
Abstract
We use trajectory based techniques to perform lo-
cation independent behaviour recognition on an 
unmanned underwater vehicle.  Unmanned vehi-
cles have applications in both surveillance and 
structural inspection, but require robust, location 
independent behaviour recognition.  Previous re-
search has used GPS or location based states that 
tie model parameters to specific locations, and 
have rarely considered performance under specific 
levels of noise.  We use location independent ac-
tion based states to recognise high level behaviour 
using flat Hidden Markov Models.  We validate 
this approach by comparing performance under dif-
ferent levels of noise, achieving 78% classification 
precision under 50% corruption. 

1   Introduction 
Inferring the intentions of an agent is often posed as Behav-
iour Recognition, in which the observable actions of an 
agent are used to infer its internal state.  In Activity Recog-
nition the objective is to recognise low-level behaviours 
such as making a snack, while Plan Recognition extends this 
by recognising the hierarchical structure linking behaviours. 
    Previous research in behaviour recognition has included 
visual surveillance [Nguyen et al., 2005] and GPS tracking 
[Liao et al., 2007a], but is often constrained to recognising 
repeatable trajectories within known environments.  This 
paper motivates applications in the new domains of Un-
manned Vehicles (UxVs) in which there are several addi-
tional challenges.  The increasing use of these vehicles has 
spawned a new interest in predicting the intentions of the 
agents they observe, and of the vehicles themselves.   
   In military domains unmanned vehicles are increasingly 
used to provide access to difficult areas.  Aerial applications 
include covert visual surveillance, in which up to 40 hours 
of video1 are collected per flight.  [Oliver et al., 2002] high-
light behaviour recognition as a critical step in automating 

                                                 
1 Source: http://www.airforce-
technology.com/projects/predator/specs.html 

 

visual surveillance, in which its application would automate 
processing large volumes of captured data.  This comple-
ments human analysis by identifying threats within busy and 
noisy environments.  A further benefit is the potential for 
increased autonomy, allowing vehicles to autonomously 
detect activity of interest for more detailed inspection. 
   Other applications of unmanned vehicles provide access to 
the oceans.  Early vehicles were operated remotely using 
communications tethers, although more recently, their re-
placement with autonomy has allowed both shallow and 
deep water missions.  Applications in the civil domain in-
clude ocean floor survey and pipe inspection, while military 
applications include sea-mine countermeasures. 
   As the autonomy of unmanned vehicles increases addi-
tional benefits may be gained through on-board behaviour 
recognition.  For example, recent research in UxV collabo-
ration has allowed common sub-goals to be shared between 
multiple vehicles [Sotzing et al., 2007].  Using a limited 
prediction model, collaboration is able to continue under the 
loss of communications, but is limited by outage duration 
and knowledge of shared sub-goals.  On-board behaviour 
recognition would complement this work by increasing reli-
ability under the prolonged loss of inter-vehicle communica-
tions.  This is especially beneficial for re-planning systems, 
in which the current sub-goals of one agent may be un-
known to another.  Behaviour recognition would allow these 
systems to continue safe collaboration through behaviour 
observation.  
   In adversarial domains the actions of others can interfere 
with goal completion.  One solution to this is to predict the 
intentions of opponents, allowing on-line re-planning to 
respond to perceived threats.   As an example, an autono-
mous ground vehicle performing perimeter surveillance 
might identify unknown persons within its vicinity.  In a 
military domain, a person walking along a road may require 
the vehicle to remain still, while a hostile formation ap-
proaching the vehicle may require transmitting a location 
signal.  In either scenario, re-planning can only take place 
upon identifying the adversary’s intentions. 
   The main research contribution in this paper is evaluating 
the feasibility of a Hidden Markov Model approach for UxV 
sub-goal recognition.  We continue to use the term sub-goal 
recognition to highlight our ultimate goal of plan recogni-
tion.  Previous applications of behaviour recognition have 
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had limited noise, and have only evaluated overall system 
performance.  We report the performance of flat Hidden 
Markov Models (HMMs) under varying degrees of noise, 
evaluating recognition at the lowest levels of a plan hierar-
chy.  This indicates the challenges that face higher levels of 
UxV plan recognition. 
   A second research contribution is the application to a real 
UxV in a spatially unconstrained world.  In visual surveil-
lance tasks, the location based states that are traditionally 
employed tie recognition to the camera’s perspective.  In 
contrast, our approach provides more adaptable recognition 
by converting trajectories to low level actions.  This allows 
our architecture to recognise behaviour from completely 
different locations and is tested against both real and simu-
lated data.  Furthermore, to the authors’ knowledge this is 
the first work performing probabilistic behaviour recogni-
tion on a non-simulated, spatially unconstrained agent. 

2   Problem Analysis 
The complex domains in which UxVs operate presents a 
number of challenges for behaviour recognition.  This in-
cludes the absence of location based states that are com-
monly used for visual applications (e.g. Nguyen et al., 
2005).  The spatial areas in which UxVs operate are vast, 
ranging from a hundred square metres to miles.  To discre-
tise a vehicle’s location to states is impractical and could 
require training data for each deployment location. 
   Furthermore, there are a number of sources of noise that 
do not exist in controlled environments.  This includes re-
strictions on sensor accuracy and frequency, in which com-
munications failures and obstructions may prevent or delay 
observations.  Another source of noise is the dynamic envi-
ronment, where wind currents, water currents and unstable 
terrain can all affect the perception of actions.  For example, 
an unmanned aerial vehicle may be blown south-west while 
attempting to fly south.  For an observer to correctly deter-
mine the vehicles intent is must incorporate uncertainty 
about the vehicle’s behaviour.   
   In any kind of surveillance domain it is reasonable to as-
sume that agents will attempt to disguise their behaviour to 
prevent detection.  Therefore, observations may differ from 
stereotypical behaviour by containing surplus actions that 
cause false recognition, or miss actions that have remained 
undetected.  A simplistic approach for filtering these actions 
is to consider cloaking behaviour as noise. 
   This paper considers performing post mission analysis on 
an unmanned underwater vehicle.  This can be used to iden-
tify the active goals of a re-planning agent in which events 
trigger changes in behaviour. For example, an advanced 
mission in sea-mine countermeasures involves processing 
sea-bed images while manoeuvring over an area.  The detec-
tion of a suspicious object may interrupt this search behav-
iour to gather further data, such as chemical analysis or 
closer inspection. Sub-goal recognition can explain vehicle 
movement by identifying the active behaviours, distinguish-
ing between searches, analysis and obstacle avoidance. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3   Problem Formulation 
Figure 1 illustrates some of the behaviours frequently exe-
cuted by the underwater domain.  These behaviours are 
achieved by performing heading based movements in the 
planes (x,y,z) giving sub-goal set G (1) and action set S (2).   
 
G = {Dive, Right-U-Turn-East, Right-U-Turn-West, Left-
U-Turn-East, Left-U-Turn-West, Track-East, Track-West, 
End}                                                                                    (1) 
 
S = {Dive, Right-Turn, Left-Turn, North, North-East, East, 
South-East, South, South-West, West, North-West}         (2) 
 
   To commence a sub-goal the vehicle first selects an action 
si S at time step t = 0.  This action is denoted as q0 and is 
chosen according to the prior probability distribution g.  
For each time step the next action (qt+1) is then selected ac-
cording to the transition matrix Ag, in which ai,j = P(qt+1 = sj | 
qt = si).  A mission is therefore constructed from sequences 
of sub-goals in which each element in G defines a policy 
<Ag, g>.   

3.1   Vehicle Observation 
Post-mission analysis is performed by obtaining vehicle 
longitude, latitude and depth from real UxV log files at a 
frequency of 1 per second.  Because GPS data is unavailable 
underwater the vehicle approximates its position using un-
derwater transponders.  Once this has been done the vehicle 
continues to infer its location by using its previous position, 
knowledge of recent actions and Doppler based navigation.  
Cycling between these techniques provides a reasonable 
approximation of GPS position. 
   Our architecture uses three modules to convert changes in 
the vehicle’s location to recognised action states.  The key 
objective of this step is the necessity to recognise behaviour 
in new locations.  We achieve this by borrowing techniques 
from online character recognition that are invariant to scale 
and rotation. 

Track West 

Track East 

Right U-Turn (RUT) East 

Right U-Turn (RUT) West 

Left U-Turn (LUT) West 

Dive Start/End (spin)

Figure 1: Common sub-goals for Unmanned Underwater   
Vehicles 
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   The first module calculates vehicle heading at 20 second 
intervals to provide one of eight states from the set {North, 
North-East, East,…, NorthWest}.  These heading are used 
by the second module to detect left and right turns, as sug-
gested by [Agarwal and Kumar, 2005]. Turns are detected 
as consecutive increases or decreases in direction (e.g. 
North, North-East, East  right turn).  A unique benefit of 
this approach is that turns become scale independent when 
executed in 60 seconds or more.  This lower bound is de-
termined by the direction module, in which three changes in 
direction cannot be detected in less than 60 seconds. 
   The final module detects movement in the z-axis (depth).  
To overcome minor fluctuations in vehicle depth the module 
requires three increases of depth, each of at least one metre.  
The module therefore fails to emit a dive state for any ob-
served dive of less than 3 metres.  However, the module 
makes no constraint upon the number of observations re-
quired to detect a dive, allowing the detection of slow dives 
that produce many observations. 

3.2   Parameter Learning 
Estimating vehicle policies from observation requires action 
sequences in which the underlying sub-goal is both constant 
and known.  For this purpose, we constructed a corpus of 
UxV sub-goal behaviours using log files from a real Hy-
droid Remus-100™ UxV.  The corpus consisted of manu-
ally labelled partial missions in which each example demon-
strated one of the eight behaviours shown in figure 1.   
   For a given observation sequence O = (o1, o2, .., on) in 
which each element captures a single action, the probability 
distribution P(Ot = si | qt = sj) is effected by noise.  This can 
be modelled as an HMM by considering actions as the hid-
den states that emit output tokens from S.  This is illustrated 
in figure 2 in which directed edges denote the dependence 
of ot+1 on qt+1, and qt+1 on qt.  A model g G is parameter-
ised by <Ag, g, Eg>, in which Eg are the emission probabili-
ties Ej(k) = P(Ot = sk | qt = sj). 
   One method for estimating these parameters is to use the 
Baum-Welch algorithm in which the P(O| g) is maximised 
through iterative update and improvement.  We skip the 
details of this algorithm but refer the interested reader to 
Rabiner [1989]. 
   It is important to note that modelling the transitions be-
tween policies is beyond the scope of this paper.  Instead, 

we focus on the ability to distinguish between the underly-
ing sub-goals under increasing observation noise.  

3.3   Recognition 
To recognise sub-goal behaviour we consider the eight 
HMM parameters sets as classifier parameters.  To classify 
a sequence of observations O we proceed by calculating 
p(O| ) for each model g.  This is performed using the for-
ward element ( ) of the Forward-Backward procedure from 
Rabiner [1989] and is inductively calculated in three stages: 
 
Stage 1 – Initialisation 
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   To calculate the probability of observing O = {o1, o2, …, 
oT} the initialisation step calculates the joint probability of 
observing o1 under state i.  The induction step then calcu-
lates the probability of transitioning to state j at t = 2 for all 
states at t = 1 (aij), given observation o2.  This induction 
continues until t = T-1, the penultimate observation.  The 
final probability is then obtained as the joint probability 
P(o1, o2, …,oT, qT  = i| g) via the termination stage and gives 
P(O| g).   
   Model g is selected as the most probable source of O iff 
P(O| g)  T * max(P(O| i))  i  g  , where T is some 
threshold parameter  1.  The sequence is then classified as 
model g if it is the most probable model after K observa-
tions, or if g is the most probable for C consecutive obser-
vations.  We refer to this latter approach as model conver-
gence and highlight that two or more models with the same 
probability will prevent convergence and result in an ‘Un-
known’ classification.   
   Because convergence times vary according to sub-goal 
similarity, a variable length approach places less restrictions 
upon the number of observations required for classification.    
In contrast, a fixed length approach requires K (observa-
tions) = max(V), where V is the set of minimum conver-
gence times for each sub-goal.  The variable length ap-
proach should therefore out perform fixed length classifica-
tion by providing earlier classification.  In our main results 
we adopt a variable length approach, although we also as-
sess the relative merits of both methods by comparing per-
formance over a range of values for T, K and C. 

qt qt+1 qt+2 

ot ot+1 ot+2 

Figure 2: Directed edges assert conditional dependence 
in a Hidden Markov Model.  



3.4   Observation Corruption 
It is commonly assumed that the elements of O have a 
known and constant accuracy, and that all behaviour is ob-
served.  In UxV domains the presence of sensor obstruction 
and availability constraints makes these assumptions inva-
lid.  These factors, and additionally cloaking actions, all 
result in observation sequences that incorrectly represent 
action transitions.  For example, in the action sequence (s1, 
s2, s3, s4), failure to observe s3 results in the observation se-
quence (o1 = s1, o2 = s2, o3 = s4).  The state transition s2  s4 
is now unrepresentative of stereotypical behaviour and will 
reduce the likelihood in equation 4.  This effect causes a 
problem when multiple sub-goals share similar behaviour 
due to similar model probabilities.  This prevents model 
convergence and results in an ‘Unknown’ classification. 
   To evaluate the feasibility of HMM classifiers for incom-
plete observation sequences, we perform sub-goal recogni-
tion upon observation test sets with 10-90% corruption.  It is 
important to highlight that for state transition models such 
as HMMs, noise is defined by the number of corrupted state 
transitions rather than the number of states.  This is because 
replacing the sequence {East, East, East} with {East, South-
East, East} results in a 100% change in state transitions, but 
only a 33% change in states.   
   To perform observation corruption, an idealised test set 
was constructed through simulation in which behaviours 
contained zero noise.  Noise was then inserted into the test 
set by choosing actions with uniform probability from the 
categories: Direction, Dive, and Turn.  This noise model 
was selected through empirical observation of real data in 
which Dives and navigation errors are frequently observed.  
Underwater vehicles are commonly operated in altitude 
mode, in which the vehicle maintains a defined altitude (e.g. 
3 metres) above the sea-bed.  The depth of the vehicle there-
fore changes in line with the sea-bed terrain irrespective of 
the current behaviour.  Section 3.1 highlighted some of the 
techniques used for underwater navigation due to the ab-
sence of GPS signals.  A side effect of these techniques is 
drift in vehicle position, in which a vehicle’s actual location 
is different from its inferred location.  This results in irregu-
lar behaviour in which the vehicle attempts to correct (or 
fails to correct) its position.  The final type of noise (Turns) 
simulates the presence of unobserved actions by causing 
state transitions that may be unlikely. 
   To maximise realism, direction noise was restricted to 
veering from the true direction. For example, if the action at 
time step 2 was North (A(2)=North), direction noise at time 
step 2 could only be A(2)=North-West or A(2)=North-East, 
realistically simulating drift.  Furthermore, in the occurrence 
of two continuous direction noise states, the second inser-
tion is restricted by the first to simulate increasing drift.  For 
example, if noise A(2)=North-West, A(3) may only be West 
or North.  We refer to this kind of noise as contiguous. 

4   Related Work 
Plan recognition has generally followed two approaches: 
logic based methods, such as Kautz [1991], or probabilistic 

methods, such as [Blaylock and Allen, 2006].  For the UxV 
domain, environment noise makes complete world knowl-
edge impossible to attain, breaking the assumption of logic 
based methods.  In contrast, probabilistic approaches such 
as the Hidden Markov Model consider incomplete knowl-
edge as uncertainty, allowing inference on previously un-
seen action sequences.   
   The Abstract Hidden Markov Model (AHMM) is a varia-
tion on the standard structure and is applied to a visual sur-
veillance task by [Bui and Venkatesh, 2002].  They track 
agent trajectories using video in a complex environment of 
corridors and rooms.  [Nguyen et al., 2003] extend the 
AHMM to allow more complex state dependencies in a 
similar environment, naming it the Abstract Hidden Markov 
mEmory Model (AHMEM).  In both approaches states are 
obtained by segmenting the environment into regions, emit-
ting state observations as each is traversed.  This causes a 
dependency between model parameters and the environ-
ment’s locations, enforcing model retraining for a new envi-
ronment.  Our work differs from Bui and Nguyen by recog-
nising sequences of actions rather than locations.   
   Higher level behaviours are frequently composed of reus-
able components, such as walking from the cupboard to the 
fridge while making either a snack or a meal.  To construct 
robust and scalable recognition the number of model pa-
rameters must be restricted by sharing reusable behaviours 
[Nguyen et al., 2005].  Nguyen and colleagues demonstrate 
that for scenarios such as these the Hierarchical Hidden 
Markov Model (HHMM) offers superior performance over a 
flat HMM.  Like [Bui and Venkatesh, 2002] the state space 
is again determined by segmenting the environment, requir-
ing parameter relearning to detect behaviour within a differ-
ent environment.   
   In some ways our approach is quite similar to the infer-
ence of transportation routines by [Liao et al., 2007a].  They 
use sequences of Global Positioning System (GPS) coordi-
nates to predict a person’s destination location (goal), trans-
portation mode (e.g. foot) and future movement (e.g. turns 
left at intersection).  To robustly handle GPS coordinates 
they ‘snap‘ locations to the nearest known street to provide 
some degree of adaptability for variations in behaviours.   
   In our own work we also use GPS observations, although 
these are inherently noisier than in [Liao et al., 2007a].  Fur-
thermore, we translate sequences of GPS coordinates into 
simple headings to achieve location independence.  This is 
not true of [Liao et al., 2007a], in which a new city would 
require the construction of a new location grid. 
   [Liao et al., 2007b] use hierarchical Conditional Random 
Fields (CRFs) to extract activities and important locations 
from GPS data.  CRFs are a discriminative technique and 
are less restrictive than generative based methods.  Genera-
tive techniques (e.g. HMMs) assume observations are inde-
pendent given the state, while discriminative techniques 
make no such assumptions.  As with other related work they 
perform recognition on known environments and cannot 
adapt to new locations.  Furthermore, they cite a drawback 
of discriminative learning as requiring more training data 
than generative approaches [Ng and Jordan, 2002].  The 



practical implications of running vehicle missions restricts 
the availability of UxV training data and in the short term 
may prevent the use of CRFs. 
  Our work also shares similarities to [Sukthankar and Sy-
cara, 2006] in which they use flat HMMs to distinguish be-
tween 3 spatially invariant behaviours.  The main differ-
ences from our own work is that their observations are ob-
tained from a simulated world and that Gaussian noise is 
inserted at the (x, y) coordinate level.  In our work the train-
ing corpus is obtained by observing a real unmanned vehicle 
and the inserted noise in fundamentally different.  It is un-
clear what states are derived from the noisy coordinates in 
[Sukthankar and Sycara, 2006], however, our states repre-
sent 3 to 20 second intervals and it is at this level that noise 
is added.  

5   Results 
To explain the metrics gathered during the study they will 
be described in terms of an example.  The performance of 
the ‘Track-West’ model was attained by presenting ‘Track-
West’ samples to all eight models. These samples were pro-
vided in a sequential manner, increasing their length by one 
action each iteration.  The probability of a model generating 
the sequence can be calculated and compared to other mod-
els, allowing the most probable model to be selected. 
   Convergence is attained when a model remains at least 
twice as probable as any other for three consecutive itera-
tions.  A Track-West Convergence Recall of 0.9 would 
therefore indicate that for 90% of the Track-West test sam-
ples, the Track-West model converged as the most probable 
model. 
   Convergence Precision complements this metric by calcu-
lating the accuracy of predictions.  For example, the total 
number of times the ‘Track West’ model converged cor-
rectly across all test sets divided by the number of times the 
‘Track West’ model converged. 
   These two metrics measure how often a sequence type is 
correctly identified and how accurate each classifier (model) 
is.  To assess recognition performance under ‘standard’ 
conditions, table 1 presents the average accuracy and recall 
of all 8 models after performing 3-fold cross validation on 
the real UxV corpus.  This represents the scenario in which 
we assume full observation of a non-cloaking vehicle.  Un-
der these conditions, both precision and recall remain very 
high at 0.99 and 0.93. 
   However, of primary interest is the performance of the 
classifiers under additional levels of noise, mimicking 
missed observations (through obstruction/communications 
failure) and cloaking behaviour (adversarial agents).  For 
these scenarios, the models were retrained using the entire 
real UxV training corpus, and then tested with simulated 
data.  Figure 3a shows the convergence recall for each of the 
learnt models, in which recall remains above 0.85 at noise 
levels up to 30%.  At higher noise levels recall is lower, 
although remaining above 0.7 at 50% noise.  It is interesting 
to note that the Dive model has the highest level of recall 
because it consists largely of one action, making confusion 
with other models less likely. 

   Poor performance at higher noise levels can be explained 
by considering the length of action sequences.  A ‘Right U-
Turn East’ sequence such as (6) could be transformed into 
(7) by 70% corruption.  
 
{East, East, East, South-East, Right-Turn, South, South, 
South-West, Right-Turn, West}                                       (6) 
 
{East, East, East, South-East, East, South, South-East, 
South-West, West, West}                                                  (7) 
 
   Several high probability state transitions have now been 
eliminated from the sequence, an affect that would be less 
likely to occur in longer sequences.  The net effect of this 
loss in key state transitions is a higher level of confusion 
between models.  To gain a better understanding of this con-
fusion table 2 presents the confusion matrix for 70% noise.  
Each row presents the distribution of classifications (con-
vergence) for a single type of sequence.  For example, the 
Dive row shows that 6% of Dive sequences were classified 
(or confused) as ‘Right U-Turn East’ sequences.   If no 
model converged as the most likely the sequence remains 
unclassified, resulting in some rows adding up to less than 
100%. 
   The matrix illustrates that the confusion between some 
models is highly logical.  For example, ‘Track West’ se-
quences are classified as ‘RUT West’ 16% of the time.  
Analysing the noise shows that at a level of 70% it is highly 
likely that some of the noise is contiguous (e.g. North-West 

 North).  This leads to state transitions such as (8) which 
are very similar to the ‘Right U-Turn West’ behaviour (9). 
 
{West West North-West North}                                 (8) 
 
{West West North-West North North-East East}(9) 
 
   Similar confusion occurs between several of the models, 
however all of the models are confused to some degree with 
the ‘End’ behaviour.  The reason for this lies in the nature of 
the ‘End’ activity in which the vehicle floats on the surface.  
The motion of waves causes the vehicle to spin which leads 
to high transition probabilities for any direction state to an 
adjacent one.  For example, a vehicle spinning right is likely 
to move from North to North-East, while a vehicle spinning 
left is likely to move from North to North-West.  The num-
ber of adjacent state transitions in any sequence will in-
crease with direction noise, causing confusion with the 
‘End’ model. 
 

Test Set Avg. Precision 
(across 8 models) 

Recall
(across 8 models) 

Set 1 0.98 0.94 
Set 2 0.99 0.89 
Set 3 0.98 0.97 
3-Fold Average 0.99 0.93 

Table 1: Average precision and recall using 3-fold cross valida-
tion on real UxV Corpus



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: (a – Left) Sub-Goal Recall vs. Noise and (b – Right) Classifier Precision vs. Noise 

 
  

Sequence\Model Dive
RUT
East

LUT
East

RUT
West

LUT
West

Track
East

Track
West End

Dive 0.74 0.06 0.10 0.03 0.04 0.02 0.00 0.01
RUT East 0.01 0.70 0.04 0.01 0.01 0.06 0.02 0.14
LUT East 0.01 0.06 0.77 0.00 0.01 0.06 0.00 0.07
RUT West 0.05 0.04 0.04 0.62 0.05 0.00 0.10 0.09
LUT West 0.01 0.02 0.03 0.03 0.66 0.00 0.20 0.04
Track East 0.03 0.08 0.10 0.01 0.01 0.59 0.00 0.17
Track West 0.05 0.02 0.04 0.16 0.11 0.00 0.58 0.03
End 0.08 0.11 0.11 0.06 0.07 0.01 0.01 0.56 

 
Table 2: The confusion Matrix for sub-goal classification under 70% noise. 

 
 

Param. 
Values 

Avg. 
Precision 

Avg. 
Recall

C=4, T=4 0.59 0.43 
C=3, T=3 0.55 0.47 
C=4, T=3 0.59 0.44 
C=3, T=4 0.57 0.48 
K=8 0.55 0.54 
K=10 0.59 0.57 

Table 3: The affect of parameters C (minimum converged ob-
servations), T (convergence ratio) and K (fixed observation 
length) at 70% noise. 
 

Looking next at the convergence precision (figure 3b) it is 
clear that a high precision rate is achieved at low noise lev-
els.  In general, precision remains above 0.78 at up to 50% 
noise, but falls linearly after this point.  It is interesting to 
observe that at 70% noise and above there are three models 
that perform better than the others.  This separation is most 
apparent at 90% noise where the ‘Dive’, ‘Track-West’ and 
‘Track-East’ models outperform the others by at least a fac-
tor of 2.  This is because each of these three sub-goals con-
sists largely of one state and therefore lack ‘key transitions’.  
As previously discussed, the elimination of key transitions 
is one of the reasons for confusion between models.  These 
models however have fewer high probability transitions 
making them less susceptible to noise. 



Noise Dive RUT 
East 

LUT
East 

Track 
East 

End

10% 0.92 0.05 0.03 0.00 0.00
20% 0.80 0.10 0.09 0.00 0.00
30% 0.68 0.14 0.17 0.00 0.01
40% 0.60 0.18 0.18 0.00 0.03
50% 0.56 0.20 0.21 0.00 0.03
60% 0.48 0.20 0.25 0.00 0.08
70% 0.45 0.22 0.26 0.00 0.07
80% 0.36 0.23 0.30 0.00 0.12
90% 0.33 0.27 0.25 0.00 0.14
 
Table 4: Confusion matrix for the ‘Track West’ test set when 
only 5 classifiers are present 
 
   An unfortunate side affect of the UxV domain is the lack 
of previous work with which results may be compared.  
While similar techniques have been employed in [Suk-
thankar and Sycara, 2006], there is no clear mapping be-
tween states to allow a subjective comparison of perform-
ance.  However, one aspect that can be considered is the 
relative merit of variable length classification over (tradi-
tional) fixed length.    Recall that in variable length classifi-
cation, a sequence O is classified as g if: 
 

P(O| g)  T * max(P(O| i))  i  g   
 
for C consecutive iterations.  In contrast, fixed length classi-
fication classifies the partial observation sequence {o1, .., 
ok} as g if P(o1, .., ok| g)  max(P(o1,…,ok| i))  i  .  In 
table 3 the average precision and recall across all eight mod-
els is shown.  In these scenarios performance was obtained 
for different variable length parameter values (C and T) and 
fixed lengths (K) under 70% noise.  A fixed length of 10 
offers best overall performance, although similar precision 
may be obtained with variable length classification at the 
detriment of recall.  Applications requiring early classifica-
tion, should as on-line behaviour recognition, should there-
fore consider the variable length approach.  However, for 
less offline applications the affect on recall suggests that 
superior performance is achieved by deriving the optimal 
value of K.  
   Assigning values for (C, T) or K requires arbitrary initiali-
sation and may be further tuned using optimisation tech-
niques such as Gradient Descent.  In this paper, initialisation 
values were discovered by hand within a reasonable time 
and were not further optimised.  Table 3 illustrates that the 
change in precision and recall are small between differing 
parameter assignments. 
   Lastly, we briefly discuss the affect of removing ‘RUT 
West’, ‘LUT West’ and ‘Track West’ models from the clas-
sifier set.  Presenting all test data to the remaining models 
then mimics an adversary scenario in which not all behav-
iours are known.  Table 4 shows that at low noise levels the 
‘Track West’ test sequences were most frequently classified 
as Dives.  This is because the ‘Dive’ sub-goal contains both 
horizontal and vertical motion, allowing model conver-
gence.  In some ways, this classification may be viewed as 

positive, as the most similar behaviour to the observations 
was still correctly identified.   However, as the noise in-
creases the confusion spreads across the different models, 
and while not shown in table 4, convergence frequency re-
mains high throughout.  This is an undesirable effect as it 
shows that completely unknown behaviours may still be 
classified. 

6   Conclusion and Future Work 
We have applied behaviour recognition to the new domain 
of unmanned vehicles (UxVs).  Previous work has per-
formed behaviour recognition on human agents but their 
solutions have largely been constrained to known environ-
ments.  This prevents a trained model from recognising be-
haviours in a new location without at least some degree of 
retraining.  Our work has overcome this barrier by using a 
location independent state representation and has achieved 
0.99 recognition precision and 0.93 recall on real UxV data.  
   We have identified several sources of noise that make 
behaviour recognition particularly challenging for UxV ap-
plications.  Although previous research has utilised noisy 
sensor readings, location based states restrict confusion po-
tential.  In our location independent architecture this poten-
tial is much greater, with many behaviours indistinguishable 
from others at high levels of noise.  To obtain a firm under-
standing of the affect of noise for this domain we performed 
behaviour recognition with flat hidden Markov models un-
der varying levels of noise.  Classification precision re-
mained high at noise levels up to 50%. 
   These results are encouraging for noise levels below 50%, 
although the significant drop in convergence precision at 
higher noise levels may have implications.  In hierarchical 
recognition the detected sub-goals are used to recognise the 
parent goal.  These goals are likely to have few state transi-
tions, making the impact of noise more profound.  For ex-
ample, assume goal 1 has the sub-goal sequence A B C, 
and that sub-goal B is incorrectly classified as sub-goal D.  
The observed sequence now has no transitions in common 
with the original goal.  This aspect may therefore cause dif-
ficulty in recognising plans with few sub-goals, and will be 
investigated in further work by performing hierarchical rec-
ognition.   
   In our current work sub-goals are direction dependent, 
requiring multiple models to recognise different orientations 
of the same behaviour.  A natural extension to this work 
would be the application of a scale and rotation invariant 
technique that would facilitate fewer sub-goal models.  At 
the same time, one method by which recall may be im-
proved is to reduce the number of key transitions, an aspect 
of the current state representation that has been shown to 
reduce recall performance at high levels of noise.   
   A further extension of this work is to perform behaviour 
recognition on a vehicle’s observations of a second vehicle.  
GPS coordinates would encapsulate the vehicles own uncer-
tainty about its location, and would also encapsulate uncer-
tainty about the vehicle being observed. 
   To further address scenarios in which some behaviours are 
unknown, it may be interesting to combine model conver-



gence with a minimum probability threshold.  This tech-
nique was suggested by Laskey [1991] as a method of iden-
tifying model mismatch and may be useful in preventing the 
incorrect classification of unknown behaviours with very 
low probabilities. 
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