rep-
resented using N + 1 state dimensions - one for the position
of the learning agent along its path, and one for each of the
N opponent agents’ positions along their paths (direction of
movement can be ignored).

In our experiments we use the 3-Evasion domain shown
in Figure 1, as well as a similar 2-Evasion domain. The
learning agent’s path is 30 meters long, and its velocity is
fixed at 2.0 m/sec. Opponent agents have a fixed velocity
of 3.2 m/sec, and travel paths 22 meters in length that are
directly bisected by the main path. Each trial begins with
the learning agent at the start location, and ends when the
goal is reached, a collision occurs, or the time allocated for
the trial expires. The agent receives a reward of 100 for suc-
cessfully completing the trial and reaching the goal, -50 for
a collision, and -2 each time it executes the action stop. The
performance of the agent is evaluated using the percentage
of successful traversals from start to goal without any colli-
sions.

Algorithm Performance Comparison
The performance of the proposed algorithm was tested using
the 2-Evasion and 3-Evasion domains. During the demon-
stration phase, the agent was controlled by the human ex-
pert in the simulated environment. The demonstration phase
consisted of 15 trials, which took approximately five min-
utes to generate. In both domain experiments the resulting
expert tree policy performed perfectly in its respective do-
main, completing all trials without collisions.

In our analysis, we compare the performance of the fol-
lowing three learning methods:
• the original Continuous U-Tree algorithm (C. U-Tree)
• the EU-Tree without the demonstration transition history

(EU-Tree - DT)
• the complete EU-Tree, including the demonstration tran-

sition history (EU-Tree)
Each of the above algorithms was tested in 15 experi-

mental learning runs. During each experiment, learning was
halted at 20-trial intervals for evaluation, during which the
state of the algorithm was frozen and 100 evaluation trials
were performed using the latest policy. Figures 2 and 3
present the results, averaged over all experimental runs, for
the 2-Evasion and 3-Evasion domains respectively.

In both cases, we see a very significant improvement in
performance of the teaching-based methods over the original
U-Tree algorithm. While the Continuous U-Tree algorithm
is able to learn the correct policy in both trial domains, it
takes far longer to reach the optimal policy, one that avoids
all collisions, than the other methods. In both domains, the
EU-Tree methods reduce the learning time by over 50%.

Figure 2: Performance evaluation of three learning methods
in the 2-Evasion domain.

Figure 3: Performance evaluation of three learning methods
in the 3-Evasion domain.

Additionally, we note that the performance of the EU-
Tree methods with and without the demonstration transi-
tion history (DT) is very similar. This result supports our
hypothesis that it is not the demonstration transition tuples
themselves, but the expert tree discretization derived from
that data, that leads to the greatest improvement in learn-
ing performance. Compared to the relatively large number
of experimental trials executed by the learning agent, typi-
cally numbering in the hundreds, data from 15 extra trials
contains fairly little information. The tree structure derived
from this data, however, can be used to guide the learning in
a much more powerful way. The expert tree base provides
the U-Tree algorithm with a good initial structure which acts
as a guide for further discretization splits.

State Space Size Comparison
As a result of the shorter learning time, the EU-Tree algo-
rithm has the added effect of producing discretizations with
fewer states. Although the discretization algorithm itself

Algorithm # States Avg. Reward
Per Trial

Expert Tree 9 82
C. U-Tree 167 50
EU-Tree 30 80

Table 2: Comparison of the average number of states and
average reward earned by final policies of the expert tree, C.
U-Tree and EU-Tree algorithms in the 2-Evasion domain.

is the same in both cases, an algorithm running for a long
time will tend to perform more splits as more data becomes
available. Due to the use of the demonstration data in the
EU-Tree algorithm, an optimal policy can be found more
quickly, keeping the state space small as a result. This fac-
tor is important because reinforcement learning becomes in-
creasingly more difficult as the number of states grows, af-
fecting the overall performance of the algorithm.

Table 2 compares the average number of states and the
average reward earned per trial in the final policy of the ex-
pert tree, the Continuous U-Tree and the EU-Tree algorithms
in the 2-Evasion domain. This data demonstrates how the
teaching based approach reduces the size of the state space
compared to the Continuous U-Tree learning method.

The expert tree generated from demonstration data has
the smallest number of states and the best performance by
a small margin. However, the EU-Tree is able to nearly
match the expert performance while maintaining a manage-
able number of states. The Continuous U-Tree algorithm
generates a far greater number of states, resulting in poorer
overall performance.

EU-Tree in Dynamic Environments
In this section, we examine the ability of the EU-Tree algo-
rithm to cope with suboptimal demonstrations and adapt to
changes in the environment. The algorithm is tested on mod-
ified versions of the 2-Evasion domain, in which opponent
velocities are assigned values in the 2.2-4.2 m/sec range in
0.1 meter increments.

Figure 4(a) shows the performance of the original expert
tree policy in the modified domains. The policy is able
to accommodate small changes, and performs well under a
variety of different conditions. As expected, reducing the
speed of the opponents simplifies the problem, and the fixed
policy performs well even under significantly different con-
ditions. Increasing the speed of the opponents presents a
greater challenge, and the performance of the policy quickly
drops to an approximate success rate of 50%.

Figure 4(b) presents the average number of trials taken by
the EU-Tree algorithm to learn the correct policy for each of
the test domains. In all cases, the algorithm was initialized
with the original expert tree generated by the demonstration
at 3.2 m/sec. The relationship between graphs (a) and (b)
shows a clear correlation between the accuracy of the expert
policy and the learning time of the algorithm. Strong expert
policy performance leads to short learning times in all but
one case, the 2.7 m/sec domain, where we see an unusually
high learning cost.

Figure 4: (a) Expert tree performance over a range of op-
ponent velocities. (b) EU-Tree learning performance sum-
mary over a range of opponent velocities. The original ex-
pert demonstration conditions are marked in lighter color.

Figure 5 presents the learning curves of the same set of
trials. Dark, solid lines are used to mark results for ex-
periments with opponent velocities deviating by .1-.5 m/sec
from the demonstrated velocity (i.e. 2.7-3.7 m/sec). Lighter,
dashed lines mark experiments with velocity variation in the
.6-1.0 m/sec range (i.e. 2.2-2.6 and 3.8-4.2 m/sec). For com-
parison, the learning curve of the Continuous U-Tree algo-
rithm in the original domain is also provided.

The above graphs demonstrate that expert tree discretiza-
tions that perform optimally in the environment result in the
best learning times, a fact that is not particularly surprising.
More importantly, however, we see that the algorithm per-
formance scales relative to the quality of the expert policy.
Suboptimal policies continue to provide some boost to the
learning, while in the worst case the algorithm performance
is no worse than that of the Continuous U-Tree algorithm.

Further Reducing the State Discretization
Readability and ease of interpretation are key strengths of
decision tree based algorithms. However, as previously
mentioned, one of the drawbacks of the Continuous U-
Tree algorithm is the large number of states in the final
discretization, especially in complex multidimensional do-
mains. Many of the states generated by the discretization
are similar in nature, and lead to the same action, but the
complexity of the tree makes it difficult to interpret the data.
Ideally we would like a method that compacts the data into
a smaller structure without modifying the behavior of the
algorithm.

This is achieved by again making use of the standard C4.5
algorithm. The input to the algorithm is formed by the
recorded transition tuples of the state tree, where each ini-
tial observation o is labeled with the learned policy action
associated with its state L(o). The C4.5 algorithm outputs a
mapping from observations to the associated policy actions,

Figure 5: EU-Tree learning performance curves over the
range of opponent velocities.

combining and generalizing over states where possible. This
process generally results in a more compact representation,
and at worst maintains the same number of states. Note that
this process does not try to maintain old state boundaries
and knows nothing about the structure of the original dis-
cretization. To maintain the same observation-action map-
ping, pruning should be turned off.

This technique can be applied at any point in the learning
process to form a more compact tree, but is especially useful
for the evaluation of the final result. Using this method, we
have been able to systematically reduce the number of states
to less than half the size of the original discretization without
loss of performance.

Conclusion
In this paper, we presented a general framework for learning
high level, behavior-based action policies in continuous state
spaces. Our approach combines tree-based state discretiza-
tion methods with teaching by demonstration to effectively
reduce the overall learning time. The advantage of our ap-
proach is the use of a preliminary discretization derived from
demonstration transition data, in addition to the transition
data itself, to initialize the state discretization process.

Our algorithm was shown to handle sub-optimal demon-
strations and adapt to dynamic environments. Additionally,
the final state discretization was shown to be significantly
smaller than that of the original discretization algorithm, fa-
cilitating both ease of learning and human readability. Us-
ing our state tree compression technique, the state tree can
be reduced further without modifying the behavior of the al-
gorithm.

We believe this approach can be extended to other tree-
based discretization methods, forming a general framework
for combining teaching by demonstration with other learn-
ing techniques. Additionally, a similar approach can be ap-
plied for an agent that learns from observing the actions of
others instead of itself.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In International Con-
ference on Machine learning. New York, NY, USA: ACM
Press.
Arkin, R., ed. 1998. Behavior-based robotics. MIT Press.
Atkeson, C. G., and Schaal, S. 1997. Robot learning from
demonstration. In International Conference on Machine
Learning, 12–20. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc.
Bellman, R. E., ed. 1957. Dynamic Programming. Prince-
ton, NJ: Princeton University Press.
Chen, J., and McCarragher, B. 2000. Programming by
demonstration - constructing task level plans inhybrid dy-
namic framework. In International Conference on Robotics
and Automation, 1402–1407.
Fernandez, F., and Borrajo, D. 2000. VQQL. Apply-
ing vector quantization to reinforcement learning. Lecture
Notes in Artificial Intelligence 292–303.
Howard, R. A. 1960. Dynamic Programming and Markov
Processes. MIT Press.
Kaelbling, L.; Littman, M.; and Moore, A. 1996. Rein-
forcement learning: A survey. Journal of Artificial Intelli-
gence Research 4:237–285.
Kaiser, M., and Dillmann, R. 1996. Building elementary
robot skills from human demonstration. In International
Conference on Robotics and Automation.
McCallum, A. K. 1996. Reinforcement learning with selec-
tive perception and hidden state. Ph.D. Dissertation, Uni-
versity of Rochester.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning 13(1):103–130.
Moore, A., and Atkeson, C. G. 1995. The parti-game al-
gorithm for variable resolution reinforcement learning in
multidimensional state-spaces. Machine Learning 21.
Munos, R., and Moore, A. 2002. Variable resolution dis-
cretization in optimal control. Machine Learning 49:291 –
323.
Nicolescu, M. N., and Mataric, M. J. 2003. Natural
methods for robot task learning: instructive demonstra-
tions, generalization and practice. In Second International
Joint Conference on Autonomous Agents and Multiagent
Systems, 241–248. New York, NY, USA: ACM Press.
Quinlan, J., ed. 1993. C4.5: Programs for Machine Learn-
ing. San Mateo: Morgan Kaufmann.
Smart, W. D., and Kaelbling, L. P. 2002. Effective re-
inforcement learning for mobile robots. In IEEE Interna-
tional Conference on Robotics and Automation.
Uther, W. T. B., and Veloso, M. M. 1998. Tree based dis-
cretization for continuous state space reinforcement learn-
ing. In Artificial Intelligence/Innovative Applications of
Artificial Intelligence, 769–774.

