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Abstract. For an agent to engage in substantive dialogues with other agents,
there are several complexities which go beyond the scope of standard models
of rational agency. In particular, an agent must reason about social attitudes that
span more than one agent, as well as the dynamic and fallible process of plan
execution. In this paper we sketch a theory of plan execution which allows the
representation of failure and repair, extend the underlying agency model with
social attitudes of mutual belief, obligation, and multi-agent plan execution, and
describe an implemented dialogue agent which uses these notions, reacting to its
environment and mental state, and deliberating and planning action only when
more pressing concerns are absent.

1 Overview

For autonomous agents that operate in a realm of heterogeneous agents (including human
agents), an agent theory should allowmany of the features of natural language dialogue.
The agent communication protocols should allow flexible turn-taking and initiative,
reactions to the utterances of others, and flexible mechanisms of establishing mutual
understanding and repairing problems when they occur. Such an agent must have (at
least implicitly) functionally equivalent mechanisms to many of the mental and social
attitudes of human agents.

This paper relates several strands of work towards developing a comprehensive
agent theory. In section 2, the basic framework for deliberative agency is presented,
including a theory of plan execution which makes explicit the mental attitudes that an
agent has towards aspects of a plan that is being executed. The theory also allows the
representation of different kinds of repair of plan executions as part of the reasoning and
acting process. In section 3, this theory of agency is expanded to include social agency,
in which an agent theory must also include inter-agent social attitudes. Three attitudes
are discussed: mutual belief, specifically the grounding problem of adding to these
mutual beliefs in dialogue, obligations, which are used to model the effects of certain
speech acts and interactive behavior, and form another source for intentions, in addition
to the individualgoals of the agent, andmulti-agentplan executions, the expansionof the
theory in section 2, which relies on obligations, and is also used to model the grounding
process. In section 4, an implemented social agent is briefly described: the dialogue
manager of the TRAINS-93 system. These social attitudes are used in a reactive manner
to guide the agent’s behavior through the deliberative process in a local, step-by-step
manner which is sensitive to the changing conditions as the dialogue progresses.



2 Aspects of Individual Agency

The approach to agency is informally sketched below.1 A more full exposition in terms
of a situation logic was presented in [24, 21]. The attitudes of belief and desire form
the starting points for reasoning and acting. From the desires (and with reference to
beliefs and other goals and intentions), the agent will deliberate and choose a set of
goals: conditions that the agent will try to achieve. Planning or means-ends reasoning
will lead to the formation or selection of a plan recipe designed to meet the goals.
Recipes are viewed as consisting of a set of actions coupled with a set of constraints
relating various properties of these actions (e.g. constraints on relative timing or objects
and locations of actions, preconditions or effects represented as events or states which
must hold over times related to the times of actions). We denote the set of actions
of a recipe, R, by Actions R . The set of constraints on a recipe will be denoted by
Constraints R 2.

There are two kinds of “action” that must be considered in reasoning about plan
execution: actual occurrences in the world (which we term here executions, noted with
Greek letters), and abstractions of these occurrences (called actions) that are reasoned
about by agents, and are the objects of intention, and components of recipes. For example,
whenever an agent does something, there will be many abstractions of what was done,
only some of which will be important for the plan. Agents will observe executions and
decide whether or not particular actions of interest have been performed. What we call
actions are sometimes called action types [12] or activities [3].

We use the symbol “ ” to represent the “realizes” or “is characterized by” relation
between an execution and an action. An action occurs, iff there is some execution which
realizes that action: Occurs a : a

An execution could realize unrelated action types, and whenever an execution
realizes an action type, it realizes a more abstract action type as well. As an ex-
ample, suppose there is some execution which realizes a MakeSpaghetti action:

MakeSpaghetti Agt time . It would then also be the case that this same execution re-
alizes aMakeNoodles action: MakeNoodles Agt time . Itmight also be the case that
this sameexecution also realizes someunrelated action, say WakeUpDog Agt time .
In this case, we have two separate actions performed in the same execution.
Plans are viewed as individuals: platonic objects, which, like physical objects, can

have their structuremodified through time. At any givenmoment, a plan will correspond
to a particular plan recipe. We denote the recipe of a plan, P, at time t as Recipe P t .
Agents can be in particular relationships with plans, for instance, believing that they
correspond to particular recipes, or intending to carry them out. When an agent adopts
or commits to a plan, the agent will have a commitment to achieve (or maintain) the
constraints of the plan and intention to perform the actions in the plan.

When an agent has committed to a plan, she can try to perform an action in that plan.
She can also observe the situation she finds herself in, perhaps revising her beliefs and
desires. She can also replan, revising the plans she is executing to correspond to different
1 The approach presented here was based on the BDI model introduced in [5].
2 Many of these constraints will be implicit in any Representation of a recipe, e.g. as shared
variables in two separate actions, or domain constraints on possible recipes.



plan recipes, and thus changing her commitments and intentions. We distinguish two
types of plan revision: plan elaboration, in which additional actions (e.g., decomposi-
tions of non-primitive actions) or constraints are added to a plan, and plan repair, in
which some of the actions or constraints are removed. We can also distinguish the action
of plan repair from changing plans. In both cases, the intentions and commitments of
an agent change, but in the former case, the agent is changing the structure of a given
plan which she continues to execute, whereas in the latter, the agent drops all intentions
related to the old plan and adopts a new set.

We represent (future-directed) intention as having two parameters other than the
agent: an action which the agent intends to perform, and a plan which this action is
intended to (in part) achieve – Intends Agt a P . This is roughly equivalent to the
expression Int(Agt,By(a,P)) used by [19, 14]. Commitment is a weaker notion than
intention. If an agent is committed to a proposition, this commitment will influence
future deliberation to avoid actions which will result in the negation of the proposition
holding, and if the agent comes to believe that the proposition will not hold, this
will motivate deliberation and potential adoption of new intentions. Unlike intentions,
however, commitments will not, in and of themselves, involve future action by the
agent (although they may serve as the source for the adoption of intentions to perform
actions, as well as being the metric by which the success or failure of such actions is
judged). We represent commitment as a relation between an agent and a proposition,
Committed Agt . The committed relation is similar to the Int.Th operator of [13],
while intends is like their Int.To. Finally, we represent present-directed intention as an
abstract action in its own right, called try. Try Agt a P means that the occurrence
is characterized by Agt attempting to do action a (intentionally) as part of executing

Plan P.
From the point at which a plan is adopted to the point at which the intentions and

commitments are dropped, we say that the agent is executing the plan. Plan execution
is a generalization of Pollack’s notion of an agent having a plan [19, 18], to the case in
which the agent is in the midst of execution. This has important consequences for the
component mental attitudes, since, e.g., an agent will no longer intend to perform an
action it has already completed. In addition, we drop some of the rationality conditions,
such as the following: A believes that he can execute each act in [The Plan]. and
A believes that executing the acts in will entail the performance of [The goal].
While violations of these conditionswill be good reasons for the agent to repair the plan
or execution, we do not believe that these should be constraints on the definitions of
having and executing a plan. This allows us to model irrational agents, as well as agents
following delegated plans, and agents in the midst of their repair process (e.g., after
noticing that an actions would not be executable, but before repairing the execution).

A Plan Execution Situation (PES) is a situation in which a plan is being executed.
It is a piece of the world containing a plan and the relevant agents, plan, objects, and
events that make up executions or attempted executions of the plan. Each PES will
have a designated current reference time, now. We represent a plan execution situation
(named PE) as a 5-tuple, Agt PPE EPE BindPE SPE where:

Agt represents the agent that is executing the plan.
PPE represents the plan that this is the execution of.



EPE represents the set of executions which have been performed in executing the plan.
I.e., EPE iff a : Agt a PPE .

BindPE represents the instantiation (partial) function from actions of the plan to per-
formed executions. For each action in the plan, its instantiation is an execution
which the agent believes realizes that action. We will generally view this function
as a set of relationships of the form: ai i where
ai PPE nowPE , i EPE.3 We will use a superscript ver-
sion, ai

PE
i as shorthand to indicate that ai i BindPE.

SPE represents the execution status, either 1 or 0, representing whether or not the plan
is being executed.

Since each PES has its designated now time we will generally omit the temporal
parameters from the recipe designators for the PES’s plan. Thus Recipe PPE will be
used as shorthand forRecipe PPE nowPE . Similarly, we will use Actions PPE to refer
to the set of actions in the plan’s recipe at thenow time:Actions PPE nowPE ,
and Constraints PPE will stand for the set of constraints of the recipe at the now time:
Constraints PPE nowPE .

When an agent believes that an action in the plan has been performed by some
execution (physical performance by the agent), we say that plan action is instantiated.
Two predicates will be useful for classifying actions in a PES’s plan as to whether they
have been performed or not:

Definition 1 Instantiated a PE iff a Actions PPE EPEa
PE

Definition 2 Uninstantiated a PE iff a Actions PPE Instantiated a PE

Note that an action that is not in the plan at all is neither instantiated or uninstantiated
with respect to the PES. An agent, Agt, is said to be executing plan P iff all of the
following conditions hold:

1. Agt intends to perform all uninstantiated actions in plan P
2. Agt is committed to the occurrence of all constraints in P
3. Agt believes all instantiated actions have been realized by executions
4. Agt is committed to this realization of instantiated actions by executions

We define the remaining acts of a plan execution situation, RActs PE as those
actions in the plan which have not been instantiated by any of the executions – these are
the actions which still remain to be executed in order for the plan execution situation to
be completed. Formally, RActs PE ai ai PE

We can distinguish at least three distinct notions of the culmination of plan execution:

Action Completion – all actions in the plan have been performed: PE
Successful Completion – all actions in the plan have been performed and all of the

constraints have been met as well.
3 Actually, it might take several executions to instantiate an abstract action, depending on how
executions are divided up, so the range should actually be a subset of E PE rather than a single
element.



Goal Satisfaction – the goals whichmotivated adoption of the plan have been achieved.

Note that Successful Completion and Goal Satisfaction are somewhat independent.
It may be the case that the goals are met before the plan is completed (e.g., imagine a
plan to open an elevator door by pushing a button: the goal is to get the elevator door
open, but suppose it opens by itself when someone else gets out). Depending on the
plan adoption procedures, a plan might also be successfully completed without having
satisfied the goals. A plan is an entity independent from the goals for which it was
adopted, and the same plan could be used to try to achieve many different sets of goals.
If a goal is not a constraint of the plan, it may be the case that the plan is successfully
executed but the goals are not met. In a distributed control scenario, a plan executor
may not have access to actual goals and may simply adopt particular plans under orders
of a superior.

A plan executor will monitor the success of the plans it is executing, and engage in
a repair if the plan is not successful. But the plan executor will also need to monitor
goals: plan repair might also be warranted if the situation changes. This could include
eliminating unnecessary actions if the goals are met though events external to the plan
itself.

The updating of a situation by an occurrence is a situation that includes both the old
situation as well as the occurrence. Generally this will involve adding an occurrence
which happens at the now point of the situation, and the now point is then updated to
immediately after the time of the occurrence. We introduce a situationupdating function,
Update PE which takes as parameters an occurrence and a situation, and returns the
updated situation. There are several ways in which an execution may update a plan
execution situation PE. The simplest is if the execution is intended to instantiate one or
more of the actions inRActs PE . We define a predicateDoNext over an execution and
a PES which is true when there is a second PES which is an update of the first with the
execution and binding relationship added:

Definition 3 DoNext PE iff4

a RActs PE : Try Agt a PPE
PE : PE Update PE Recipe PPE Recipe PPE

EPE EPE BindPE BindPE a

We can define a failure as an execution which does not realize the action which it
was intended to.

Definition 4 Fail iff Agt a P : Try Agt a P a

What ismore relevant for plan execution than a normative characterization of failure
is perceived failure. This is an execution which the agent believes is to be failure: any
executions of a PES which are not bound to an action in the plan.

Definition 5 PerFail PE iff EPE ai : ai Actions PPE ai
PE

4 For simplicity, the definition presented here allows an execution to realize only a single action
in the plan. The actual definition replaces the bound action, a, with a subset of RActs PE .



If an agent believes that her action is a failure, the updated PES will include the
execution, but will not have any new binding relationships.

There are at least twoways of continuinga plan execution other than simply updating
the plan by performing a next action. One is to change the instantiation function such
that either some action ai in the plan which was previously instantiated by some some
execution is no longer instantiated by that execution, thus requiring a new execution
to bind that action in any completed plan, or, conversely, that some ai which was
previously uninstantiated is newly bound by an execution already part of the PES.
Other instantiations in the plan execution would remain the same. We call thisERepair,
standing for execution repair, since the same plan is maintained but the beliefs are
changed about the success of previous action, and thus intentions about future actions
are also changed.

Definition 6 ERepair PE iff PE : PE Update PE
Recipe PPE Recipe PPE EPE EPE BindPE BindPE

Another type of plan execution repair is to modify the plan itself, so that it is
composed of a different recipe, though it still uses some of the same executions. This
might also entail further ERepair, if it eliminates actions which have already been
instantiated. We call this PRepair, standing for Plan Repair, since we are changing
the plan that is being executed. In a PRepair the agent has changed intentions from
performing the actions in the old recipe to performing actions in the new one.

Definition 7 PRepair PE iff
PE : PE Update PE Recipe PPE Recipe PPE EPE EPE

A plan execution may also terminate without success. An execution cancels a PES
if it changes the execution status from one to zero. Formally:

Definition 8 CANCELS PE iff
PE : PE Update PE SPE 1 SPE 0

Cancelling a PES amounts to the agent involved dropping the appropriate intentions
to perform the plan by doing the specified actions. This doesn’t necessarily indicate
dropping the intention to achieve the goal behind the plan, and in fact the agents may
start a new plan execution using the same recipe.

Given this basic framework, the activity itself is up to the agent: observing the success
or failure of its actions, deciding to do a new step in the plan, repair an execution, or
replan. Rationality principles such as those by by Pollack (presented above), or those
used in [6] will be important guidelines for a successful agent. However, it is important
to distinguish these principles of rationality which guide an agent’s deliberation from
the definition of the mental attitudes which constitute agency, in order to reason about
violations of the rules and irrational agents. In a heterogeneous world, an agent may
very well come across irrational agents, and, in fact, an agent may even be obliged by
another agent to act in an irational manner (see section 3.2).



3 Social Agency

In order to model multi-agent interactions, such as natural language conversation, the
model of agency described in the previous sectionmust be extended in several directions.
A social agent model must contain social attitudes in addition to the individual-level
attitudes (e.g., belief, intention, etc). Social attitudes contain more than one agent as
primary holder – they express a social relationship between the agents rather than just
the cognitive state of one agent. In this section, we discuss three such social attitudes,
and how they are important for reasoning about agent interaction such as dialogue.

3.1 Mutual Belief and Grounding

Mutual belief is one commonly assumed social attitude. While it is still somewhat
controversial how best to formally model mutual belief (e.g., as a conjunction of nested
beliefs or a self-referential attitude, see [4]), an interesting question is how such mutual
belief gets established among interacting agents. While it has long been known that
is impossible to guarantee the establishment of mutual knowledge in an environment
where message transmission could fail [15], most formulations of speech acts have
gone to the other extreme, and assumed mutual belief after the performance of any
utterance within a shared situation (e.g., as the effect of a single agent speech act).
However, examining actual conversation reveals that there is a process of feedback that
accompanies initial utterances, and, in task-oriented spoken language, it is generally
only after some sort of acknowledgment that an assumption of mutual belief is made.
Furthermore, lack of understanding can be signaled with some sort of repair or request
for repair. In cases in which the original speaker does not receive any feedback, one can
observe requests for acknowledgment or repetitions and refashionings of the original
contribution in an attempt to elicit some kind of feedback.

While the assumption of mutual belief resulting directly from a single utterance can
be seen simply as an idealization (likemodeling beliefwith amodal logic such asS5,with
the resulting properties of logical omniscience), it is one with unfortunate consequences
if used as the basis for models of speech acts and inter-agent communication. The
consequences are twofold: first, a reasoner will make incorrect predictions about the
mental state at particular times, and more importantly, the agent will be unable to
recognize the relevance of or necessity for performing the feedback acts which actually
establish the mutual understanding.

Clark and Shaefer call this process of reaching mutual belief (or common ground)
grounding [8]. They present a descriptivemodel, in terms of presentation and acceptance
phases that allow them to track the augmentation of common ground as the conversation
proceeds. Their model is not well-suited for an on-line agent involved in dialogue,
however, since it requires examination of subsequent spans of text in order to determine
the boundaries of these phases.

In [22, 21], we developed a computational account of the grounding process. This
account was based on speech act theory, using actions to introduce, acknowledge,
and repair material. Traditional speech acts, such as inform, and request are now seen
as multi-agent actions, which require participation by both parties to have their full
effects (such as the mutual belief that one speaker wanted the other speaker to believe



something).We introduced a level of dialogue structure called discourse units (DUs), at
which these core speech acts are completed. These DUs are built up by single-utterance
grounding acts. Recognizing the fact thatmultiple types of action occur in conversation,
we extended speech act theory to the multi-level conversation act theory, described in
[25]. As well as the grounding and core speech acts, there are also levels to model
turn-taking behavior and higher order coherence of dialogue. A finite automaton was
used to track the state of a DU, given a sequence of grounding acts in conversation. This
model could also be used to predict possible subsequent acts as well as determine which
act(s) must be performed in order to have a grounded DU (which would thus realize the
effects of the constituent core speech acts).

3.2 Obligations

We claim thatObligations are necessary for modeling many social situations including
natural language conversation, e.g., for capturing the effects of some speech acts, such
as requests [23]. Obligations represent what an agent shoulddo, according to some set of
norms; its formal aspects are examined using Deontic Logic (e.g., [27, 17]). Generally,
obligation is defined in terms of a modal operator often called permissible. An action
is obligatory if it is not permissible not to do it. An action is forbidden if it is not
permissible.

Just because an action is obligatory with respect to a set of rules R does not mean
that the agent will perform the action. So we do not adopt the model suggested by [20]
in which agents’ behavior cannot violate the defined social laws. If an obligation is not
satisfied, then this means that one of the rules must have been broken. We assume that
agents generally plan their actions to violate as few rules as possible, and so obligated
actions will usually occur. But when they directly conflict with the agent’s personal
goals, the agent may choose to violate them (and perhaps suffer the consequences of
not meeting his obligations). Obligations are quite different from and cannot be reduced
to intentions and goals. In particular, an agent may be obliged to do an action that is
contrary to his goals (for example, consider a child who has to apologize for hitting
her younger brother). [11] use obligations in a similar way, noting also that authority
(such as a pre-existing hierarchical relationship) can be important in the ability to force
obligations on others.

In [23] we argued that obligations play an important role in accounting for many
of the interactions in dialog. For example, Table 1 shows the obligations resulting from
the performance of speech acts. Obligations do not replace the plan-based model of
speech acts (e.g., [10, 1]) but augment it. The resulting model more readily accounts for
discourse behavior in adversarial situations and other situations where it is implausible
that the agents adopt each others’ goals. The obligations encode learned social norms,
and guide each agent’s behavior without the need for intention recognition or the use
of shared plans at the discourse level. While such complex intention recognition may
be required in some interactions, it is not needed to handle the typical interactions of
everyday discourse.

The deliberation process in a social situation must take obligations into account, in
addition to goals and intentions. In forming new intentions, sometimes an agent will
choose to pursue his obligations rather than his goals. It is important for the agent to



source of obligation obliged action
S1 Accept or Promise A S1 achieve A
S1 Request A S2 address Request: accept or reject A
S1 YNQ whether P S2 Answer-if P
S1 WHQ P(x) S2 Inform-ref x
utterance not understood or incorrect repair utterance
S1 Initiate DU S2 acknowledge DU
Request Repair of P Repair P
Request Acknowledgement of P acknowledge P

Table 1. Sample Obligation Rules

reason about both of these notions, so that this choice can be made explicit (either in the
agent design or by the agent itself). There is also an illuminating relationship between
this deliberation process and the notion of initiative in dialogue. Following the initiative
of the other can be seen as an obligation-driven process, while leading the conversation
will be goal-driven.

3.3 Multi-agent plan execution

Another common social attitude is that of Joint intention [9] or shared plan [14]. These
concepts are used to model the propensity of a collaborative team to act. The intuition
here is that it is more than just a collection of individual intentions and beliefs that
is responsible for the coordinated teamwork activity. In [21], we developed a similar
notion, that of agents executing a multi-agent plan. This is an extension of the notion of
executing a plan described in section 2, above. A group of agents is executing a
multi-agent planMP iff:

1. Each is executing a single-agent planMP , which has as its actions ’s actions
fromMP, and as its constrains the constrains ofMP, as well as the occurrence of all
actions by other agents (thus will be committed to the occurrence of the actions
of others).

2. Each is obliged to the other agents to perform her own actions as part of the
multi-agent plan.

This formulation has several differences from the other works mentioned. First, no
mutual belief is stipulated as a necessary component of the multi-agent plan execution.
While mutual beliefs may sometimes be important for collaboration, and particularly
for decisions about adopting plans and repairing plan executions, they are not strictly
necessary for this kind of teamwork. In this framework, it is the personal commitment
to the occurrence of the actions of others, and the obligations to those others (as well as
the personal intention to perform the action) that forms the glue among the collaborating
team. While any agent may break the team at any time by dropping these commitments
and intentions, the obligations will remain until the agent is released, and it is this
which motivates such actions as letting another know that an action has been performed



or is deemed impossible. Even with notions of mutual belief of intentions (as in the
SharedPlan formalism of [14, 13]), or commitment to inform an agent if an action is
performed or impossible (as in the joint intentions of [9]), it is hard to see, in practice,
what keeps an agent adhering to these commitments when its personal goals diverge.

This formulation was also used to formally model the grounding process described
in section 3.1, above. Agents involved in a task oriented dialogue are assumed to be
executing a specialization of the abstract plan recipe shown in Figure 1. This abstract
recipe will be called CR (for Communication Recipe). Our claim is that successful
execution of (a specialization of) this recipe will result in the (mutually assumed) mutual
belief between the twoagents that INITIATOR(CR) has communicated CONTENT(CR)
to RESPONDER(CR). Agents engaged in conversation can be modeled as executing
multi-agent plans which are specializations of this recipe. We will call any plan which
has as its recipe a specialization of CR a conversation plan.

Actions CR = presenti presenti Present Agent1i Contenti Recipient1i t1i
acki acki Ack Agent2i Contenti Recipient2i t2i

Constraints CR =
Temporal constraints i Before t1i t2i
Agent constraints i Agent1i Recipient2i INITIATOR CR

Agent2i Recipient1i RESPONDER CR
Object Constraints CONTENT CR iContenti

Fig. 1. Plan Recipe for Communication (Recipe CR)

The acts of presenting and acknowledging the content are broken into some inde-
terminate number of conceptual sub-acts, about at the granularity of the propositions in
[16]. The only constraints on performance of these is that for a particular piece of the
content, the presentation must come before the acknowledgment, and both must occur
to achieve mutual belief. Constraints on exactly what types of executions can present
and acknowledge the above contents will be determined by conventions of the particular
language used and the communicative contexts. For any given execution, some parts
of the content will be expressed explicitly as part of the compositional conventional
meaning of the utterance, and others will be presented implicitly by conventions of
situated meaning and Gricean implicatures. In [21], the grounding acts from [22] were
given formal specifications as executions related to conversation plans.

4 An Example Implemented Social Agent

The dialoguemanager of the TRAINS-93 system [2, 26] is implemented as a reactive de-
liberative agent. A rich model of the mental and conversational state (including private,
nested, and mutual beliefs; private, proposed and shared plans; conversational goals,
intentions, and obligations) is maintained and updated as the conversation progresses.



This includes adopting new beliefs and other attitudes as a result of the language inter-
pretation process, as well as through the system’s own reasoning and deliberation. The
TRAINS-93 System is a large integrated natural language conversation and plan reason-
ing system. Its task is to develop and execute a shared plan about a transportation and
manufacturing domain, through conversation with a human user. The dialogue manager
module is responsible for maintaining the flow of conversation and making sure that
the conversational goals are met. For this system, the main goal is that a shared plan
which meets the user’s domain goals is constructed and executed in the domain. The
dialogue manager must track the state of the dialogue, determine effects of observed
conversation acts, generate utterances, and send commands to the domain task reasoner
when appropriate.

In designing an agent to control the behavior of the dialogue manager, we choose a
reactive approach, in which the agent is constantly making local decisions as to what
to do next, rather than planning whole interactions in advance. So-called “discourse
plans”, specifying the sequence of utterances to be performed may be appropriate in a
text generation domain, but in dialogue one can not completely predict the responses of
the other agents involved. Moreover, timely behavior is critical: the same response can
have a very different connotation if it is delayed. Still, deliberation over the range of
individual and social attitudes will be an important component in the agent’s activity.

The TRAINS system is very cooperative and generally lets the user take the ini-
tiative whenever the user would like to. Consequently, obligations are made a higher
priority than working on the system’s own goals. When deciding what to do next, the
agent first considers obligations and decides how to update the intentional structure
(add new goals or intentions) based on these obligations. Obligations might also lead
directly to immediate action. If there are no obligations, then the agent will consider
its intentions and perform any actions which it can to satisfy these intentions. If there
are no performable intentions, then the system will deliberate on its overall goals and
perhaps adopt some new intentions (which can then be performed on the next iteration).

For the dialogue agent, special consideration must be given to the extra constraints
that participation in a conversation imposes. This includes some weak general obliga-
tions (such as acknowledging utterances by others and not interrupting) as well as some
extra goals coming from the domain setting to maintain a shared view of the world and
the domain plans which are to be executed. We prioritize the sources for the delibera-
tions of the actor as follows:
1. Discourse Obligations (e.g., answer a question, repair a misinterpretation)
2. Weak Obligation: Don’t interrupt user’s turn
3. Intended Speech Acts
4. Weak Obligation: Grounding (coordinate mutual beliefs)
5. Discourse Goals: Domain Plan Negotiation
6. High-level Discourse Goals

The implemented agent serializes consideration of these sources, looking at the lower
priority items only if there is nothing requiring attention in the higher priorities. More-
over, only one action is performed at a time before re-checking the context. The updating
of the conversational context due to perceived conversation acts or actions of othermod-
ules of the system progresses asynchronously with the operation of the discourse agent.



Whenever the dialogue agent is active, it will first decide on which task to attempt,
according to the priorities given above, and then work on that task. After completing a
particular task, it will again search for the most urgent task, although by then the context
may have changed due to, e.g., the observation of a new utterance from the user. The
agent is always running and decides at each iterationwhether to speak or not (according
to turn-taking conventions); the system does not need to wait until a user utterance is
observed to invoke the agent, and need not respond to user utterances one by one.

The agent’s first priority is fulfilling obligations. If there are any, then the agent will
do what it thinks best to meet those obligations. If there is an obligation to address a
request, the agent will evaluate whether the request is reasonable, and if so, accept it,
otherwise reject it, or, if it does not have sufficient information to decide, attempt to
clarify the parameters. In any case, part of meeting the obligation will be to form an
intention to tell the user of the decision (e.g., the acceptance, rejection, or clarification).
When this intention is acted upon and the utterance produced, the obligation will be
discharged. Other obligation types are to repair an uninterpretable utterance or one in
which the presuppositions are violated, or to answer a question. In question answering,
the agent will query its beliefs and will answer depending on the result, which might be
that the system does not know the answer.

In most cases, the agent will merely form the intention to produce the appropriate
utterance, waiting for a chance, according to turn-taking conventions to actually generate
the utterance. In certain cases, though, such as a repair, the system will actually try to
take control of the turn and produce an utterance immediately. For motivations other
than obligations, the system adopts a fairly “relaxed” conversational style; it does not
try to take the turn until given it by the user unless the user pauses long enough that
the conversation starts to lag. When the system does not have the turn (priority 2), the
conversational state will still be updated, but the agent will not try to deliberate or act.

When the system does have the turn, the agent first (after checking obligations)
examines its intended conversation acts (priority 3). If there are any, it calls the NL
generator to produce an utterance.5 It might not be convenient to generate all the
intended acts in one utterance, in which case some intended acts may be left for the
future consideration.

If there are no intended conversation acts, the next thing the agent considers is
the grounding situation (priority 4). The agent will try to make it mutually believed
(or grounded) whether particular speech acts have been performed. This will involve
acknowledgingor repairing user utterances, as well as repairing and requesting acknowl-
edgment of the system’s own utterances. Generally, grounding is considered less urgent
than acting based on communicative intentions, although some grounding acts will be
performed on the basis of obligations which arise while interpreting prior utterances.

If all accessible utterances are grounded, the agent then considers the negotiation
of domain beliefs and intentions about the TRAINS world, (priority 5). The agent will
try to work towards a shared domain plan, adding intentions to perform the appropriate
speech acts, including accepting, rejecting, or requesting retraction of user proposals,

5 If the only intention is to acknowledge, the agent will postpone the generation until it checks
whether there is any other content, such as an acceptance or answer, that could be expressed in
the same utterance.



requesting acceptance of or retracting system proposals, and initiating new system
proposals or counterproposals. The agent will first look for User proposals which are
not shared. If any of these are found, it will add an intention to accept the proposal,
unless the proposal is deficient in some way (e.g., it will not help towards the goal or
the system has already come up with a better alternative). In this latter case, the system
will reject the user’s proposal and present or argue for its own proposal. Next, the agent
will look to see if any of its own proposals have not been accepted, requesting the user
to accept them if they have been simply acknowledged, or retracting or reformulating
them if they have already been rejected. Finally, the agent will check its private plans
for any parts of the plan which have not yet been proposed. If it finds any here, it will
adopt an intention to make a suggestion to the user.

If none of themore local conversational structure constraints described above require
attention, then the agent will concern itself with its actual high-level goals (priority 6).
For the TRAINS system, this will include making calls to the domain plan reasoner and
domain executor, which will often return material to update the system’s private view
of the plan and initiate its own new proposals. It is also at this point that the agent will
take control of the conversation, pursuing its own objectives rather than responding to
those of the user.

Finally, if the system has no unmet goals that it can work towards achieving, it will
hand the turn back to the user or try to end the conversation if it believes the user’s goals
have been met as well.

4.1 Example

The following example gives a sense of how the dialogue manager uses this repre-
sentation of context and priorities to engage in dialogue. More extended examples are
presented in [23, 21]. The example starts with a declarative utterance by the User:

U: “There are oranges at Corning.”
At the core speech act level, this is interpreted as initiating both an inform (about

the location of oranges), and a suggestion that the oranges be used in the current plan.
At the grounding level, this is seen as the initiation of a DU. It is also seen as keeping
the turn. This has the following effects on the context - first (at priority level (4), there
is an unacknowledged DU, which will require grounding. More prominently, however,
the user still has the turn, so the system will just wait for the next utterance.

U: “Is a boxcar there?”
This is interpreted as asking a yes-no question, continuing the current DU, and

releasing the turn. Now there is an additional core speech act in the ungrounded DU,
and the system has the turn. The chosen action is now, at priority 4, to add the intention
to acknowledge the content in this DU (a new item at priority 3). Forming this intention
also causes the system to update its mental state with the effects of this content. In this
case, the inform and suggestion will be interpreted as user proposals, at priority level 5.
The YNQ leads to an obligation to answer the question, which is at priority level 1. Since
the obligation is of highest priority, the system acts upon this by querying its beliefs to
see if a boxcar is at Corning. This check returns negatively, which leads the system to
intend to inform the user of this fact. Now, the the highest priorityare the intended speech



acts. These are passed to the NL generator, and a combined, acknowledgment/answer
is provided with:

S: “No there isn’t”
This simple example displays some of the flexibility of the reactive agency model.

Given different responses or a different initial mental state, many variants of this simple
dialogue could have been produced using the same rules. Most of the flexibility of
plan-based approaches is maintained, while the obligationmodel presents a much more
direct account of question answering, without any need for reasoning about or adopting
the desires or intentions of the user.

5 Summary

This paper has briefly sketched a theory of agency suitable for an agent in a multi-agent
domain. For flexibility, an agent’s communication language should include most (if not
all) of the properties of natural language. An agent must be able to reason about the
execution process, including repairing and revising plans, when necessary. Section 2
described the basics of a theory of plan execution. Social, as well as individual, level
aspects of mental state, as discussed in section 3, are important to reason about multi-
agent interaction. Both reactive and deliberative aspects are important for an agent
in an uncertain world. Reactivity is crucial to deal with changing circumstances in a
timely manner, but deliberation is also important to be able to do complex tasks. These
two components can be integrated, as in the TRAINS system, by having some of the
“reactions” be to deliberate on a particular problem. This deliberation must also be
constrained to more local decisions rather than solving a whole problem, in order to
allow the system to react in a timely manner.
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