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ABSTRACT

This study explores two hypotheses about human-agent teaming: 1. Real-time coordination among a large set of
autonomous robots can be achieved using predefined “plays” which define how to execute a task, and “audibles”
which modify the play on the fly; 2. A spokesperson agent can serve as a representative for a group of robots,
relaying information between the robots and human teammates. These hypotheses are tested in a simulated
game environment: a human participant leads a search-and-rescue operation to evacuate a town threatened
by an approaching wildfire, with the object of saving as many lives as possible. The participant communicates
verbally with a virtual agent controlling a team of ten aerial robots and one ground vehicle, while observing a live
map display with real-time location of the fire and identified survivors. Since full automation is not currently
possible, two human controllers control the agent’s speech and actions, and input parameters to the robots,
which then operate autonomously until the parameters are changed. Designated plays include monitoring the
spread of fire, searching for survivors, broadcasting warnings, guiding residents to safety, and sending the rescue
vehicle. A successful evacuation of all the residents requires personal intervention in some cases (e.g., stubborn
residents) while delegating other responsibilities to the spokesperson agent and robots, all in a rapidly changing
scene. The study records the participants’ verbal and nonverbal behavior in order to identify strategies people
use when communicating with robotic swarms, and to collect data for eventual automation.

1. INTRODUCTION

Robotic assets and other autonomous systems are becoming increasingly important in a variety of industry,
civilian, and military contexts. As these systems become more complex and capable, their use is dynamically
evolving from one where a single human controls a single robot to one where multiple robots (or swarms)
are controlled by a single human. Human-multirobot systems have been used in applications such as terrain
mapping,1 transport,2 construction,3 and search and rescue operations.4 The use of multiple robots can allow
for benefits such as greater surveillance ability, additional physical power available for work, more robustness in
the overall system, and an opportunity to conduct diverse and coordinated activities. A significant challenge in
implementing swarms of robots is controlling the group in a manner that is efficient for one human to oversee:5

with an increasing number of robots comes additional strain on the human operator to monitor, instruct, and
communicate with the robots. This situation can lead to increased stress, workload, and fatigue for a human
operator,6,7 which in turn may lead to operator errors4,8, 9 or loss of situation awareness.10 Human factors can
place limits on the number of robots that can successfully be controlled.11

The workload demands placed on the human operator vary by how they control or communicate with the
robotic assets. While human involvement can increase swarm performance in complex and cluttered environ-
ments,12 the human can also be a bottleneck to performance if they must control robots individually or approve
all decisions.4,13 Controlling or communicating with each robot on an individual level can result in high work-
load, especially if the operator must also coordinate the interplay of the robots.14 In contrast, workload can be
reduced if the operator can use high-level commands14 or interact via a swarm “spokesperson”.15
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It is important, then, to develop methods of communication and control that can potentially reduce human
workload by allowing them to issue high-level commands or to query and interact with a swarm via an autonomous
intermediary acting as a spokesperson.

In this paper, we explore the idea of controlling a swarm of robots using human language alone, a method
which has already seen use with teams of virtual agents16 and individual robots.17 From a human controller’s
perspective, verbal communication is very natural, as it does not require learning an unfamiliar communication
system or control interface. To avoid the need for individual communication with each robot, we utilize two
models of communication intended to treat the swarm as a unit:15 (1) a sports-team inspired “playbook”
capability that assigns specific roles to members of the swarm that can be coordinated with other units, and
(2) a virtual swarm “spokesperson” who communicates with humans and acts as a human-like front-end interface
to the complex swarm and imparts information from the collective knowledge of the swarm.

We test our model using a simulated search and rescue mission. In the simulation, a small town is under threat
of an approaching natural disaster (simulated wildfire), and a single-human/multirobot team has been tasked to
find residents and help them evacuate safely. A human participant assumes the role of a swarm operator, tasked
with the swift and safe evacuation of the town residents before the fire arrives at their location. The operator
handles the high-level assignment of duties to members of the swarm, while low-level decisions are taken by the
swarm itself. The operator also handles communication with residents who need to be evacuated. This paper
describes the simulation environment we built for this purpose, and a data collection effort where 31 participants
interacted with the system assuming the role of operator. At present, our simulation environment relies on
two human controllers to interpret the participant’s verbal instructions and input them into the simulation; the
collected data will enable the training of an automated language understanding component to make the simulated
environment fully autonomous.

2. BACKGROUND AND RELATED WORK

In emergency disaster situations, there is extreme time pressure to conduct searches and locate survivors within
the first 48 hours, as the mortality rate increases substantially after this time.18 Emergency responders are
limited to whatever manpower can be mustered, as well as what technology is available to them to aid in their
tasks.

The idea of using robots for search and rescue is well established,19 with disasters being a driving force for
advancement.20 Natural catastrophes (e.g., earthquakes) or man-made disasters (e.g., terrorist attacks) can kill
thousands of people in a very short amount of time, and the critical period (48–72 hours) after the disaster is
when first responders want to utilize all the available assets.21 After this period, victim mortality drastically
increases owing to exposure and lack of food, water, and medical treatment.

Historically, ease of use has been an impediment in using robots during disaster events. In 2001, the World
Trade Center rescue response teams had access to various robots, but only utilized a few. Some reasoning for
the exclusion included physical constraints, but in one case, the robot was not used because the user interface
provided with it was still in its infancy (suitable for developers, but not emergency personnel).20 This highlights
the importance of developing an interface that is intuitive to responders with various levels of training with
robots, as the rate at which rescuers can be taught to use these tools correlates to the accessibility of training.22

A robotic swarm can be defined by the coordination between robotic units, which is reliant on shared infor-
mation and distributed algorithms. Units within the swarm will be able to traverse areas dangerous to human
life, mitigating some of the risk that typically befalls emergency responders working in the field. In addition, the
swarm will need to be able to communicate effectively with survivors, as well as impart knowledge to emergency
personnel responding to or controlling the swarm’s movements.

There are various research groups worldwide who focus on developing robots for Urban Search And Rescue
(USAR). The Center for Robot-Assisted Search And Rescue23 is the oldest institution devoted to promoting
the use of ground, marine, and aerial unmanned systems for public safety. Their mission is fostering unmanned
systems used by formal emergency management agencies through voluntary national and international activities.
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One of the first attempts for designing collaborative systems of mobile robots introduced an algorithm for
a distributed team of autonomous mobile robots to search for an object.24 Upon finding the object, the robots
would gather around it and “rescue” it in a collaborative manner.

Other exploration of issues that arise when using robots in search and rescue include a collapsed building
scenario25 and technology for a swarm of robots assisting fire-fighters, which discusses the swarming algorithms
by which the robots react to and follow humans.26 There is also work on different metrics for performance
evaluation of urban search and rescue tasks.27,28

Rescue robotics is a “team of teams” process with a 2:1 human to robot ratio.18 Previous research has
developed two theoretical models: a workflow model identifying the major tasks, actions, and roles in robot-
assisted search and a general information flow model capturing when, how, and why information is communicated
between robots and other team members.18 Our goal is to enable human operators to handle multiple robots at
the same time and move beyond theory to computational models that can be implemented and used in practice.

As the number of robots increases, the need for coordination among robots as well as for assistance to the
human operator exceeds current state-of-the-art capabilities.14 Thus, in order to achieve a wider deployment
of robots for practical tasks in various areas we need to expand human span of control over teams of robots.14

Earlier research has shown that direct involvement of the human operator in the coordination of multiple robots
can be very difficult and that performance deteriorates when a human operator is asked to control and coordinate
the decisions of more than 8–12 robots.4 This result motivates our use of a virtual spokesperson as a means to
reduce the cognitive load on the human operator, and in turn allow for the simultaneous control and coordination
of a large number of robots.

3. THE SIMULATION ENVIRONMENT

The primary objective of this project is to study how humans interact and communicate with swarms of robots
using predefined plays and a virtual spokesperson. The concept was developed through several rounds of paper
prototyping, with team members acting out all the roles in a wildfire scenario (operator, virtual spokesperson,
robots, and town residents). We then implemented a simulation environment that allows a participant to take
on the role of a control center operator in such a situation. The environment is extendible, so in the future,
participants may take on other roles such as town residents or rescue workers.

3.1 Scenario

The environment simulates a wildfire as it approaches (and eventually consumes) a small town. The rescue
task involves locating residents, convincing them to evacuate, and in some cases helping them to reach safety.
The task is time-sensitive because each resident must evacuate before the fire reaches their location. Some of
the challenges include efficiently locating residents; stubborn residents who need to be convinced to leave their
homes; residents in need of physical assistance for evacuation; and a scarcity of resources such as search drones,
evacuation vehicles, and most importantly time. All of these conspire to put a cognitive load on the operator as
they work to manage the rapidly developing situation.

The resources available to the operator in the simulation are ten drones and one transport vehicle. The
drones can perform a variety of tasks such as monitoring the fire’s spread, searching for residents, playing
recorded warnings, opening an audio communication channel with residents, following a resident’s movement, or
leading a resident to safety. The transport vehicle can drive and evacuate one resident household on each trip.
To keep track of the situation, the operator can view a map of the town which is updated live with the location
of the drones and vehicle, the areas that have been searched, and any information that was discovered such as
the location of the fire and any found residents (Figure 1).

Managing all the resources individually is beyond the capabilities of a single operator. The operator therefore
has at their disposal a set of “plays”, or high-level commands, which instruct a group of drones to perform a
certain action: the operator only needs to issue a command with parameters (for example, instruct a specified
set of drones to search a certain area), and the drones self-organize to carry out the instruction. Available plays
are listed in Figure 2. To communicate with the various resources, the operator utilizes a virtual agent that
acts as a “spokesperson” for the swarm. The spokesperson can relay verbal messages to and from the swarm,
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Figure 1. The operator’s interface at the beginning of the simulation, showing the location of the ten drones and the
rescue vehicle at the top of the map. Check marks at the bottom of the screen show areas that are known to be without
residents. The map does not show the location of fire or any residents, because the drones have not yet been instructed
to look for those.

Overwatch Send one or more drones to monitor the fire’s spread. Drones will position
themselves in the best spots to observe and report. Two drones are sufficient to
cover the entire town.

Search Send one or more drones to search for residents in a designated area. Drones
will self-organize to conduct a systematic search within the area. Drones search at
a constant speed, so a search will conclude faster if it uses more drones or covers a
smaller area.

Warning Instruct all drones to inform nearby residents of the current danger and the
requirement to evacuate. Only residents that are close to a drone will hear the
warning, and there is no guarantee they will heed it.

Monitor Instruct a drone to follow the location of an identified resident.

Guide Instruct a drone to guide a resident to safety. The drone will find the optimal
route by itself. It is up to the resident to follow the drone, so this instruction is best
given after the resident has agreed to comply.

Figure 2. Available “plays” which guide the behavior of drone swarms.
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Cooperative Couple A couple who are capable and willing to evacuate, but need to be
made aware of how dangerous the fire truly is. They will leave after a warning from
either the operator or the virtual spokesperson.

Babysitter An individual accompanied by two children who is capable and willing to
evacuate, but is anxious about leaving without the parents’ approval. She can be
persuaded to leave by either the operator or the virtual spokesperson.

Stubborn Man A resident who resists evacuation orders due to reluctance to leave be-
hind his work. He will only leave if successfully persuaded by the operator.

Stubborn Couple A couple under the notion that their preparations to their house are
enough to withstand the encroaching wildfire. They will only leave if successfully
persuaded by the operator.

Van Driver A man tasked with transporting a small group of elderly patients who has
become stranded with his patients following an accident on the road. This group
requires the transport vehicle to successfully evacuate.

Figure 3. Town residents.

relieving the operator from the need to communicate individually with swarm members. The spokesperson can
also perform some tasks on its own, such as communicating with residents or giving advice to the operator.
Thus, the spokesperson agent acts to reduce the cognitive load on the operator, and an important factor to a
successful evacuation is finding the right tasks to delegate to the spokesperson. The interaction between operator
and spokesperson (and by extension, all other elements of the simulation) is done via spoken language.

The scenario includes five residents, each of whom requires different actions in order to successfully evacuate
(Figure 3). The location of each resident is determined at random at the beginning of each simulation. Talking
to the residents is key in getting them to agree to evacuate; the operator can talk to a resident directly through
an audio channel enabled by a drone, or they can delegate the task to the spokesperson. The operator does
not know the residents’ characteristics ahead of time, nor do they know which resident they encounter at the
time that resident is discovered. The operator therefore needs to figure out the necessary resources and actions
through interaction with the resident. When multiple residents are discovered in short order, the operator needs
to decide with the spokesperson who will handle each case.

3.2 Implementation

The simulation is implemented in the Unity game engine (https://unity.com), using the Residential Buildings
Pack from Gabro Media∗ with trees from SpeedTree.† We added an overlay grid of 32×32 squares over the
map, a set of rules for governing the behavior of the various simulation elements, and an interface for inputting
parameters to the simulation. The following rules govern the behavior of simulation elements:

• The fire always spreads from the south, but its precise location and the speed at which it travels are
determined by parameters chosen at random for each simulation.

• The locations of the five residents are chosen at random for each simulation.

• When a swarm of drones searches an area, they divide it into sections and each drone searches a section
systematically following a line pattern. If the swarm changes mid-search (for example, one drone leaves to
guide a resident), then the remaining members adjust their patterns to cover the area.

• When a drone guides a resident to safety, it follows the most efficient route out of town.

∗https://assetstore.unity.com/packages/3d/environments/urban/residential-buildings-pack-39272
†https://assetstore.unity.com/packages/3d/vegetation/speedtree/free-speedtrees-package-29170
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Figure 4. Simulation control room: the “simulation wizard” on the right controls events in the simulated environment;
the “agent wizard” on the left monitors the video feed from the participant, and controls the virtual spokesperson agent
and town residents.

• When the transport vehicle evacuates a resident to safety, it follows the most efficient route to the resident
and out of town.

The spokesperson agent is implemented separately from the main application using the ICT Virtual Human
Toolkit,29 which provides components for the agent’s appearance, non-verbal behavior, and synthesized speech.

At present we do not have trained language processing components that can interpret the participants’ speech,
so all verbal communication is done using the Wizard of Oz methodology, with human controllers standing in for
the language understanding components, listening to the user speech and issuing commands that the system can
act on.30,31 Our system currently employs two controllers: a “simulation wizard” responsible for interpreting
instructions to the swarm and inputting them into the simulation environment, and an “agent wizard” responsible
for the verbal communication by the spokesperson agent and the town residents (Figure 4). The simulation wizard
uses a control panel inside the Unity application to input system parameters such as drone search patterns and
evacuation instructions (the panel is visible in Figure 4). The agent wizard triggers individual utterances by the
spokesperson and town residents using a separate wizard interface on a laptop (Figure 5).32 The interface has a
large array of buttons that trigger predefined utterances, including acknowledgements, confirmation of actions,
status updates, and suggestions to the operator. Buttons on the interface are color-coded in order to help wizards
quickly find the desired buttons, maintaining a natural conversational pace. The wizard also has the option of
typing a novel character utterance in real time, in case the existing utterances are insufficient. Utterances are
realized through speech synthesis. Our intention is to use the data collected from the interactions to train
language understanding components that will enable the future replacement of the wizards with automated
components, following the trajectory of other human-robot communication projects.33

4. DATA COLLECTION

The system was used for data collection in October 2019, for the purpose of analyzing verbal and nonverbal
behavior strategies when communicating with a robotic swarm, and in order to provide training data for the
eventual automation and extension of the system.

4.1 Materials and setup

Data were collected using the simulation environment described in section 3. Participants were seated in a room
in front of a Samsung 50-inch KU6300F Flat Smart 4K UHD TV showing the live game environment (Figure 6).
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Figure 5. Control interface for the agent wizard: the top row of buttons changes the screen to quickly switch between
agents; the current visible screen triggers utterances for the virtual spokesperson. Buttons are color coded as follows:
Red Urgent responses for time-sensitive situations; Orange Clarification questions about directions; Yellow Information
about available resources; Green Confirmation of executed actions; White Utterances that require the wizard to input
an extra parameter (e.g., drone number or row identifier); Gray Other utterances that do not require additional input.

Between the participant and the TV was a small table where the participant could put a sheet with written
instructions. The participant’s face and upper body were recorded by a Logitech web camera on top of the
TV, while their voice was recorded by a Sennheiser HSP-4 headworn microphone, connected to the computer
through a Focusrite Scarlett 2i2 USB recording audio interface. To the right of the main display was a smaller
Dell monitor showing the virtual spokesperson. Two Dell speakers for playing system alerts and the voices of the
spokesperson and residents were located just beneath the main display. A Zoom handy video recorder behind the
participant’s right shoulder transmitted a live audio and video feed of the interaction to the control room (this
feed was not recorded). A MacBook Pro laptop computer, used for inputting questionnaire data, was placed
next to the small monitor, on a table with a separate chair.

The two wizards sat in a separate control room (Figure 4, above). The room contained a large Dell monitor
for the simulation environment, a second large monitor and speakers providing a live feed from the experiment
room, and a MacBook laptop computer for the agent wizard interface.

4.2 Participants

A total of 31 participants were recruited for the study through Craigslist (https://craigslist.org). Participants
were all adults, English speakers, with normal or corrected vision and hearing. We did not collect any demo-
graphic data on the participants. Participants were paid $30 for their effort.

4.3 Procedure

Participants started by giving informed consent, then filled out pre-interaction questionnaires on the laptop
computer. Participants then moved to sit in front of the main display, were given oral instructions and watched
a short tutorial video, and were fitted with the microphone. After clarifying any remaining questions regarding
the simulation, the participants then engaged in the simulation of trying to save residents from an oncoming
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Figure 6. Participant in the experiment room: the main display shows the participant view of the simulation environment;
the monitor to the right shows the virtual spokesperson.

wildfire. Interaction was verbal, mostly between the participant and the virtual spokesperson, and occasionally
with town residents. When all the residents had either been saved or died, the experimenter entered the room,
stopped the simulation, and the participant moved back to the side table and filled a questionnaire about the
interaction. The process repeated itself for a second trial, followed by a second post-interaction questionnaire.
After this final questionnaire, the experimenter came in for a debrief and answered any questions participants
had about the experiment. Participants were thanked, paid, and escorted out.

4.4 Measures taken

The primary data are audio and video recordings of the participants’ communication with the characters in
the environment: audio and video were recorded continuously by the microphone and web camera. Microsoft
Platform for Situated Intelligence (PSI)34,35 was used as a platform for data collection. Using PSI allows
automatic synchronization across multiple input streams with different latency and frequencies. Video and audio
recordings as well as the experiment log files from the wizard control system and from the game environment
were all stored in a PSI store format.

A measure of task success was the number of residents saved from the fire, ranging from 0 to 5 for each trial.
Task success was logged manually on a spreadsheet immediately after each trial, together with experimenter
notes about the trial.

Participants filled out several questionnaires. Three questionnaires were taken before the interaction: Guilford-
Zimmerman spatial orientation,36 mini-IPIP,37 and the Need for Cognition;38 another three questionnaires were
taken after each interaction: NASA TLX,39 one-item mental effort,40 and an internally developed questionnaire
about rapport and character perception.

4.5 Results

As of this writing the recordings have not yet been transcribed, so our analysis is based on the task success and
experimenter notes. A total of 29 participants completed both trials and are included in the analysis. The mean
number of lives saved in the first trial was 2.1 (median 2), and in the second trial the mean was 3.0 (median 3).
The increase in lives saved from the first trial to the second was significant (paired t-test, t = 3.08, df = 28,
p < 0.005 two-tailed), showing that participants were getting better at interacting with the simulation: only
7 participants lost more lives in the second trial, 6 participants saved the same number of lives, and 16 participants
saved more lives in the second trial. There was also a strong positive correlation between the number of lives
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Figure 7. Positive correlation between lives saved in first and second trials (r = 0.45): each dot represents one participant.

saved in the first and second trials (r = 0.45, df = 27, p < 0.05), showing that some participants were better
than others at saving lives (Figure 7).

We observed several strategies used by the participants. Generally, participants who engaged the spokesperson
for advice and suggestions had better outcomes. Some participants tried to control drones individually, but this
method was too slow and not many lives were saved; giving very detailed search instructions was also less efficient
than relying on the swarm’s self-organizing search capabilities. Five participants relied heavily on the rescue
vehicle, sending it to all residents whether it was needed or not; this turned out to be effective for two participants,
who used this strategy while engaging with the spokesperson, but produced poor results for the other three, who
did not engage the spokesperson while using the same strategy. Some participants had difficulty understanding
the various elements in the simulation: for example, one participant asked residents to follow the rescue vehicle
rather than ride in it, and another kept trying to contact residents whose coordinates were engulfed in flames,
not realizing that they had died. One participant engaged heavily in social conversation with the spokesperson
but never followed the spokesperson’s suggestions or advice; this participant did not save any lives on either
trial.

The conversations with the spokesperson were quite varied. Participant utterances included, for example,
instructions to individual drones or groups of drones; questions and answers about the current situation on
the ground; consultations about possible courses of action; and questions and answers about capabilities. The
spokesperson provided verbal alerts about events detected by the drones, such as finding survivors; requests
for approval to take action; and advice. Most participants used the grid coordinates, though some preferred
descriptive terms such as “the four corner intersection”, a pattern consistent with other studies on human-robot
navigation.33

Conversations with town residents included a variety of persuasion techniques to convince the residents to
evacuate, from calm reasoning to threats. Some participants attempted to speak individually to each resident,
while others relied more on the spokesperson. Several speakers gave up on trying to convince stubborn residents
when they could not think of other persuasion strategies.

5. FUTURE STEPS

The next steps for using the collected data will be to transcribe participant utterances from the audio recordings,
extract participant non-verbal behaviors such as eye gaze and head position from the video recordings, time-
align the transcripts with agent utterances and simulation events recovered from system logs, and annotate
participant and agent utterances with communicative intent (speech acts). We intend to develop a taxonomy
of intents, based on speech act theory,41,42 by adapting existing taxonomies of human-robot dialogue43,44 to
capture distinctions that are relevant to the domain of human-swarm communication for wildfire rescue.
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The annotated data will be useful for several purposes. We can use the annotations to develop machine
learning models for predicting the communicative intent from the utterance texts. Such prediction can help speed
up the annotation of future data, and is a necessary step in developing a language understanding component to
enable full automation of the agents (both the spokesperson and the town residents).

Another potential use of the annotated corpus is the modeling of team performance (in this case, a team
of one person and several agents) based on the individual behaviors observed in the interactions.45 In addition
to the number of town residents saved, we can also extract from the logs the number of residents discovered,
giving us two measures of team success. While some variation is due to initialization parameters (location of
survivors and the fire), there are many individual behaviors of participants and agents that can affect the final
team outcome. For example:

1. To what extent should the participant give instructions to drones individually, as opposed to allowing
groups of drones to self-organize?

2. When should the participant step in to talk to a resident, as opposed to letting the drone or spokesperson
communicate with them?

3. Under what conditions should the participant ask for a scarce rescue vehicle, as opposed to instructing a
drone to guide a resident to safety?

4. When is it a good idea for the participant to ask for advice, and when should they make a decision
themselves?

5. When is it useful for an agent (spokesperson or drone) to initiate an action, and what should they ask
permission for?

6. Which events should the spokesperson communicate verbally to the participant?

7. When is it appropriate for the spokesperson to interrupt the participant from performing a task?

We can use the corpus of annotated interactions to learn models that predict team outcomes from individual
and team communicative behaviors, for example by finding correlations between communicative intent and other
behavior indicators, and good/bad team outcomes, and applying linear regression to determine which indicators
contribute the most to team outcomes.46

We can also learn models of optimal behavior of individuals and the team as a whole by using available data
and/or simulations and reinforcement learning. In a pilot experiment performed in simulation47 we addressed
the issues (2) and (7) mentioned above, i.e., when it is appropriate for the participant to step in and talk to a
resident directly and when it is appropriate for the spokesperson to interrupt the participant and ask for help.
We used reinforcement learning to automatically learn a policy to be followed when a drone has located residents
in order to help them evacuate. The policy learned to choose the most appropriate action given the situational
context, i.e., warn the residents through the drone or the spokesperson, ask the participant to intervene if needed,
guide the residents to safety, or just wait for more information. This is an example of a policy that optimizes
the use of the available assets (drones, spokesperson, and participant) to optimize team efficiency. The cost
of having the spokesperson engage in conversation with the residents is higher than the cost of just warning
them through the drone. This is because the spokesperson is responsible for multiple tasks whereas the drone is
already occupied with monitoring the residents. Similarly, the cost of having the participant engage in dialogue
with the residents is higher than the cost of having the spokesperson or the drone try to persuade the residents
to evacuate, especially when the participant is busy handling more urgent situations. At the same time, the
proximity of the fire is an unpredictable factor that should be taken into account. If the fire is rapidly approaching
and the residents refuse to evacuate then there may not be enough time for warnings and the participant should
be urgently asked to intervene. In this pilot experiment, we varied the distance of the fire (as well as the rate
of spread of fire), the level of the cooperativeness of the residents, and the level of busyness of the participant.
Our results were highly promising in terms of the percentage of residents saved especially given the fact that we
take into account potential randomness in the aforementioned parameters.
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Another use of reinforcement learning may be to improve the autonomous behavior of the spokesperson and
the swarm entities, and their ability to communicate and adapt to interaction with humans. Reinforcement
learning is well suited for this task as it is designed for maximizing long-term goals rather than focusing on
immediate results that are not necessarily optimal in the long run. For example, a potential reward to be
maximized could be the number of residents saved; reinforcement learning can then optimize the behavior of the
spokesperson to achieve that goal. In addition, reinforcement learning could be used offline for designing new
plays to populate our playbook. That is, we can provide the swarm entities with rewards (based on individual
and common goals), and let them train against one another in order to come up with the optimal play for tackling
a particular problem. Because in this case multiple agents will be learning at the same time, we will have to use
multi-agent reinforcement learning, which does not assume that the learning environment is stationary.48–50

Other possible extensions of the present work are to expand the simulation, either by adding new roles for
human participants (e.g., as town residents or rescue workers), or by developing new search and rescue scenarios
(earthquake or flooding) or other swarm management scenarios.

6. CONCLUSION

We developed a platform for investigating the use of verbal communication to interact with robotic swarms, and
used it two explore two models of interaction: predefined “plays” that can allow succinct instructions to guide
a group of self-organizing robots, and a virtual “spokesperson” to serve as the verbal interface to the swarm.
Our initial data collection suggests that both of these components are helpful for interaction with the swarm
in a wildfire rescue scenario. Future work will include deeper analysis of the interaction, automation of the
remaining system components, and extension of the platform to allow additional exploration of human-swarm
verbal interaction.
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