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ABSTRACT: An important characteristic of a virtual human is the ability to direct its perceptual attention to objects and 
locations in a virtual environment in a manner that looks believable and serves a functional purpose. We have developed a 
computational model of perceptual attention that mediates top-down and bottom-up attention processes of virtual humans 
in virtual environments. In this paper, we propose a perceptual attention model that will integrate perceptual attention 
toward objects and locations in the environment with the need to look at other parties in a social context. 
 
1. Introduction 
Modeling interactive virtual humans has been one of the 
primary goals of immersive virtual environments for 
training.  An important characteristic of a virtual human is 
the ability to direct its perceptual attention to objects and 
locations in a virtual environment in a manner that looks 
believable and serves a functional purpose. Not only must 
the virtual human pay attention to objects related to the 
tasks it is performing, but it must also be able to cope with 
sudden events that demand attention. It is often the case 
that the amount of information in the virtual environment 
far exceeds the processing abilities of the virtual human. 
In fact, only a small fraction of sensory information can be 
fully processed and assimilated into the cognitive model.  
A successful model of perceptual attention provides a way 
of both pruning the incoming sensory input and choosing 
the most salient information to focus on during the next 
step of a decision cycle. 
 
The computational models of perceptual attention that we 
surveyed fell into one of two camps:  top-down and 
bottom-up.  Biologically inspired computational models 
(Itti, 2001; Courty et al., 2003) typically focus on the 
bottom-up aspects of attention, while most virtual humans 
(Traum and Rickel, 2002; Chopra and Badler 2001; Marco 
and Neil, 2002; Conde and Thalmann 2004) implement a 
top-down form of attention. Bottom-up attention models 
only consider the image information (e.g, color, intensity, 
orientation, and motion) without taking into consideration  
saliency based on tasks or goals.  As a result, the outcome 
of a purely bottom-up model will not consistently match 
the beahvior of real humans in certain situations.  Models 
like Itti’s (2001) can predict the bottom-up salience of 
features in an image at any point in time, but such a model 
is not sufficient to predict where to actually look.  Humans 
are generally task-oriented, and it is safe to say that a great 

deal of one’s time is spent looking at objects related to the 
current task.   
 
Modeling perceptual attention as a purely top-down 
process, however, is also not sufficient for implementing a 
virtual human. A purely top-down model does not take 
into account the fact that virtual humans need to react to 
perceptual stimuli vying for attention. For instance, it is 
reasonable to expect that a loud noise, like gunfire or an 
explosion, will catch the attention of virtual human and 
invoke some kind of immediate reaction. Top-down 
systems typically handle this in an ad hoc manner by 
encoding special rules to catch certain conditions in the 
environment.  The problem with this approach is that  it 
does not provide a principled way of integrating the ever-
present bottom-up perceptual stimuli with top-down 
control of attention.  
 
One of the distinctions between the work described in this 
paper and some of the other work on models of perceptual 
attention is the purpose of the model in the context of a 
virtual human. In many of the systems we reviewed, the 
purpose of the perception model was to make the virtual 
human behave as though it was attending to the 
surroundings and tasks in a natural way.    In contrast, our 
goal is also to develop virtual humans that can perform 
tasks, react to contingencies, interact with other agents, 
both virtual and human, plan, and make decisions about 
what to do next or at some future time (Hill, 2000). To 
accomplish this, perceptual attention is a critically 
important mechanism for restricting the sensory 
information being processed by the perception module and 
controlling virtual humans to exhibit goal-directed and 
reactive behaviors.  In the first stage of perceptual 
attention, there are mechanisms that filter the information 
that comes through the sensory system. Subsequent 
processes selectively strengthen or weaken the priority of 



the information. Directing perceptual attention toward the 
interests of a particular region in space can be achieved by 
two distinguishable shifts; covert and overt shifts of 
perceptual attention. It is well known that covert and overt 
attention shifts affects gaze direction to locations in space 
(Wolfe, 1994). The sequences of gaze fixations describe 
the way in which overt attention deployed, whereas 
directing attention to location in space without moving  
gaze describes the way in which covert attention is 
deployed. 
 
In this paper, we present a computational model of 
perceptual attention for virtual humans. This model 
extends a prior model of perceptual resolution (Hill, 2000) 
based on psychological theories of human perception. This 
models allows virtual humans to dynamically interact with 
objects and other individuals, balancing the demands of 
goal-directed behavior with those of attending to novel 
stimuli. This model has been implemented and tested with 
the MRE Project (Swartout et al, 2001).  
 
2. Modeling Perception in Virtual Humans 
Our virtual humans are implemented in Soar, a general 
architecture for building intelligent agents (Newell, 1990) 
and build on the STEVE Architecture (Rickel and Johnson, 
1999) in the immersive environment called the Mission 
Rehearsal Exercise (MRE) (Swartout et al, 2001).  The 
virtual humans’ behavior is not scripted; rather, it is driven 
by a set of general, domain-independent capabilities. The 
virtual humans perceive events in the scenario, by 
interacting with the simulator, reason about the tasks they 
are performing, and they control the bodies and faces of 
the PeopleShop™ animated bodies  to which they have 
been assigned.  
We have developed a model of perceptual resolution based 
on psychological theories of human perception (Hill, 1999 
and 2000). Hill’s model predicts the level of details at 
which an agent will perceive objects and their properties in 
the virtual world. He applied his model to synthetic 
helicopter pilots in simulated military exercise. We 
extended the model to simulate many of the limitations of 
human perception, both visual and aural.  
 
2.1 Visual Perception 

The virtual human perceives dynamic objects, under the 
control of the simulator, by filtering updates (e.g., body 
location and orientation, gaze location and orientation, 
velocity, size, and color) that the simulator periodically 
broadcasts. As shown in figure 1, we limited the virtual 
human’s simulated visual perception to 190 horizontal 
degrees and 90 vertical degrees so that the virtual human 
only gets updates that he is currently sensing through the 
field of view (FOV). When the virtual human senses the 
objects in the FOV, it first processes how salient each 
object is in the respect of size, distance, and color. We 
consider the computational model (Nothegger et al., 2004) 
to compute the visual salience of each object that is 

measured by observing individual visual attributes (e.g., 
size, shape, and color).  

After computing the visual saliencies of the perceived 
objects, we applied a sigmoid function as a utility function 
that reduces the degree of salience of an object in the 
respect of angle disparities between the virtual human and 
the object. Then we classified the levels of saliencies on 
those objects as high, medium, or low, depending on 
where the objects is in the virtual human’s field of view 
and whether attention is being focused on it. 
 
2.2 Aural Perception 

To model aural perception, we estimate the sound pressure 
levels of objects in the environment and compute their 
individual and cumulative effects on each listener based 
on the distances and directions of the sources. This enables 
the virtual humans to perceive aural events involving 
objects not in the visual field of view. For example, when 
a virtual human hears a vehicle is approaching from 
behind, he can choose to look over his shoulder to see who 
is coming. Another effect of modeling aural perception is 
that some sound events can mask others. A helicopter 
flying overhead can make it impossible to hear someone 
speaking in normal tones a few feet away. The noise could 
then prompt the virtual human to shout and could also 
prompt the addressee to cup his ear to indicate that he 
cannot hear.  
 
Given a set of visually or aurally perceived objects, the 
agent’s perceptual model updates the attributes of objects 
that fall in the limited sensory range. At any point in time, 
the virtual human must recognize which object is the most 
salient among those objects and draw his focus of attention 
on the object.  The next section describes our approach to 
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Figure 1. Virtual Human’s Functional Visual Field (FVF) 



computing the salience of the objects in the field of view 
and the subsequent behaviors associated with shifting the 
agent’s gaze. 

 
3. Computational Model of Perceptual Attention 
To compute object salience and to control gaze behaviors, 
we have developed a model called Dynamic Perceptual 
Attention (DPA). Internally, DPA combines objects 
selected by bottom-up and top-down perceptual processes 
with a decision-theoretic perspective and then selects the 
most salient object. Externally, DPA controls an embodied 
agent’s gaze not only to exhibit its current focus of 
attention but also to update beliefs (e.g., position) of the 
selected object. That is, the embodied agent dynamically 
decides where to look, which object to look for, and how 
long to attend to the object.  

 
Figure 2. A snapshot of the MRE simulation 

3.1 Decision-Theoretic Control 

One of the consequences of modeling perception with 
limited sensory inputs is that it creates uncertainty on each 
perceived object. For instance, if an object that is being 
tracked moves out of an agent’s field of view, the 
perceptual attention model increases the uncertainty level 
of the target information of the object that a virtual human 
tries to observe.  
 
To illustrate this idea, consider the screen snapshot of the 
MRE simulation shown in figure 2. An injured boy is 
being attended to by his mother and a medic.  A sergeant 
is conversing with a human participant. Since the mother, 
the boy, and the medic are out of the visual field of view 
of the sergeant while the sergeant is conversing with the 
human, the sergeant’s uncertainty levels about each of 
these characters will increase with time.  
 
The information flow of the DPA module is shown in 
figure 3. Top-down and bottom-up processes provide 
information to  the DPA module in the form of tuples 
composed as follows:  

ikiobjCGIiobjDGIiobjCiobjPituple ,,,,=

where, objPi:      priority of the tuplei
            objC

i
:      concern of the tuple

i
            objDGI

i
: desired goal information of the tuple

i
                  objCGI

i
: current goal information of the tuple

i
                  k

i
:           constant for the tuple

i  

BENEFIT

COST

moving gaze to

the object

Reward

Priority

(objP)

Concern

(objC)

Desired

Goal

Information

(objDGI)

World

coordinates

&

velocities

Current

Goal

Information

(objCGI)

constant

(k)

object

Motor

Control

gaze

BOTTOM-UP

PROCESS

BOTTOM-UP

PROCESS

BOTTOM-UP

PROCESS

TOP-DOWN

PROCESS

TOP-DOWN

PROCESS

TOP-DOWN

PROCESS

Figure 3. The information flow of the DPA module 
 
The priority attribute, objP, is used to indicate the absolute 
importance of an object, whereas the concern attribute, 
objC, is used to indicate a conflict between the desired 
goal information (objDGI) and the current certainty of 
information (objCGI). For instance, even if a person is 
given a high priority task, he may not be concerned about 
monitoring objects associated with the task if the task is 
going well, resulting in less frequent observations. If the 
task runs into some difficulties, he will increase his 
concern for the task, resulting in more frequent 
observations. 
 
By considering both attributes (i.e., priority and concern), 
our virtual humans compute the benefits of attending to 
objects. Information certainty is one of factors that help 
the virtual human decide which object it has to focus on. 
To deal with certainties of the perceived objects, we have 
chosen to take a decision theoretic approach to computing 
the perceptual costs and benefits of shifting the focus of 
perceptual attention of the perceived objects.  In the next 
two sections, we will describe how to compute the 
perceptual costs and benefits of shifting the focus of 
perceptual attention. The expected cost is computed by 
calculating the perceptual cost of shifting the gaze to the 
selected object. The expected benefit is computed by 
considering the value of acquiring accurate information 
about the selected object. Once a decision has been made, 
DPA shifts the virtual human’s gaze to focus his 
perceptual attention on the object that has the highest 
reward.  

3.2 Computing the Benefit 

To compute the benefit of focusing perceptual attention on 
an object requires the estimated values of object-based 
information certainty. We consider object-based 
information certainty as a key factor in computing the 
benefit of shifting the focus of attention to the object. The 
term, object-based information certainty, is used here to 
describe the level of information certainty of an object 
rendered in the agent’s mental image of a virtual world. 



Humans determine the desired goal information certainty 
of perceived objects (objDGI) based on their subjective 
preferences or prediction and then make efforts to 
maintain the current certainty of information (objCGI) 
within a  specific range of objDGI, defined as the 
information certainty tolerance boundary (ICTB).  
 
Information certainty is dynamic both in space and time. If 
(objCGI) is out of ICTB, we activate one of two kinds of 
NEEDs: the NEED for observation or the NEED for 
inhibition. The NEED for observation is activated if 
objCGI goes below ICTBlower. The NEED of inhibition is 
activated as objCGI goes over ICTBupper. According to 
Klein’s  account  of  the inhibition of return (Klein, 2000), 
too much information can be a bad thing. By modeling the 
inhibition of return, perceptual attention will not 
permanently focus on the most active salient information 
but will increase the chances of diverting perceptual 
attention to less salient information.  
 
The orthogonal process model between information 
certainty and the NEEDs of observation and inhibition is 
shown in figure 4. 
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Figure 4. The interrelation of Information Certainty and Need 

 
The desired goal information certainty (objDGI) is 
determined by the priority attribute (objP). The 
information certainty tolerance boundary is set by the 
concern attribute (objC). The higher the concern attribute 
is, the narrower the length of the boundary is. The current 
goal information certainty of the target object (objCGI) is 
set by top-down and bottom-up processes. If a virtual 
human cannot retrieve any information certainty of the 
target from top-down and bottom-up processes, it sets 
objCGI to 0. After the values for objCGI and information 
certainty tolerance boundary are set, the virtual human 
computes the NEED for observation or for inhibition on 
each tuple as follows: 
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The NEED on tuplei is used as a force that produces a 
benefit of diverting perceptual attention into tuplei. The 
benefit is computed as follows:  
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Once BENEFIT(tuplei) is computed, it will used with 
COST(tuplei) to compute the REWARD(tuplei). 
 
3.3 Computing the Cost 

Even if the benefit of drawing attention to one object is 
higher than the benefits of attending to others, the virtual 
human should not automatically select that object as the 
best one since the cost of shifting the focus of attention 
must also be considered.  To compute the cost of shifting 
perceptual attention from one object to another, we 
consider two sets of factors: physical and social. Physical 
factors include the degrees of head and eye movements 
and distance efficiency. Social factors indicate the relative 
costs of perceptual gaze shifts in social interaction. For 
instance, it may be rude to look away when someone is 
speaking (high cost of shift), yet it may be very important 
to attend to an unexpected or potentially dangerous event 
(high cost not to shift). 
 
3.4 Shifting Perceptual Attention 

With the benefit and two sets of cost factors of each tuple, 
we compute REWARD(tuplei) as follows: 
 

)()()( itupleCOSTitupleBENEFITitupleREWARD !=

After calculating REWARD(tuple) of all tuples, the virtual 
human selects a tuple that has the highest REWARD. If 
the selected tuple is holding the current focus of perceptual 
attention, the virtual human will keep focus on it. If not, it 
will divert its perceptual attention to the tuple having the 
highest REWARD. 
 
The duration of a gaze at an object affects the information 
certainty level. While a virtual human gazes at an object 
obj   (i.e., overt monitoring),  objCGI increases. Likewise, 
while obj is monitored only in the virtual human’s 
memory and projection (i.e., covert monitoring), objCGI 
decreases. Covert monitoring will cause the certainty of 
information to decay over time. 
 
4. Implementation in MRE Scenario 

When our scenario starts, a simulated army vehicle carries 
a human participant (lieutenant) to an accident site where 
an Army vehicle has crashed into a civilian car, injuring a 



boy. The participant then takes on the task of directing the 
troops to rescue the boy by interacting with our three 
embodied conversational agents—the sergeant (SGT), the 
mother, and the medic. We controlled the sergeant’s gaze 
movements with DPA. The sergeant is initially looking at 
the boy to update the boy’s health status with information. 
 
In a typical example of interaction with the system, the 
lieutenant starts with a general inquiry as to what is going 
on, “Sergeant, what happened here?”  Since this inquiry is 
given as an aural event, the aural perception filters the 
aural event and then gives a tuple for the event to DPA. 
 
When DPA gets this tuple from the aural perception, DPA 
shifts the sergeant’s perceptual attention, which currently 
attends to the boy, to react to the aural event. As the result 
of the shift of perceptual attention, the sergeant recognizes 
that the lieutenant made an inquiry. Then, the sergeant 
internally processes the inquiry.  
 
As a result of considering both perceptual objects (the boy 
and the lieutenant) the sergeant turns from the boy and 
faces the lieutenant, answering, “There was an accident. 
This woman and her son came from the side street and our 
driver didn’t see them.” The Lieutenant continues by 
asking “Who is hurt?”, and the sergeant replies “The boy 
and our driver.” Now when the Lieutenant asks “How bad 
is the boy hurt?,” rather than answering directly, the 
sergeant defers to the medic, who has better knowledge of 
such things, and directs him to answer, by looking at him 
and calling his name “Tucci?” 
 
Looking up the medic answers. “The boy has critical 
injuries.  Sir we need to get a medevac in here ASAP.”  
 
The lieutenant decides to call for the medical evacuation 
helicopter as requested and secures the local area.  Then 
the lieutenant commands the sergeant to execute the task 
of setting up a landing zone (LZ) so that the helicopter can 
safely land. 
 
When the sergeant starts executing the secure-landing 
zone task, the sergeant contacts the 3rd squad in order to 
dispatch the squad to the LZ. The interaction between the 
information certainty of position of the 3rd squad and the 
benefit of observing the information is shown later with 
graphs and trees. The sergeant initially knows the position 
of the 3rd squad and the location of the LZ. When the 
sergeant contemplates execution of the task (secure-lz), he 
tries to gain high-level information certainty of the spatial 
information of the 3rd squad, who will be dispatched to the 
LZ to secure it. The information graph on the task is 
shown as follows: 
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Since the squad is not in the area for securing the LZ, the 
sergeant’s DPA module determines there is a benefit 
derived by observing the current spatial information of the 
squad.  
 
Next, the sergeant contacts and then commands the squad 
forward to the LZ. After he observes that the squad is 
moving toward the LZ, he reduces the slant of the curve 
since he gets hopes of achieving the task that may be given 
from the emotion module. The changed information graph 
on the task is shown as follows: 
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After the LZ is secured by the squad whom the sergeant 
highly trusts, he does not need to maintain the information 
status that the LZ is secure with one hundred percent 
certainty but can lower the priority of the information (i.e., 
lower the desired certainty of information and expand the 
tolerance boundary).  With this shift in priority, allows the 
sergeant to observe, search, or track other information.  
The changed information graph on the task is shown as 
follows: 
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While the sergeant observes, searches, or tracks other 
objects, the certainty of the information of the security of 
the LZ will gradually decrease. The changed information 
tree on the task is shown as follows: 
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Next, the LT asks the sergeant, “Is the LZ secure?” This 
speech event increases the desired certainty of information 
and makes the tolerance boundary narrow since the 
sergeant wants to be very sure of the information that he 
will convey to his superior officer, the LT. The changed 
information graph and tree on the task is shown as 
follows: 
 

LT: IS The LZ SECURE?
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This speech event changes the benefit level by the 
changing the attributes of the tuple(3rd-squad-secure-lz).  
This, in turn, affects the sergeant’s emotional state by 
increasing the degree of distress, suggests that he should 
update the belief of the status of security of the LZ. As the 
result, the sergeant gazes at the landing zone to determine 
whether it is still secured by the dispatched squad 
members, and he responds with the status of the landing 
zone to the lieutenant. 
 
This example illustrates the importance of gaze in 
acquiring perceptual information and monitoring task 
performance while embedded in the social context of 
conversation. Our aim is to have the sergeant’s behavior 
seem appropriate within this context, both in terms of 
behaving human-like and using perceptual gaze to mediate 
between costs and benefits of information updating actions. 
 
5. Related Work 
There are few models or frameworks that address the issue 
of where and what an observer should look at in a given 
time.  Findlay and Walker (Findlay and Walker, 1999) 
present a comprehensive psychological model of the 
information flow routes and competitive pathways in 
saccade generation.  Their model has not been 
implemented as a computational system yet, but it served 
as a source of inspiration for aspects of the work described 
in this paper. 

There are a number of comprehensive computational 
models of perceptual attention for virtual humans.  
Chopra-Khullar and Badler (Chopra-Khullar and Badler, 
2001) built one of the most extensive models to date, a 
psychologically motivated framework for generating the 
visual attending behaviors of an animated human figure.  
Their implementation generates believable animation 
behaviors for a virtual human performing a fairly 
scripted set of tasks, but it is not clear how the model 
would fare in a much more dynamic environment where 



the need to react to events in the world is much higher 
than the virtual world they describe. The model appears 
to fall into the top-down attention category, where gaze 
behaviors are scheduled and placed in a queue. 

Cassell and Vilhjalmsson (Cassell and Vilhjalmsson, 
1999) have used gaze as an important communicative 
behavior in their animated characters. Their animated 
characters have several limitations: (1) the model does not 
operate in real time, (2) the model only includes 
conversational gaze, and (3) the model does not include 
variability due to emotional state or individual differences.  

Rickel and Johnson (Rickel and Johnson, 1999) also 
employ gaze in their tutoring agent, STEVE, who looks at 
the student during conversational interaction, and looks at 
objects in the environment when performing tasks or 
monitoring the student. Their main purpose of adopting 
eye movements into agents is to generate eye movements 
for non-verbal communication (e.g. turn-taking) that are 
controlled by top-down attention. The general limitation of 
STEVE is that a gaze command typically comes at the 
beginning of a cognitive activity, but is not updated during 
that activity. So, for example, if STEVE starts talking to a 
person, he gazes at them. Then, if his attention is drawn to 
an action in the environment, he will remain gazing at that 
action until something else causes a gaze command.  

Hill (Hill, 1999, 2000) applied a simulation of attention for 
a virtual helicopter pilot. The virtual helicopter pilot 
selectively draw attention to an object(s)/area(s) based on 
features of objects and their priority to tasks, and 
perceptual grouping of objects. However, the helicopter 
pilot has no animation of head and eye movements. We 
extended Hill’s model of perceptual resolution based on 
psychological theories of human perception. 

6. Relationship to Social Attention 
While the model of perceptual attention presented above 
handles many aspects of gaze behavior, there is another 
factor in the broader scope of attention. Information 
certainty is just one of the motivations for gaze, but 
information can be acquired through other means than 
gaze, and gaze can be used for more than acquiring 
information.  In this section, we describe how these 
features can be added to the perceptual attention model, 
presented above, for a more complete model of gaze and 
attention in virtual humans. 
 
In a social setting, it is often important to use gaze to 
regulate the flow of conversation, including signals of 
turn-taking, and feedback. Some of this can be modeled 
directly as a ‘concern’ for information certainty, such as 
needing to look at an addressee while speaking to get 
information about whether that addressee is listening, 
understands, and agrees. Likewise, looking away from an 
addressee while planning speech could perhaps be 

modeled as inhibition of this feedback information when 
more cognitive facilities are needed for planning the 
utterance. Some other factors are less easily modeled as 
relating to information, however. An alternative reason for 
gaze aversion by a speaker is that it makes it harder for an 
addressee to take the turn by speaking.  Gaze also can be 
used as a form of non-verbal communication, e.g., to 
direct the gaze of others to an object, even when one does 
not need more information oneself. Another issue is that 
inappropriate gaze or aversion can send undesired signals 
about the attention and respect of the speaker or addressee 
– this will need to be figured in to the cost model.  
 
In a social situation, perceptual attention may sometimes 
interact with social and conversational attention. In the 
example given in Section 4, above, we already described 
how a question about a proposition can change the desired 
certainty of information. Conversation can also be used to 
affect the actual certainty. For example, rather than 
looking at the landing zone, the Sgt might instead radio to 
the squad and ask them about the security. We then have 
three means of monitoring: covert monitoring though 
memory and inference about future projection, overt 
perceptual gaze, and social monitoring through (perhaps 
prompted) reports of other agents. It may be difficult to 
arbitrate between these sources of information when they 
conflict. For instance, one may remember the landing zone 
as secure and have no reason for thinking it will change. 
On the other hand, a verbal status report may conflict with 
this. If trust is sufficiently high in the report’s certainty 
(and the trustworthiness of the reporter), one may choose 
to override the covert monitoring with this information. 
Another option is to motivate a new gaze to arbitrate. 
 
Social means may also change the relative costs of 
perceptual gaze shifts. For instance, it may be very rude to 
look away when someone is speaking (high cost of shift), 
yet it may be very important to attend to an unexpected or 
potentially dangerous event (high benefit to shift). With 
high utility on either end, the choice may be difficult, and 
moreover potentially very costly either way. One way 
around this is to reduce the cost of the shift with a social 
action, such as apologizing, or using a non-verbal gesture 
indicating that the speaker should wait a moment.  

 
7. Discussion and Future Work 
The proposed computational model for controlling the 
focus of perceptual attention for virtual humans provides 
the potential to support multi-party dialogues in a virtual 
world. As we begin to integrate perceptual attention into 
multi-party, multi-conversational dialogue layers (Traum 
and Rickel, 2002), we have demonstrated that virtual 
humans can respond dynamically to events that are not 
relevant to the tasks and shift their attention among objects 
in the environment and have gotten positive feedback to 
informal demonstrations. The model we have described 
here is still a prototype that has to be tuned   and tested in  



a wider range circumstances. In particular, by integrating 
more robust and deliberate language tasks with the model 
we have described in this paper, we believe we have made 
progress toward natural gaze behaviors in embodied 
conversational agents. In addition, by integrating the 
concept of measuring the salience of a specific class of 
spatial features with the model, we believe that this model 
will provide a large potential for generating more reactive 
and realistic bottom-up attention. 
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