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Abstract

In search and rescue missions, robots can potentially help
save survivors faster than human emergency responders alone
would. In our experimental virtual reality simulation envi-
ronment we have a system which comprises a swarm of un-
manned aerial vehicles (UAVs) and a virtual “spokesperson”.
The system and a human operator work together on locating
and guiding survivors to safety away from an active wildfire
encroaching on a small town. The UAVs and the spokesper-
son are equipped with natural language capabilities through
which they can communicate with the survivors to convince
them to evacuate. If they fail to do so they can ask the hu-
man operator to intervene. We use reinforcement learning to
automatically learn a policy to be followed when a UAV has
located survivors. The system learns the best course of action
to help the survivors evacuate. We vary the distance of the
fire, the level of cooperativeness of the survivors, and how
busy the human operator is, and we report results in terms of
percentage of survivors saved in each condition.

Introduction

Using unmanned aerial vehicles (UAVs) or swarms of UAVs
for search and rescue during emergencies is a well estab-
lished idea (Kolling et al. 2016). In a swarm of UAVs, the
UAVs need to coordinate based on shared information and
distributed algorithms. The UAVs should also be able to
communicate with survivors and relay information to first
responders. Currently it is common practice to have multi-
ple human operators control multiple UAVs, which can be
inefficient. However, the alternative of having one human
operator control a swarm of UAVs is an open research prob-
lem, and a major issue is the cognitive complexity involved
in having one human control multiple UAVs simultaneously
(Kolling et al. 2016). Therefore, there is a strong need for
UAVs with autonomous capabilities and virtual agents to
ease the burden on human operators.

We have built a virtual reality environment depicting an
active wildfire encroaching on a small town (Chaffey et al.
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2019). A human player assumes the role of a swarm opera-
tor and is tasked with deploying the UAVs at certain areas of
the town, and directly communicating with residents in dan-
ger from the fire. There is also a virtual human (“spokesper-
son”), who assists with tasks when multiple incidents oc-
cur simultaneously, to reduce the cognitive load on the hu-
man operator. The system (UAVs and spokesperson) and the
human operator work together on locating and guiding sur-
vivors to safety away from the wildfire. The UAVs and the
spokesperson are equipped with natural language capabili-
ties through which they can communicate with the survivors
to convince them to evacuate. If they fail to do so they can
ask the human operator to intervene.

Currently the spokesperson is implemented in a Wizard of
Oz (WOz) setup where a human wizard plays the role of the
spokesperson, while the human operator thinks that she in-
teracts with a real system. The human wizard follows a pre-
defined set of capabilities and language response protocol.
The wizard’s responses are converted to audio via a speech
synthesizer. The civilians’ responses are in the form of pre-
recorded audio and their activation is also controlled by the
human wizard. The WOz setup enables us to collect realistic
interaction data between the human operator and the system
without the constraints posed by speech recognition and nat-
ural language understanding limitations (Marge et al. 2017).
Our ultimate goal is to have a fully automated system where
both the spokesperson and the UAVs have autonomous capa-
bilities. Thus, in future work, the data collected in the WOz
setup will be used for building models for automated natural
language processing and swarm management.

This paper focuses on one specific aspect of our sys-
tem automation, namely, when the system should rely on
the UAVs and the spokesperson to guide the survivors to
safety, and when it should prompt the human operator to
intervene and communicate directly with the survivors. The
latter would happen if the survivors refused to move despite
multiple warnings. We use reinforcement learning to learn a
policy to be followed when a UAV has located residents in
danger from the fire in order to help the survivors evacuate.

Our experiments are performed in simulation and, given
that we allow for potential randomness in setting up the
problem, our results are promising (see results section).
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Related Work

While there is a plethora of work on designing robot swarms,
less attention has been placed toward human-robot interac-
tion in the search and rescue domain.

Casper and Murphy (2003) did a post-hoc analysis on the
data collected during the World Trade Center crisis response,
and made recommendations which called for more research
on perceptual and assistive interfaces to help emergency per-
sonnel handle robots more effectively, and in turn reduce the
cognitive load on first responders.

Sycara and Lewis (2012) argue that, as the number of
UAVs increases, the need for coordination among UAVs as
well as for assistance to the human operator exceeds cur-
rent state-of-the-art capabilities. Thus, in order to achieve a
wider deployment of robots for practical tasks in various ar-
eas we need to expand human span of control over teams
of robots. They have developed a taxonomy of human-robot
tasks and appropriate human-robot interaction modes based
on complexity of control and cognitive demands placed on
human operators. According to their theory, there are 3 types
of human-robot interactions: (1) autonomous coordination
of UAVs that can be controlled as a swarm by a human op-
erator which works only in limited scenarios, (2) control of
each of the UAVs independently by the human operator, and
(3) not only control of UAVs but also direct involvement
of the human operator in their coordination. The third type
of human-robot interaction can be very difficult and perfor-
mance deteriorates when a human operator is asked to con-
trol and coordinate the decisions of more than 8-12 robots
(Wang et al. 2009). This result motivates our use of a virtual
spokesperson as a means to reduce the cognitive load on the
human operator, and in turn allow for the simultaneous con-
trol and coordination of a large number of robots.

Reinforcement Learning

Reinforcement Learning (RL) is a method for learning the
policy of an agent that takes a sequence of actions to max-
imize some notion of a “reward”. Here we model the RL
problem as a Markov Decision Process (MDP). An MDP is
defined as a tuple < S,A, P,R, γ > where S is the set of all
states that the agent may be in, A is the set of all actions that
are available for the agent to take, P : S × A → P (S,A)
is the set of transition probabilities between states after tak-
ing an action, R : S × A → � is the reward function, and
γ ∈ [0, 1] is a discount factor weighting long-term rewards.
At any given time step t, the agent is in a state st ∈ S
and chooses an action at ∈ A, for which it receives a re-
ward rt+1 according to the reward function R, and tran-
sitions to state st+1 according to the transition probability
P (st+1|st, at). The agent selects an action based on the av-
erage reward it has previously observed after having per-
formed that action in similar contexts (during training), the
so-called Q-function.

We experimented with two categories of model-free RL
algorithms – Monte Carlo simulations (on-policy and off-
policy Monte Carlo) and Temporal Difference Learning
methods (Q-learning, SARSA, and expected SARSA). The
on-policy Monte Carlo method performed the best in our

setup, so below we focus on this algorithm and its results.
With the Monte Carlo algorithm, we make updates to the
Q-values only at the end of each episode. We implement
the first-visit version of the Monte Carlo algorithm, which
means that we sample an episode from the environment and
for every unique state-action pair in the episode, we calcu-
late the total returns from the first occurrence of that state-
action pair until the end of the episode. We then set the Q-
value of that state-action pair to the average of all such ob-
servations over many episodes. For exploration, we use an
ε-greedy policy and we gradually decay ε from a value very
close to 1 to a value very close to 0, encouraging exploration
in the initial episodes and exploitation in the later ones. We
also set γ to be equal to 0.95.

Experimental Design
In our setup there is an active wildfire encroaching on a
small town and a UAV from the swarm is currently in con-
tact with a civilian group. The UAV has to employ a series
of actions (e.g., warnings) to convince the civilian group
to leave their homes before the fire reaches their location.
Furthermore, once the group has been convinced, the UAV
also has to guide the group to safety in the manner that the
group prefers. There is one human operator that is available
for the UAV to interrupt when it feels that it cannot con-
vince the group in time. However, the UAV must only in-
terrupt the human operator when she is not busy and when
the situation is hopeless (i.e., the fire is too close). There is
also a virtual spokesperson that can negotiate with the group
through the UAV. The UAV itself is only capable of issuing
pre-recorded warning messages. Any sort of “negotiation”
must happen through the operator or the spokesperson. Here
we are not concerned with how an actual negotiation be-
tween the spokesperson or the human operator and the civil-
ians may unfold. Dealing with negotiation and persuasion
strategies is part of our future work. Currently our goal is to
learn a policy regarding when to warn the civilians through
the UAV, when to warn them through the spokesperson, and
when to have the human operator intervene.

There are 3 possible levels of communication with the
survivors. In the first level the UAVs warn the survivors that
they need to evacuate. If the first level fails then in the second
level the spokesperson attempts to persuade the survivors to
evacuate. If the second level fails too then in the third level
it is the human operator’s turn to assume responsibility for
convincing the residents to move. The cost of having the
spokesperson engage in conversation with the survivors is
higher than the cost of just warning them through the UAV.
This is because the spokesperson is responsible for multiple
tasks whereas the UAV is already occupied with monitoring
the survivors. Similarly, the cost of having the human oper-
ator engage in dialogue with the survivors is higher than the
cost of having the spokesperson or the UAV try to persuade
the survivors to evacuate, especially when the human opera-
tor is busy handling more urgent situations. Thus, the human
operator should be asked to intervene only when there is no
other choice. At the same time, the proximity of the fire is an
unpredictable factor that should also be taken into account.
If the fire is rapidly approaching and the residents refuse to
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evacuate then there may not be enough time for warnings
through the UAV or conversation between the residents and
the spokesperson. In that case, the human operator should
be asked to intervene no matter how busy she is. So we need
to optimize the use of our resources and at the same time
ensure that the civilians are guided to safety.

We simulate 3 different types of civilian groups – the stub-
born couple, the old couple, and the babysitter and the child.
The 3 groups behave differently when engaging with the
UAV (or the spokesperson or the human operator), and also
have different ways in which they would like to be led out
to safety. Note that the system does not know which of the 3
groups it is currently dealing with so the policy that we learn
must generalize to all 3 groups. We only consider the inter-
action of a single UAV with a single civilian group. Multiple
instances of the same policy can be initialized for different
UAVs in the swarm. Since the policy works irrespective of
the type of civilian group, this is an acceptable setup. Below
we provide details about how we set up the RL problem.

Actions

The policy actions that we consider are as follows:

1. Warn: The UAV issues a pre-recorded warning message.

2. Allow-spokesperson-to-negotiate: The UAV opens a com-
munication channel for the virtual spokesperson to nego-
tiate with the civilian group.

3. Interrupt-operator: The UAV interrupts the human oper-
ator and opens a communication channel for the operator
to negotiate with the civilian group.

4. Query-for-guidance-info: Ask the civilian group for infor-
mation about how they would like to be guided to safety.
The possible guidance options are given below as addi-
tional actions.

5. UAV-guide: The UAV guides the group to safety.

6. Vehicle-guide: The UAV calls for a vehicle to guide the
group to safety.

7. Wait: The UAV waits and does nothing.

State Variables

1. Operator-busyness-level: This variable gives an indica-
tion of how busy the human operator is and when it is
appropriate to interrupt her. Values are integers ranging
from 0 (not busy) to 3 (very busy). This variable is initial-
ized to a random value.

2. Group-status: This variable indicates the current status of
the group or status of the negotiation and takes one of the
following values, 0: Being-monitored, 1: Being-warned,
2: Spokesperson-negotiating, 3: Operator-negotiating, 4:
Group-convinced, 5: Group-saved. An episode always
starts with the value of the Group-status variable being
equal to 0.

3. Fire-approach-time: The time taken for the fire to reach
the group. This variable takes integer values from 4 (fire
is far away) to 0 (fire is at the location of the group and
the episode ends).

4. Preferred-guidance-type: The preferred way in which the
group would like to be guided to safety and takes one
of the following values, 0: Unknown, 1: Self-guided, 2:
Guided-via-UAV, 3: Guided-via-vehicle. This variable is
always initialized to 0, and set to value 1, 2, or 3 once the
agent selects the Query-for-guidance-info action after the
group has been convinced (Group-status = 4).

5. Negotiation-status: This variable gives us an indication of
the negotiation strategies we have tried already and can
take one of the following values, 0: no form of negotia-
tion/warning attempted, 1: warnings issued but no nego-
tiations from the spokesperson, 2: the spokesperson has
attempted a negotiation. The variable is initialized to 0.

Thus, overall we have a total of 1440 states, 7 actions, and
10080 state-action pairs.

Reward Function

We give the agent a reward of +5000 for every group it man-
ages to save in time and a −5000 for every group that it does
not. To discourage the agent from constantly interrupting the
operator, we give it a reward of −(300 + op busy ∗ 500)
where op busy is the Operator-busyness-level state variable.
We also include some reward shaping by providing a re-
ward of −3000 for selecting one of the guide actions (UAV-
guide or Vehicle-guide) or the Query-for-guidance-info ac-
tion when the group has not been convinced yet.

To simulate these actions accurately, we need to recognize
that the actions Warn, Allow-spokesperson-to-negotiate, and
Interrupt-operator are not instantaneous. A warning or a ne-
gotiation takes time and to account for that in our simula-
tions we use probabilities. We assume that once a warning
has been issued, the agent goes into a state where the Group-
status variable is set to Being-warned. Now for every action
that the agent plays from this state, there is a 90% chance
that the warning ends, and the Group-status variable goes
back to Being-monitored or Group-convinced. If the warn-
ing does not end then the Group-status variable remains set
to Being-warned. For the negotiation-related actions (Allow-
spokesperson-to-negotiate and Interrupt-operator), we take
it one step further in trying to model the time taken for the
actions as accurately as possible. We recognize that the hu-
man operator and the virtual spokesperson are intelligent
and know how much time is left before the fire reaches the
location of the group. Hence, they would engage in a longer
negotiation if they had more time left and vice versa. We
also note that it is the easiest to convince the babysitter and
hardest to convince the stubborn couple. This means that the
time taken for a negotiation with the babysitter would be less
than the time taken for the old couple which would be less
than the time taken with the stubborn couple. We define the
probabilities required to model the time taken for a negotia-
tion (with the spokesperson or the operator) as follows:

P = factor
(1+Fire-approach-time)

where factor =

⎧⎨
⎩
1.75, if babysitter and child
1.50, if old couple
1.25, if stubborn couple

and P is the probability
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Fire Babysitter Old Stubborn
approach and child couple couple

time
Percentage of civilians saved (%)

2 75.89 72.52 72.42
3 93.22 91.30 84.18
4 99.26 96.11 95.14

Average number of system actions per episode
2 4.41 4.64 4.87
3 5.05 5.38 6.73
4 4.58 7.17 7.52

Table 1: Percentage of civilians saved and average number
of system actions for each one of the civilian groups and
Fire-approach-time values, during testing (10000 episodes).

So once the agent plays the action Allow-spokesperson-
to-negotiate or Interrupt-operator, then the Group-status
variable changes to Spokesperson-negotiating or Operator-
negotiating respectively, and there is a probability P of the
Group-status variable getting set back to Being-monitored or
Group-convinced. Most likely the babysitter and the child,
the old couple, and the stubborn couple are going to be
convinced by a warning, the spokesperson, or the opera-
tor, respectively, unless there is no time and the fire reaches
them first. If the negotiation does not end then the Group-
status variable remains unchanged. For every action the
agent plays, there is a 20% chance that the Fire-approach-
time is reduced by one and a 70% chance that the Operator-
busyness-level is reduced by one if it is not already 0. Thus
these variables are updated through the episode.

We learn 3 different policies by initializing the Fire-
approach-time variable to values 2, 3 and 4. Each policy
works for all 3 civilian groups. We train each policy for 1
million episodes and test it for 10000 episodes. Also, in each
episode the level of busyness of the human operator is ran-
domly initialized.

Results

Table 1 shows our results for each one of the 3 policies (Fire-
approach-time = 2, 3, 4) in terms of percentage of civilians
saved and average number of system actions, during test-
ing (10000 episodes). Note that the average number of sys-
tem actions required to save the babysitter and the child is
marginally higher for Fire-approach-time = 3 than for Fire-
approach-time = 4. Although this seems counter-intuitive,
we believe that it is a side-effect of the fact that the agent
must learn a policy that adapts to all 3 groups and possi-
bly due to some variation (because of probabilistic updates)
when generating episodes during testing. Our results are
promising. When the interaction starts with the fire not be-
ing in the immediate vicinity, the system saves the civilians
more than 95% of the time. When the interaction starts with
the fire being not too far but not too close either, the suc-
cess rate drops to about 90% on average. Finally, when the
interaction starts with the fire being very close, the success
rate drops to about 74% on average. These success rates de-

pend on the level of cooperativeness of the civilians and on
the location of the fire, which are randomly initialized and
updated probabilistically. So there are many cases where the
system cannot save the civilians even if it does everything
perfectly because there is simply not enough time or the
civilians refuse to cooperate.

Conclusion
We used RL to learn a policy to be followed when a UAV
has located survivors. The system learned the best course of
action to help the survivors evacuate. We did not make major
assumptions about the behavior of the survivors, the distance
of the fire, or the human operator’s level of busyness. To be
tested in more realistic conditions, more advanced models
could be used but the basic methodology would still apply.

Although there has been previous research on optimizing
human operation of UAVs, this work is unique in also in-
cluding a model of other humans interacting with the UAVs
(i.e., the survivors) and the use of a virtual spokesperson as a
means of reducing the cognitive load on the human operator.
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