
NPCEditor: A Tool for Building Question-Answering Characters

Anton Leuski, David Traum

Institute for Creative Technologies
13274 Fiji Way

Marina del Rey, CA 90292, USA
{leuski,traum}@ict.usc.edu

Abstract
NPCEditor is a system for building and deploying virtual characters capable of engaging a user in spoken dialog on a limited domain.
The dialogue may take any form as long as the character responses can be specified a priori. For example, NPCEditor has been used
for constructing question answering characters where a user asks questions and the character responds, but other scenarios are possible.
At the core of the system is a state of the art statistical language classification technology for mapping from user’s text input to system
responses. NPCEditor combines the classifier with a database that stores the character information and relevant language data, a server
that allows the character designer to deploy the completed characters, and a user-friendly editor that helps the designer to accomplish
both character design and deployment tasks. In the paper we define the overall system architecture, describe individual NPCEditor
components, and guide the reader through the steps of building a virtual character.

1. Introduction
Computer-driven interactive virtual characters or virtual
humans are increasingly being recognized as useful tools
for training and education. As a part of a virtual training en-
vironment, these virtual humans can play roles of the user’s
teammates, tutors, test subjects, or adversaries. For exam-
ple, they can help a student to learn a new language (John-
son et al., 2005) or polish her negotiation skills (Traum et
al., 2005). As the demand for the virtual training environ-
ments increases, so grows the need to construct the virtual
humans quickly and efficiently.
One of the main properties of virtual humans is the abil-
ity to support a natural language interaction with the user,
understand human speech and react appropriately. In this
paper we discuss NPCEditor1 – a tool that allows easy
construction, maintenance and run-time deployment of lan-
guage processing capabilities for virtual characters.
The design of a virtual human can vary greatly depending
on the task the character has to perform(Traum, 2008). The
main initial focus of NPCEditor has been on question an-
swering characters (Leuski et al., 2006b). A question an-
swering virtual character can be defined as a virtual persona
who answers questions in character, as if being interviewed
by a human user. Of course there are many types of inter-
view (job interview, reporter interview, police interview,...),
as well as questioning in casual conversation. Moreover,
different people and personality types react differently to
being interviewed. Thus, in practice, there is quite a bit
of difference between a question-answering character and
a question-answering system in which retrieval of informa-
tion is the main goal, and care must be taken in the author-
ing process to create consistent and compelling personali-
ties. As an example of question-answering characters, con-
sider the recently deployed characters Ada and Grace from
the InterFaces exhibit at the Boston Museum of Science.2
Ada and Grace act as museum guides who can answer ques-
tions on a number of topics, including their personal back-

1NPC stands for Non-Player Character
2http://www.mos.org/interfaces/

ground, general facts about virtual human technology, and
the exhibits on computers, robotics, and communication in
the Cahners ComputerPlace exhibit hall of the museum.

Visitor: good morning

Ada: Hello!

Visitor: what are your names

Ada: My name’s Ada.

Grace: And I’m Grace. We’re your Virtual Museum
Guides. With your help, we can suggest exhibits that
will get you thinking! Or answer questions about
things you may have seen here.

Ada: What do you want to learn about?

Visitor: what can you tell me about?

Grace: Let’s see. What are you interested in? Do you want
to learn more about computers, robots, cell phones,
hands-on activities...

Visitor: I’m interested in robots

Grace: Here at ComputerPlace you can command a robot
to do a Mars mission, and program another one at
Robot Park. You can remote control a robot soldier,
or figure out how robots climbs walls. You can even
make a robotic dog dance, or use one to navigate a vir-
tual world. And don’t forget the one that remembers
meeting you. What do you want to do first?

Visitor: where is the mars yard

Ada: The Mars Yard is just to your right, and includes Mis-
sion Control.

Visitor: can we colonize mars

Ada: Mars isn’t exactly paradise. It has little oxygen and
no food for humans to survive. It can get extremely
cold and has harmful radiation. But, Grace and I, be-
ing computers, we can visit just fine.



Visitor: where do you go to school

Ada: Even though we can’t go to school, we are the prod-
uct of a lot of education.

Grace: The museum gathered up what they wanted to us
to know about computer place and sent it over to the
University of Southern California. There the Institute
for Creative Technologies added V Human knowledge
to the stack, then uploaded it all into our database.

Ada: Not exactly a college education, but scientists from
both Boston and Southern California have loaned us
theirs, until we figure out how to join all of you in the
classroom.

A question answering character is defined by the set of the
questions it can answer and the set of responses it can give.
At the core of NPCEditor is a statistical text classification
algorithm that maps a user’s questions onto the character’s
answers. Using the text classification algorithm allows the
language processing system reliably handle user utterances
that either are not present in the training data or contain
speech recognition errors. We have designed the text classi-
fication algorithm specifically for this language understand-
ing task and our experiments show it to be extremely robust
to the errors in the input (Leuski et al., 2006a; Leuski and
Traum, 2008).
Our design goal was to hide the algorithmic complex-
ity from the character designer. At an abstract view, the
NPCEditor system consists of two lists: a list of questions
and a list of answers. The character designer specifies those
utterances, links questions to appropriate responses, and
pushes a single button. The system trains a classifier and
registers the classifier on the network allowing incoming
and outgoing connections from the rest of the virtual hu-
man modules.
NPCEditor has so far been used by over a dozen users to
construct over 20 different agents, including multiple ver-
sions of some of them, which have different specific do-
main knowledge. NPCEditor is available as part of the ICT
virtual human toolkit3.
In this paper we describe NPCEditor in more detail from the
point of view of a virtual human system designer. First we
give a brief overview of the system architecture and com-
ponents in Section 2. Next we describe each of the major
components in detail. In a companion paper (Leuski and
Traum, 2010), we describe more details of the classifica-
tion algorithm, evaluation, and use in multiple virtual hu-
man agents.

2. System Design & Architecture
NPCEditor supports design and development of a natural
language understanding (NLU) component of a virtual hu-
man. The component accepts an input from the user of the
virtual human system and returns an appropriate response.
Generally the input comes in a form of a text string from
an automatic speech recognition engine, but this input can
come from an instance messaging or an email server. Also,

3See http://vhtoolkit.ict.usc.edu/index.php/ for details.

Character

Character

Classifier

Conversation
Conversation

Communication Module

Email IMJMS FlashLocal

Conversation

Classifier

Character 
Server

Dialogue 
Manager

Logging

Character 
Editor

Character 
Database

ResponseQuestion

Classifier 
Trainer

Character

Figure 1: NPCEditor system design.

the text can be combined with additional non-textual in-
formation. We will discuss this in more details in Sec-
tion 5. The natural language component contains a database
of possible responses and its task is to select the response
given the input. The response format is similar to the the
input format – it is a text string optionally combined with
other structured information such as a unique identifier or
a character name. Note that a single input may result in
multiple responses.
There are two tasks NPCEditor helps a character designer
to achieve: The first one is to define the character’s natural
language processing component, and the second is to exe-
cute the component and monitor its activity. Thus there are
two main parts in NPCEditor: the character database that
stores the information about the virtual human and the re-
quired language data and a character server that monitors
the network, accepts incoming messages, processes the re-
quests, and sends out character responses.
Figure 1 shows the block diagram of the NPCEditor sys-
tem. At the center of the system is the character database
that stores the information about the virtual characters. A
character designer can store multiple characters in the same
database so the user may have a conversation with several
virtual humans at the same time as in the example in Sec-
tion 1. Each virtual human character is associated with a
set of responses it can produce. The designer enters sample
questions and links them to the responses. The classifier
trainer component generates text classifiers that map from
the user’s questions to the character’s responses. The de-
signer also selects one of the provided dialogue manager
components. A dialogue manager is a rule-based subsys-
tem that uses the classification results and the dialogue his-
tory to select the actual response. Finally, the character de-
signer sets up the character server by registering network
identities for each character with the communication mod-
ule and enabling the conversation logging. Multiple people



Figure 2: The People panel supports editing of the character general information and network settings.

can interact with the virtual human at the same time. For
this purpose the server maintains a list of conversations.
NPCEditor provides monitoring and control functionality
over the individual system components using a GUI char-
acter editor. The editor window consists of several tabbed
panels each corresponding to a particular function. The
character designer starts by defining characters in the Peo-
ple editor panel (Figure 2), where she specifies the char-
acter properties and network settings. Then the designer
spends most of her time in the Utterances panel (Figure 3).
Here the designer enters characters responses and sample
questions, annotates the utterances, and links questions to
responses. The annotation labels are defined in the Settings
editor panel (see Figure 4). The Classifier panel (Figure 5)
lists text classifiers for every character and provides con-
trols for training the classifier parameters. The Conversa-
tions panel tracks all active conversations and allows the
designer or system operator to monitor them. The designer
uses the Chat panel (see Figure 6) to pose questions to the
characters in the database and observe how the classifiers
rank the available responses. It is useful for debugging of
the characters.

3. Characters
Figure 2 shows the People tab of the editor window. Here
the designer enters all the characters known to the system.
Each character has several general properties including the
name, graphical avatar, and a set of network addresses that
can be used to identify the character in a network environ-
ment. We distinguish between questioner and responder
characters. In addition to the general properties the respon-
der characters have a set of answers and some training ques-
tions linked to those responses. The questioner characters
serve as identifiers of entities (real or virtual) residing out-
side of the character database. The goal here is to allow
the character designer to tune the responses depending on
who is asking the question. Suppose a virtual human re-
sponder character A has two different answers to question

“Who created you?” – one special response for the charac-
ter’s designer B (“You did”) and the other for anybody else
(“The folks at ICT has put me together.”). Then person B
and her network address has to be defined as a questioner
character in NPCEditor. A “catch-all” questioner character
with the name “Anybody” is provided by default.
Each responder character has a parent and optional chil-
dren. Thus the responder characters form a tree. This re-
lationship defines how individual answers are assigned to
the characters: a character’s answer set contains all an-
swers explicitly assigned to the character plus all the an-
swers from the character’s parent. The default responder
character “Anybody” serves as the root of the tree. This
technique allows the designer to share responses among
characters without re-entering them for each virtual human.
This child-parent relationship is also specified in the People
panel.
The character data is normally stored in an XML file, but it
can be imported from or exported to a variety of other for-
mats including plain text and Excel formats. The data stor-
age subsystem has a plugin architecture with a defined Java
interface and a programmer can add additional importing
or exporting capabilities to NPCEditor without rebuilding
the whole application.

4. Utterance Editor
Figure 3 shows an NPCEditor window with the utterance
editor panel selected. There are two main areas here: the
question editor is on left and the answer editor is on the
right. Both the question and the answer editors follow the
master-detail interface pattern: each lists all the utterances
in a table and provides controls for editing the selected ut-
terance. Specifically, the designer defines the utterance text,
speaker, assigns a text-based identifier and annotation la-
bels. In the screenshot the answer with ID 4 is selected
(blue highlighting) and the appropriate data appears in the
bottom right part of the screen. The character designer can



Figure 3: The Utterances panel shows the lists of questions and answers.

sort the table rows, reorder and hide some of the columns,
and filter the list by using the GUI control above the table.
To link a question to an answer, the user selects the ques-
tion and the answer in the corresponding lists and assigns
the link value using the popup menu at the bottom of the
window. Given a set of appropriate answers to a question,
some answers might be more appropriate than others. For
example, consider two answers to the question “What is
your name?” –“Sergeant John Blackwell” and “Yes, my
name is John Blackwell”. While both answers are appro-
priate, using the latter one would manifest in a slight dis-
fluency in the dialog. The system allows the designer to
assign a degree of appropriateness to the question-answer
link. Currently the system defines a six-point scale for the
link strength ranging from “completely irrelevant” to “rele-
vant and fluent” links, following the annotation scheme for
dialogue response quality in (Gandhe et al., 2004). If an ut-
terance is selected in one table the opposite table highlights
utterances linked to it. For example, in Figure 3 the ques-
tion 3 is selected (blue highlighting) and the answer table
shows two utterances with IDs 1 and 32 as linked to the
question. The linked utterances are highlighted in green.
The color intensity of the green highlighting is proportional
to the strength of the link. Also the link strength value ap-
pears in the third column of the table (the value is “6” for
both answers). Additionally the number of links connected
to the utterance appears in the fifth table column that fol-
lows the utterance text column. Question 3 has 2 linked
answers and answer 1 has 51 linked questions. The total
number of questions and answers appears at the bottom of
each table.
NPCEditor enforces some general requirements on the ut-
terances. For example, it warns the user if two utterances
have the same identifier or text content. These problems are
shown as red bars in the second column of each table. For
example, question 2 appears to have the same content as
some other questions in the database (those questions are
not shown on the Figure) and there is a red bar in row 2.

When the user moves the mouse cursor over the red bar, the
editor brings up a popup window that details the problem.
There is also an overall list problem indicator at the bottom
of the table. The square located next to the utterance count
is filled with red if the editor detects a problem with any
of the utterances. For example, the screenshot shows that
there are some problems with the questions in the database,
while the answer list is problem-free.
We give such a detailed description to illustrate the point
that creating a virtual character requires no special knowl-
edge engineering and expertise. The process of mapping
sample questions to answers is simple and straightforward.
However, for characters with large answer sets – and the
system has been used to build characters with more than a
thousand answers and over twenty thousand sample ques-
tions – the mapping process can be rather tedious. One of
the main impedances in speedy character development is
searching for appropriate answers to link to a given sample
question. We use the text classifier algorithm to help the
character designer with this task. Note the score column
(the fourth column) in the answer table shown in Figure 3.
These are the similarity scores between each answer and
the question selected in the question table (“What is your
name?” in this example). The scores are assigned by the
classification algorithm. The scores above the classification
threshold are shown in black, while the rest of the scores
have gray color. You may see the same score ranking in the
Chat panel (see Figure 6).
The question does not need to be linked to any answers
for the scores to be computed. For example, answer 75
is not linked to question 3 (there is no value in the third
column) but appears to have a sufficiently large similarity
score. If the character designer sorts the rows in the answer
table by score value in decreasing order, the answers with
the highest scores – the answers that the system believes to
be appropriate to the question – will be shown at the top
of the table. Now the designer only needs to validate the
system decision by creating the links between the question



Figure 4: The Settings panel facilitates annotation creation and editing.

and the answers that are really appropriate.4 The designer
might not need to examine and evaluate the bottom portion
of the answer list as those utterances are very likely to be
inappropriate responses. We have observed this feature to
reduce the annotator’s load and significantly speed up the
question-answer linking process. Note that the roles of the
question and answer tables can be reversed: the scores in
the question table are the similarity scores between each
question and the selected answer. Ordering the question
rows by that value will bring up questions that are likely
to be linked to the given answer. The system can be told to
constantly monitor the database and dynamically update the
scores if needed. A note of caution is that for this procedure
to be effective it requires some initial albeit small number
of links between the questions and answers.

5. Annotations
The sixth column in the answer table of the Utterances
panel (see Figure 3, the column headed by “Type”) is an
example of an annotation column. The editor allows the de-
signer to define arbitrary annotation labels, assign color to
the labels, group labels into categories, and assign labels to
questions and answers presented as columns corresponding
to the categories. A number of annotation categories are
provided with the system by default and other categories
can be added using controls in the Settings panel (Figure 4).
The annotations play three important roles in the system:
First, the labels provide the character designer with visual
clues, helping her to navigate the database more effectively
while linking sample questions to the answers – Figure 3
shows the red label “alternative” assigned to answers 4 and
24. Secondly, the labels can be used by the dialogue man-
ager to identify special classes of answers, as discussed in

4If the desired answer is already at the top, the designer will
not even have to link this answer to get this exact text to match –
however it may still be desirable to link the answer so that simi-
lar questions will be reinforced and this connection will be more
stable as other links are added.

Section 7. Finally, the labels can be used as non-lexical fea-
tures by the classification process in addition to the question
text. For example, the Gunslinger project (Hartholt et al.,
2009) uses computer vision to determine where in the envi-
ronment the user is looking and whether the user is holding
a gun. This information is passed to the NPCEditor and is
used to annotate the user’s questions. When two charac-
ters are present in environment, the same question “What’s
your name?” might be answered by different characters de-
pending on which character the user is looking at. The de-
signer for Gunslinger specifies a Character category with
two labels “harmony” and “utah” (the names of characters
in Gunslinger scenario), adds a piece of code to the sys-
tem that maps vision system messages to those annotation
labels, defines two instances of the sample question, one
annotated with “harmony” and one annotated with “utah”,
and links them to responses for the appropriate characters.
The system learns from those examples, e.g., to trigger the
Utah’s response when the user is looking at the Utah char-
acter.

6. Text Classification
At the core of the NPCEditor is the ability to map users’
questions onto character responses. Because of the variabil-
ity of natural language, disfluencies in speech, and potential
errors introduced by the automatic speech recognition, this
mapping process must be very robust to the system input.
We use a statistical text classifier that learns the question-
to-answer mapping from the question-answer pairs in the
character database. We developed a novel classification
algorithm especially for the virtual human NLU problem.
This approach relies on results from cross-language infor-
mation retrieval (Lavrenko et al., 2002). It tokenizes the
text of the utterances, computes probabilistic representa-
tions (language models) for the questions and for the an-
swers, learns how to “translate” a question into an answer,
– it computes the likelihood of observing a particular token
in the answer given a set of tokens in the question, – com-
pares the question language model to the language model



Figure 5: The classifier panel lists existing text classifiers, provides controls for classifier training, and allows an advance
user to modify the classifier parameters.

of every known answer, and ranks the answers. We omit
the full description of the approach due to space limitation
in this paper. More details can be found in (Leuski and
Traum, 2008). Our experiments show that the technique
outperforms traditional text classification approaches and
the classifier output is unaffected by the text quality if the
proportion of speech recognition errors in the input stays
below 50% (Leuski et al., 2006b).
The text classification algorithm used in NPCEditor has
several tunable parameters. The classifier trainer module
separates the sample questions into training and testing data
sets and optimizes the parameters on the latter using the
mapping information from the former. From the interface
perspective the system user has a single button, which she
needs to press before the virtual character is ready to be de-
ployed. However additional control over the training pro-
cess and the final classifier parameter values is provided for
advanced users (see Figure 5).

7. Dialogue Manager
The text classification algorithm used in the system returns
a ranked list of appropriate answers for a given question.
This list can be empty when the classifier believes that no
known answer is appropriate to the question. Alternatively,
this list may contain multiple answers while only one an-
swer has to be returned. Each conversation instance con-
tains a dialogue manager module responsible for selecting
the actual response that is sent back to the questioner. Fig-
ure 1 shows this relationship as a dotted line. The dialogue
manager uses the list of responses returned by the text clas-
sifier and the information in the dialogue history to make
its decision. For example, it can combine several answer
utterances to form a single response.
Two different dialogue managers are provided with the sys-
tem by default. The basic dialogue manager is a rule-based
system with several hardcoded strategies. Its goal is to min-
imize answer repetition, handle cases when no appropriate

answer exists, and process a couple special commands. We
named this set of strategies “Blackwell” after the first char-
acter designed using NPCEditor. We review its capabilities
in the rest of this section. The second dialogue manager al-
lows an advanced designer to create her own response han-
dling strategies. The rules are scripted using the Groovy
language5 and interact with the rest of the NPCEditor sys-
tem via a simplified API. The default distribution includes
sample dialogue manager scripts that illustrate the NPCEd-
itor capabilities. Other dialogue managers can be added to
the system via external plugins.
If the text classifier finds several possible answers for a
user’s question, the Blackwell dialogue manager consid-
ers the ranking of the responses. It starts at the top of the
ranked list and follows it down until it either finds a re-
sponse that has not been seen in the recent dialogue history
(the default window is 4 dialogue turns) or it runs out of
responses. Thus, repeating the same or a similar question
often results in a different response, introducing variety into
the conversation.
When the dialogue manager cannot find an alternative re-
sponse it will repeat the highest ranked answer that it has
given recently. In this case the dialogue manager can pre-
cede the answer with a short line indicating that the charac-
ter is aware of the repetition, e.g., “Let me say this again...”
followed by the answer. The character designer can add a
number of such lines to the character database. The lines
have to be annotated with the “pre-repeat” label from the
“Type” category. The category is added to the database au-
tomatically by the Blackwell dialogue manager.
If the text classification returns no answers, it means that
none of the existing answers have been judged as appropri-
ate answers for the question.6 We call such questions “off-

5http://groovy.codehaus.org/
6This can occur for many reasons, including very bad ASR

results, or a question that is out of domain.



topics”. The character designer should provide answers that
deal with the questions, e.g., “Can you say this again?” or
“I do not know anything about it”, that either ask the user
to restate the question or indicate that the question is inap-
propriate to the topic of the conversation. The off-topic re-
sponses are handled similarly to the “pre-repeat” lines – the
designer adds the responses to the database and labels them
appropriately. When the dialogue manager encounters an
off-topic question, it selects one of the off-topic annotated
response at random attempting to avoid repeating recently
heard responses.
The Blackwell dialogue manager supports three types of
off-topic responses. The first type (the “opaque” label in
the “Type” category) indicates that the character might have
misheard the question and asks the user to repeat it, e.g.,
“What was that?” The second type (the “unknown” label)
normally indicates that the character understood the ques-
tion, but it does not have a response for it, e.g. “I do not
know anything about it.” The final type (“conceal”) cor-
responds to cases when the character does not want to con-
tinue the discussion on the current topic, e.g., “I do not want
to talk about it.” If the user asks several off-topic questions
in a row, the dialogue manager would progressively select
the responses from the first, second, and the third type.
In the event that the user persists in asking questions for
which the character has no informative response, the dia-
logue manager takes initiative and attempts to nudge the
user back into the conversation domain by sending the
“conceal” off-topic response followed by a suggestion of
a relevant question, e.g., “I cannot answer that. But you
should ask me about my technology.” We call these lines
“prompts” and the designer adds those lines to the database
in the fashion similar to the off-topic responses. We en-
courage the character designers to define at least a dozen
or so off-topic and prompt lines among the character an-
swers. Our experience shows that a large number of short
and sometimes witty off-topic responses makes the interac-
tion much more appealing.
The Blackwell dialogue manager also illustrates how com-
mand statements can be handled by the system. Specifi-
cally, it includes support for two commands: a request for
an alternative answer and a request to repeat the last re-
sponse. The dialogue manager instantiates two special an-
swer utterances in the character database. The first answer
is labeled “repeat” and it should be linked to questions like
“Say this again?” and “What was that?” If the text classifier
selects that answer as its top choice, the dialogue manager
simply returns the last given answer. The second answer is
labeled “alternative” and the designer links it to questions
like “Do you have anything else to say?” In that case the
dialogue manager will behave exactly as if the user has re-
peated the last question and attempt to find an alternative
response to it.

8. Character Server
Once the designer defines the characters, specifies the lan-
guage data, trains the classifiers, and selects the dialogue
manager, the system is ready for deployment. The designer
defines and activates one or more network connections that
link NPCEditor to other software. The connections (or ac-

counts) are defined in the People panel (see Figure 2) and
the interface is similar to setting up an account in an email
client. NPCEditor supports a number of network protocols
including email, instance messaging and several low level
messaging protocols that use either Flash Communication
Server or Java Messaging Service APIs. Additional net-
work protocols can be added to NPCEditor via externals
plugins for the communication module.
Once the communication module receives a question over
one of the channels, it passes the question to the character
server. The server constantly maintains a list of active con-
versations between the questioner and responder charac-
ters. Each conversation is a record associated with a partic-
ular questioner-responder pair, a text classifier, and history
list of all questions asked by the questioner and answers
provided by the responder. Given the sender and addressee
information the server finds an existing conversation and
adds the question to that conversation. If the conversation
record does not exist, the server selects the appropriate text
classifier and instantiates the conversation.
Note that a single classifier can be associated with multiple
conversations – when two questions for character A arrive
from different addresses B and C that are not present in the
character database, the server creates two temporary identi-
ties for B and C and maps them internally to the Anybody
questioner character when selecting the classifier. Thus
there will be two conversations (B with A and C with A)
that use the same classifier (Anybody-vs-A). The charac-
ter server also has optional logging and question recording
capabilities allowing a system operator to monitor the con-
versations and record them for further analysis.
A transcript of conversations as well as the most recent clas-
sification results can be seen in the Chat panel (Figure 6),
which also allows you to bypass the network connections
and type directly to the character.

9. Conclusions and Future Work

In this paper we described NPCEditor – a tool that al-
lows easy construction, maintenance, and run-time deploy-
ment of language processing capabilities for virtual charac-
ters. As mentioned above, NPCEditor is available with-
out charge for academic research use, through the Vir-
tual Human Toolkit, and commercial licenses can also be
made available. We are continuing to maintain and develop
NPCEditor. The system was originally designed to sup-
port stateless or semi-stateless interview scenarios where
any question can be asked at any time. While this conver-
sation style is feasible for simple role-playing characters
or virtual humans in museum kiosks, it is not appropriate
for other kinds of interaction in which the characters take
the initiative and more complex contextual or state-based
reasoning is required. Current work involves adding better
support for these kinds of environments. Finally, we should
note that NPCEditor has also been used as components in
more complex systems (e.g. (Gandhe et al., 2008)), where
it performs NLU and/or NLG tasks, mapping from text to
a semantic representation (or vice versa), but does not per-
form dialogue management functions.



Figure 6: The Chat panel includes controls for entering questions, shows the answer ranking for the last question and the
whole conversation transcript.

Acknowledgments
We would like to thank the users of NPCEditor for many
helpful suggestions that led to specific improvements in us-
ability and functionality. The effort described here has been
sponsored by the U.S. Army Research, Development, and
Engineering Command (RDECOM). Statements and opin-
ions expressed do not necessarily reflect the position or the
policy of the United States Government, and no official en-
dorsement should be inferred.

10. References
Sudeep Gandhe, Andrew Gordon, Anton Leuski, David

Traum, and Douglas W. Oard. 2004. First steps toward
linking dialogues: Mediating between free-text ques-
tions and pre-recorded video answers. In Proceedings
of the 24th Army Science Conference, Orlando, Florida,
USA, December.

Sudeep Gandhe, David DeVault, Antonio Roque, Bilyana
Martinovski, Ron Artstein, Anton Leuski, Jillian Gerten,
and David Traum. 2008. From domain specification
to virtual humans: An integrated approach to authoring
tactical questioning characters. In Proceedings of Inter-
speech, Brisbane, Australia, September.

Arno Hartholt, Jonathan Gratch, Lori Weiss, Anton Leuski,
Louis-Philippe Morency, Stacy Marsella, Matt Liewer,
Marcus Thiebaux, Prathibha Doraiswamy, and Andreas
Tsiartas. 2009. At the virtual frontier: Introducing Gun-
slinger, a multi-character, mixed-reality, story-driven ex-
perience. In IVA ’09: Proceedings of the 9th Interna-
tional Conference on Intelligent Virtual Agents, pages
500–501, Berlin, Heidelberg. Springer-Verlag.

W. L. Johnson, H. Vilhjalmsson, and M. Marsella. 2005.
Serious games for language learning: How much game,
how much AI? In Proceedings of the 12th International
Conference on Artificial Intelligence in Education, Am-
sterdam, The Netherlands.

Victor Lavrenko, Martin Choquette, and W. Bruce Croft.
2002. Cross-lingual relevance models. In Proceedings
of the 25th annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 175–182, Tampere, Finland.

Anton Leuski and David Traum. 2008. A statistical ap-
proach for text processing in virtual humans. In Pro-
ceedings of the 26th Army Science Conference, Orlando,
Florida, USA, December.

Anton Leuski and David Traum. 2010. Practical language
processing for virtual humans. In Twenty-Second Annual
Conference on Innovative Applications of Artificial Intel-
ligence (IAAI-10).

Anton Leuski, Brandon Kennedy, Ronakkumar Patel, and
David Traum. 2006a. Asking questions to limited do-
main virtual characters: how good does speech recogni-
tion have to be? In Proceedings of the 25th Army Science
Conference.

Anton Leuski, Ronakkumar Patel, David Traum, and Bran-
don Kennedy. 2006b. Building effective question an-
swering characters. In Proceedings of the 7th SIGdial
Workshop on Discourse and Dialogue, Sydney, Aus-
tralia, July.

David Traum, William Swartout, Jonathan Gratch, Stacy
Marsella, Patrick Kenney, Eduard Hovy, Shri Narayanan,
Ed Fast, Bilyana Martinovski, Rahul Bhagat, Susan
Robinson, Andrew Marshall, Dagen Wang, Sudeep
Gandhe, and Anton Leuski. 2005. Dealing with doc-
tors: Virtual humans for non-team interaction training.
In Proceedings of ACL/ISCA 6th SIGdial Workshop on
Discourse and Dialogue, Lisbon, Portugal, September.

David Traum. 2008. Talking to virtual humans: Dialogue
models and methodologies for embodied conversational
agents. In Ipke Wachsmuth and Günther Knoblich, edi-
tors, Modeling Communication with Robots and Virtual
Humans, pages 296–309. Springer.


