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Abstract. Virtual Humans are artificial characters who look and a& hkimans,
but inhabit a simulated environment. One important aspegtany virtual hu-
mans is their communicative dialogue ability. In this paweroutline a method-
ology for study of dialogue behavior and construction ofuat humans. We also
consider three architectures for different types of virtuamans that have been
built at the Institute for Creative Technologies.
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1 Introduction

Virtual Humans are artificial characters who look and aat hikmans but inhabit a sim-
ulated environment [1]. Virtual Humans can be built for ai@grof purposes, including
serving as role players in training applications, and niaygr characters or artificial
players in games. Since Virtual humans are built with exptiomputational models
of behavior, they can also be used to study how well these InedEk as models of
human behavior. As with other aspects of artificial intellige, one might focus on just
the performance in a task (engineering approach) or theatfidel modelling human
behavior (cognitive science approach). These two goalgerga more than for most
Al applications, however, because for many purposes onésveamirtual human with
human-like behavior rather than efficient behavior whiclymat be human-like.

We focus here on the dialogue aspect of virtual humans, ththgsame remarks
could also be applied to other aspects. While it is still elythe state of the art to
build virtual humans with all the same capabilities as rezpe, there are a range
of applications for which virtual humans can be useful. Madyantages can also be
made by tailoring the virtual human to a specific domain astl tather than trying to
attempt general coverage. First, some aspects of humawibeban be elided, as they
are not relevant to the given domain. Secondly, one may asble to take short-cuts
in terms of how behavior in that domain is understood and ig¢eé, given a smaller
set of relevant options. One must be careful, though, to uiotioo deep, depending on
the purposes. E.g., a more general theory can make it easdgtdand the capabilities
or move to a new domain.

In the next section, we outline a methodology for the studinteractive dialogue
behavior and construction of virtual humans. Key is the Usseweral different types



of scientific activities, applied in a spiral approach toreasing knowledge and virtual
human capabilities. In section 3, we describe the appraadietogue modelling and
three different virtual human dialogue architectures weehased at the Institute for
Creative Technologies.

2 General Methodology

At the current state of practice in building virtual humaraxdcters, each one is a dif-
ferent, given it's specific domain and personalized knog#edut also characteristics
of the domain and genre of dialogue it is to engage in. Whilet adn be re-used from
character to character, we also use fairly different aectitres and components for
different classes of characters. However, we follow theesénvad methodology for
development of these architectures and characters. Wessndayclical approach, in
which multiple passes are made at improving the virtual hunrecluding building a
full system fairly early in the process. Figure 1 shows salvaspects of the complete
process. One may start anywhere for which there are suffi@sources. This process
combines a number of different scientific and engineeririlisskncluding observation
of behavior, annotation and analysis, theory formationfansalization, and computa-
tional modelling and implementation. In many cases, one stat from prior work on
some of these aspects and not go through all the steps dinecthe project. In other
cases, however, the requisite data and understanding dbthain does not exist, and
one must spend time developing a corpus of relevant dialagdéheoretical or notions
suitable for formalization of the domain.

On the empirical side, one may start with observation of tmunicative be-
havior of the type of people that virtual humans are to ensul@he kind of behavior
performed will depend on a number of factors, including somternal to the people
involved, and some based on external aspects of the situatighich they find them-
selves. There are several issues with respect to which Kiddta to collect. First, one
needs to collect data from the same sort of activity. Allwdefines social activities as
having the following parameters: [2]

1. type, purpose, function: procedures
2. Roles: competence/obligations/rights
3. Instruments: machines/media

4. Other physical environment

We will see very different kinds of language interaction eieging on the number and
nature of the participants and the activities, e.g., betvee®rmal presentation, a travel
agency booking, a courtroom trial, an auction, a press cenée, and an informal ne-
gotiation. While broad investigation is still needed to béeao recognize the common-
alities and differences such activities have on interagtioere have been a few efforts
to try to explicitly capture some of this range of interaoti@hese include the Swedish
Spoken Language Corpus [3] and the Dialogue Diversity Cogaliected by William
Mannt. We may also distinguish activities as to whether they dig fatural (happen-
ing on their own, for their own purposes, without regard tpeximenter collection), or

! http:/iwww-rct.usc.edu/ billmann/diversity/DDiverstes htm
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Fig. 1. Methodology for Virtual Human Creation

controlled in some way. The nature of control can also vaitecqubit. At one extreme
are situations in which experimenters bring subjects inatigipate in laboratory in-
teractions which the participants would never engage inheir bwn. These include
wholly artificial tasks meant to test specific theories, sashminimal pair differences
based on different conditions. There might also be nastraliasks which participants
are asked to role play at for the purposes of the experiméhérahan engaging in
for their own reasons. Or the tasks may be completely naexcept for the presence
of experimental observers and/or recording devices. Afhese artificial interventions
can change the nature of the activity and the interactionshwiake place. This data
can still be of much interest however, as many of the most tapo characteristics of
dialogue will remain, despite the artificial elements.

Observation and analysis of this data can provide insighgame of the common
and important aspects, including theories about what kafdeehaviors are produced
and the patterns and relationships of behaviors to otheavi@ts and other aspects of
the context. In some cases these can be quite elaboratené&odspecific mechanisms
and types of behaviors. In other cases, these might be ascofipossibly significant
features that might predict certain types of behaviors.

Theories can also be used to calculate the effects of behemithe participants,
context and future interaction. Some theories will havey\@pad applicability across



a range of participant types, activities, cultures, ancigigecontexts. Others will be
more limited to the specific situation under observationthdlit broad observation or
detailed generative accounts of the mechanisms causitgttaviors, it can be difficult
to tell how widely applicable a theory is. At the current staf the art, both broad and
narrow theories are very important: narrow theories caneneassily lead to empirical
validation and computational models. On the other handadtbeories will generally
be more useful for adapting to new domains with (slighthgrted activities and con-
text.

There are generally two routes to computational models. i©ne formalize the
theory using human-constructed rules. Often this is notaigsttforward process, as
the theory is constructed at a very different level than ieally suitable for compu-
tational modelling. In some cases, one may need to extenthdoey since it depends
on commonsense concepts which are not amenable to fortatiza have no good
extant theory. In other cases, one may need to simplify s@pecss that are important
for the theory but inaccessible to the computational motiet question then arises as
to how much to simplify. Here are several, guidelines forehhipphenomena in a theory
to represent in a computational model for a virtual human specific domain. They
are ordered from least to most stringent.

1. Represent phenomenon if there is general evidence ofdsepce in a cognitive
model in some domains.

2. Represent phenomenon only if there is evidence from detitt occurs in this
domain.

3. Represent phenomenon only if it leads to a functionalegmence in agent behav-
ior.

4. Represent phenomenon only if it is the simplest (not rezcéyg most faithful to
the theory) way to achieve the consequence.

5. Represent phenomenon only if it leads to a necessaryidurfor the domain tasks
the character must perform.

Each of these guidelines may be appropriate for some madebisks, yet inap-
propriate for others, depending on whether one is most fmtos getting a specific
character built quickly, or on more extensible and geneahlie principles that could be
used to model more general behavior or re-use across chaactd domains.

In the second approach to forming computational models,uses theory only to
pick out some of the most relevant types of features for ammhather than a complete
algorithmic process for recognizing, processing and pecodpbehaviors. Here one also
relies on a corpus of collected interactions with annotetiaf both the relevant features
and the behaviors of interest, and uses machine learnihgitgees to learn decision
procedures. These learning techniques could be of two tpestype includes explicit
rules that can be inspected and compared to theoreticalrootss the other type has
numerical representations that can be used to computeniicrgof categories and
behaviors, but does not directly lead to comparison witbities.

Itis also possible to combine both the theoretical/algonic and machine learning
approaches, so that theoretically derived models are vsatifne aspects and machine
learning for others. For example, one might use a data{driVassifier to recognize



some aspects of inputs, and a logical or rule-based systaraldolate the effects in
context, as is done in the MRE and SASO systems described.i@lee can also apply
both types of processing methods to the same phenomenalatrdtarthe results when
they differ. These hybrid models hold great promise forwiiag both robustness to
noisy or unseen input while still having broad capabilitg &ienerative capacity across
various content topics.

However the computational model is derived, it can be usedfagndation for an
implementation of a virtual human, or component of a virtuahan. The implementa-
tionis not the end point, however, as the system can now ltbtaseteract with people
(and/or other systems) to generate behavior to study. Oneeduate the system from
multiple perspectives, including:

Is it a valid implementation of the computational model?
Does it faithfully encode a theory?

Does it have acceptable performance on a “test set"?
Can it behave appropriately in interaction with people?

Unless virtual humans behave exactly like people, there atgrybe some recipro-
cal differences in the way people interact with the virtuatan. Human-virtual human
interaction thus represents a new type of context that nausahnialyzed. Purely human
data can be used both as a starting point for analysis anceingpitation of virtual
humans, and also as an ultimate performance goal, howeawvaryihot be the most ad-
equate direct data, especially for machine learning. Hem#ason a cyclical approach
allows study of how people react to the (previous generatsgstem, and produces
more and more relevant data. In the case where data is neefta@ i is feasible to
build a system, a Wizard of Oz approach [4] is often used, iithvha person plays the
role of the system, and is limited in some respects to theskafdnteraction that the
system will have, while using human-level cognition foretkasks.

Thus, building a virtual human potentially requires all loé tfollowing skills:

— Minimally invasive observation and recording of naturalran interaction
— experimental design, for controlled data collection
— data recording and organization

— behavior annotation

— theory-formation

computational modelling

machine learning algorithms

programming and system design

role-playing for specific domains

wizard abilities

— dialogue evaluation

Not every project will include all of these tasks. Sometirnae can make do with
prior work in some areas (e.g., a large extant corpus of decband annotated behavior,
or a well-developed theory of human behavior). A number esthtasks are required,
however, for proper spiral methodology.

Iterations of this process can be used to produce better etitef lvirtual humans.
There are several scales on which performance can be iedigasluding: accuracy



of the phenomenon model, complexity of behavior modelletustness with respect
to types of user, and complexity of tasks that are engaged/énwill look at some of
these in more detail.

In terms of complexity of behavior, probably the simplegigyof virtual human
would be one that focuses on just some aspect of behavidr,agigaze, or backchan-
nels. Here the system is not really engaging in a task withusteg, but just displaying
this behavior rather than all the other behaviors that whelcheeded for task perfor-
mance. This kind of system can be very useful for exploringeétail how that phe-
nomenon works, but does not address the interactions ofpteuthenomena within
a task. One can also build virtual humans for artificial “ta@dmains, which illus-
trate multiple phenomena interacting in full task behaviort are not tasks that anyone
would naturally do. Examples include games, such as simpliehing tasks. These
kinds of domains allow progress on some very important ptrema and their in-
tegration, while abstracting from the complexities of moealistic tasks. There are
also some real-world tasks that are relatively simple, saschnformation-seeking and
direction-giving. More complex tasks, such as negotiattatoring, and collaborative
construction often involve more complex reasoning, lorigegraction, and multiple
phases. Finally, one could design a virtual human for irstiéégn in a long-range virtual
interaction, spanning many interactions with differemple and engaging in different
tasks.

Robustness of the system interaction can be measured irakewys. One im-
portant factor is the type of user involved. Many have reradrkn the difference in
performance of naive vs expert users of complex systems serdnterfaces (e.g., [5]).
In many cases this can be overcome by training a user to axsyst@ther cases, how-
ever, itis not practical to train users before interactidrere are, however more degrees
of differences in the user population. The easiest type@ftasachieve robust behavior
with is a demonstrator. This user knows how to follow a “strtp show off the high
points of the system while avoiding the weak points. Showfirag at least a single rea-
sonable interaction path works can be important in botHyied the integration of the
system and fidelity to expected behavior. However, if onelade do something other
than the demonstration, it is not clear that the system ilab robust. The next level
of user is a trained expert user. These people will know whaaks/and what doesn't
work and how to perform a range of useful tasks even with aesyshat has some seri-
ous flaws. Even novice users fall into multiple categorighwéspect to robustness. A
motivated user, who really wants to get the task done with the systethbeviwilling
to try multiple approaches until something works. This usedhus easier to achieve
robustness with than a more general population user, whdymaging the system only
because they are told to (e.g., as part of an experiment)aaulse it is available (e.g.,
in a museum) without a specific need. These unmotivated unsaysquickly give up
or move on to other items if the system does not quickly predigsired or interesting
results. Finally, there is thmalicious user, whose main goal is to “break” the system.
Here the system must be much more robust to achieve the saaie ¢é performance
as with easier users.

This methodology is broadly similar to that employed by otHesigners of di-
alogue models for virtual humans, disembodied dialogutesys, and robots. For in-



stance, in the TRAINS project (University of Rochester,0-9996), there were several
cycles of data collection, theory formation, system buitgiand evaluation [6, 7]. The
current exposition is strongly influenced by the methodypleged by Cassell and col-
leagues at MIT and Northwestern [8]. One difference in prestéon, at least, is that the
model presented in this chapter does not require an initigtisg point of collection of
human-human data, and the model can be influenced directiytman-computer test-
ing, without explicit re-collection of human data. Li alsiscusses the use of multiple
implementation-evaluation cycles as the method for desfdhe dialogue manager of
a robot companion [9].

3 Aspects of Dialogue Theory for Virtual Humans

Dialogue interaction, whether in virtual humans or disedibd dialogue systems, can
be built using many computational paradigms, from stimuksponse pairs, to finite
state machines, to full agents including attitudes suclehefb, desires, intentions, and
complex reasoning. The information state approach [10alléjvs more direct com-
parisons between these mechanisms and different thedritalogue. Following this
approach, we conceptualize dialogue as a static part, stonsiof a set of informa-
tion state components and current values, and a dynamicquersisting of dialogue
acts that change the information state. These dialogueee@bstractions of commu-
nicative behaviors (including speech non-verbal commatiie behaviors) that would
achieve the same effect. A dialogue manager for a virtualdmuoonsists of at least
four processes, as shown in Figure 2. For each dialogue agéntecture (and per-
haps even for each domain), there will be a different setalbdue acts, and different
processes. Different architectures may also assign diffesets of these functions to
different software components.

These processes mediate between observations, inteatel ahd actions that the
agents performinterpretationis the process of recognizing important actions as having
communicative function. From each observation, the imtggtion process produces
hypotheses about a set of dialogue acts that have beenmpedoihe interpretation
process could be formalized as a setawognition rules in a rule-based systenulp-
date changes the information state to be in accord with the pexdoce of dialogue
acts, given the previous context. This can include addiabgtiohg, or modifying some
aspects of the information state. A theory of informatiaietpdate can also be orga-
nized as a rule-based system, with specific effects for thfeqmeance of dialogue acts
as well as other update ruleZalection is the process of deciding what to do given the
current information state. It can be formalized as a chofaialogue acts to perform,
and could be implemented as a set of selection rules in abaged system. Finally,
realization is in some sense the inverse of interpretation, decidingroardered set
of physical behaviors that can be used to perform the selatisdogue acts give the
current context.

Dialogue managers can differ in terms of several featuresuding the nature of
components and dialogue acts, processing mechanismsfooéthese processes, and
how these processes are apportioned into multiple softmackiles. In the rest of this
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Fig. 2. Information State Approach to Dialogue

chapter, we outline three different architectures foruathumans that have been built
at ICT and their information states.

3.1 Question Answering Characters

Question answering characters have a set of knowledge #reyngpart when asked
and goals for the presentation of this information subjecappropriate conditions.
Question-answering characters must remain in charactenwkeciding how to react
to questions. Unlike question-answering systems [12] ¢tvisiavishly try to find the
desired answer), question-answering characters shagdttequestions the way a per-
son in that situation would, which may include lying, miglewy, or finding excuses or
other ways to avoid answering questions that they don’t Wwaot are unable to answer.
Question answering characters can be used for trainingaéida, and entertainment.
At the Institute for Creative Technologies we have recehtlijt several question an-
swering characters, including Sgt Blackwell — a simulatechy soldier who can be
interviewed about ICT, the army and virtual human techngl@gset of characters a
reporter can interview to piece together a news story, ang meently characters who
can be interviewed for training tactical questioning. Thetaracters have a limited
dialogue model of the character and focus on retrieval of@ppate answers given a
guestion.



Fig. 3. Sergeant Blackwell Question Answering Character

Sgt Blackwell, shown in Figure 3, is described more fullyi8[14]. Sgt Blackwell
was designed as a technology demo exhibit for a conferenisesgeéech model was
designed for limited domain and three specific demonsisagygt Blackwell’s dialogue
model includes a set of answers constructed ahead of tineseTémswers are in three
categories, (1) “in domain answers”, which are simple amswe questions, (2) “off-
topic” answers, which are a set of responses to give whem ikaro appropriate in-
domain answer, such as “l don’t know” or “why don’t you ask smme else”, and (3)
“prompts”, to direct questioners back to the proper domahe information state is
very simple, and consists only of the local history of the fag utterances, and two
thresholds: one for avoiding duplication of in domain anss@hen possible), and a
second threshold for avoiding repetition of off-topic aessv There is also a translation
model mapping a language model for questions to a languagdelnfar answers, use
to score each answer as to how well it addresses a new inpstigqueT his allows both
high confidence on known questions as well as robustnes&&zgecognition errors
and other small differences in asking the question.

As described in [14], Sgt Blackwell is indeed robust to speeszognition errors.
For known questions, accuracy does not decrease significartt the word error rate
is more than 50%. For novel questions, speech recognities dot significantly impact
performance even at higher levels. While further study égired to fully understand



the relationship, our hypothesis for at least part of thelangtion is that this is so
because the same language model is used to train the speeghizer and the question
answer classifier

3.2 Group Conversation Characters

We have also been working on Group conversation charattesgrve as background
characters for larger virtual simulations. These characee not meant for direct in-
teraction with users, but to serve as a middle level of dgt&il. Their behavior should
be natural for a crowd, engaged in conversational inteyastiand allow for natural
variation for extended durations. We based this work on tim@rsation simulation of
[16].

Fig. 4. Examples of Simulated Group Conversation

We have built several models of group conversation, witheseramples shown in
Figure 4. In [17], we extended the simulation of [16], andcdudes to animate bodies
to drive the minor characters in the Mission Rehearsal Eserfthe left of Figure 4,
also seen in the upper right corner of Figure 5). This moded edended in [18],
with a new animation system, and including the ability to nawembers enter and
leave conversations and have conversation groups sepat@ibgroups. In [19] we
extended the model to include locomotion and positioning.

For these characters, the information state consists afahef characters and con-
versations. Each conversation has a set of participantsnahblder, a (forcasted) tran-
sition relevance place (TRP), and sequences of utteraocgssisting of speaker, ad-
dressee, and whether it is main content or feedback.

Agents can perform a number of actions, including two tyjgeech - which is
not directly observable by humans, and non-verbal actiohgh are. Speech actions
include: beginning to speak, ending speech, TRP signads $thnal a possible end of
turn), Pre-TRP signals (that signal that a possible end of it coming soon), Ad-
dressee selection, and positive and negative feedbackvblitial acts include position
shifts (movement), orientation shifts, posture shiftsgdiag, speaking gestures, and
gaze.

Agents also have a set of adjustable parameters that gdwaribehavior in a prob-
abilistic way. The main parameters are:



talkativeness: the likelihood of wanting to talk

transparency: the likelihood of producing explicit positive and negatfeedback, and
turn-claiming signals

confidence: the likelihood of interrupting and continuing to speak dgrsimultaneous
talk

interactivity: the mean length of turn segments between TRPs

verbosity: the likelihood of continuing the turn after a TRP at which nweds self
selected

proxemic distance: the ideal distance between speakers of different famijiari

gaze distribution: the amount of time spent looking at different types of cosser
tional participant (e.g., speaker, addressee, bystander)

overlap offset: the average point at which one will tend to start speakingatrecom-
ing TRP (before, at, or after) - leading to either small capsl in speech, exact
transitions, or pauses between turns.

These values of these parameters are used to influence behesdrding to a prob-
abilistic algorithm that will test against parameter valyggven configurations of the
information state.

So far we have evaluated these characters with respectievdgility, fidelity of
inferences from observed behavior to guiding parameter.

Fig. 5. An interactive peacekeeping scenario featuring (left gbtrin foreground) a sergeant, a
mother, and a medic.

3.3 Advanced Virtual Humans

For deep interaction with humans, we need a richer model fofrimation state. We
have developed dialogue models for virtual humans that reedgage in multiparty
teamwork and non-team negotiation. In the mission rehkeaxgacise project [20] a
human user (Army lieutenant) cohabits a 3D graphical virtu@ironment with ani-

mated virtual humans (a sergeant, a medic, a squad of sgldiet some civilians) and



interacts with them through face-to-face spoken dialogudetal with an unanticipated
dilemma (Figure 5) involving a traffic accident causing oigly serious injuries, and
a weapons inspection where another unit may require urgsigtance.

Aspects of the information state and dialogue moves areitheskcin [21], and the
teamwork model is described in [22]. Figure 6 shows someaé€tmversational layers.
We have evaluated several aspects of the mission rehegssais including a number
of components of the language understanding capabilitiessystem responsiveness
and initiative, task success, and user satisfaction. Thi& g summarized in [23]. The
original version of the system was one that was suitable &nahstrators but per-
formed poorly for other classes of users. The final versiahsutable performance for
motivated users who were familiar with military protocaltlivho were not necessarily
familiar with interacting with virtual humans.

— contact— are individuals available accessible for intéwac

— attention — what are individuals attending to

— conversation — what conversations are currently active
participants — who are the participants in the conversation
turn —who has the right to currently speak in the converaatio
initiative — who is leading the progression of the convecsat
grounding — how is information added to the common ground
topic — what is the conversation about

rhetorical — how is content in the conversation related

— social commitments (obligations)

— social roles — how are individuals related to each other

— negotiation — how do groups converge on shared plans

— individual model (beliefs, desires, intentions)

Fig. 6. Multi-party, Multi-conversation Dialogue Layers

In the SASO-ST project [24, 25], we go beyond team collalionand negotiation
to look at negotiation in a context where collaboration masstachieved rather than
taken as a given. The virtual human model was thus extendeditale representations
of trust and explicit negotiation strategies in additiottte other aspects of information
state.

For our first testbed domain, we developed a training scerariwhich a local
military commander (who has the rank of captain) must neg@tvith a medical relief
organization. A virtual human plays the role of a doctor fimgna clinic. A human
trainee plays the role of the captain, and is supposed totia¢gavith the doctor to
get him to move the clinic, which could be damaged by a planmmiitry operation.
Ideally, the captain will convince the doctor without retsing to force or threats and
without revealing information about the planned operatiigure 7 shows the trainee’s
view of the doctor in his office inside the clinic. The succe$she negotiation will
depend on the trainee’s ability to follow good negotiatiagniques, when confronted
with different types of behavior from the virtual doctor.



Fig. 7. SASO-ST VR clinic and virtual human doctor

As in the MRE project, we started with a simple version of tharacter that was
suitable for demo users. The initial version was built veuycly, reusing over 80%
of the programming of the MRE characters. By using this wer$o collect data with
test subjects, as well as conducting additional role-phednsizard of oz data, we were
able to more than double performance of the recognition corepts and reach a level
where users have satisfactory experiences in which theess or failure has more to
do with their negotiating tactics than ability to use thetegs

4 Conclusions

In this article we have discussed general methodologielkibding dialogue compo-
nents for virtual humans, as well as several examples adrdifft types of such dialogue
models. For each of the architectures and domains, a sptaldology involving all of
study of human dialogue behavior, building computationatiels, implementation of
systems, and evaluation of human interaction with systeasddud to improved perfor-
mance along multiple dimensions. This included both alfmya broader class of users
to robustly interact with the systems as well as coveringaespects of the phenomena
of multi-party multi-modal dialogue.

Acknowledgments

The author would like to thank the many others who have wodketthe virtual humans
described here and helped form the authors ideas, inclullingn Leuski, Bilyana
Martinovski, Susan Robinson, Jens Stephan, Ashish Vas\Badieep Gandhe, Dusan
Jan, Ronak Patel, Ed Hovy, Shri Narayanan, Rahul Bhagatmb¥éang, Jigish Patel,
Michael Fleischman,Yosuke Matsusaka, Jeff Rickel, JortdBreStacy Marsella, Bill



Swartout, Lewis Johnson, Patrick Kenny, Jarrell Pair, Rétdlerney, Ed Fast, Arno
Hartholt, Andrew Marshall Marcus Thiebaux, Diane PiepahiE Eastland, Justine
Cassell, Matthew Stone and Staffan Larsson.

The effort described here has been sponsored by the U.S. Rasgarch, Develop-
ment, and Engineering Command (RDECOM). Statements amdaoys expressed do
not necessarily reflect the position or the policy of the BdiStates Government, and
no official endorsement should be inferred.

References

1. Gratch, J., Rickel, J., Andre, E., Cassell, J., PetajanB&dler, N.: Creating interactive
virtual humans: Some assembly required. IEEE Intelliggrst&ns (2002) 54-63

2. Allwood, J.: An activity based approach to pragmatics.chifécal Report (GPTL) 75,
Gothenburg Papers in Theoretical Linguistics, Universit@oteborg (1995)

3. Allwood, J.: The Swedish Spoken Language Corpus at @agebniversity. In Andersson,
R., Abelin, A., Allwood, J., Lindblad, P., eds.: Fonetik 99: Proceedifigm the Twelfth
Swedish Phonetics Conference. Number 81 in Gothenburg®gpEheoretical Linguistics,
Department of Linguistics, Goteborg University (199995—

4. Dahlback, N., Jonsson, A., Ahrenberg, L.: Wizard of rdées — why and how. Knowledge-
Based System®(4) (1993) 258—266

5. Paris, C.: Description strategies for naive and expestausin: Proceedings of the 1985
Annual Meeting of the Association for Computational Lingfigs (ACL-86). (1985) 238—
245

6. Allen, J.F., Schubert, L.K., Ferguson, G., Heeman, P.aityy C.H., Kato, T., Light, M.,
Martin, N., Miller, B., Poesio, M., Traum, D.R.: The TRAINSqject: a case study in
building a conversational planning agent. Journal of Expental and Theoretical Al (1995)
To Appear.

7. Allen, J.F., Miller, B.W., Ringger, E.K., Sikorski, T.: Pobust system for natural spoken
dialogue. In: Proceedings of the 1996 Annual Meeting of tkedtiation for Computational
Linguistics (ACL-96). (1996) 62—-70

8. Cassell, J.: Sistine gap: Essays in the history and giplog of artificial life. In Riskin, J.,
ed.: Body Language: Lessons from the Near-Human. Uniyes$i€Chicago Press (2007)

9. Li, S.: Multi-modal Interaction Management for a Robotr@manion. PhD thesis, Bielefeld
University (2007)

10. Larsson, S., Traum, D.: Information state and dialogaragementin the TRINDI dialogue
move engine toolkit. Natural Language Engineertn@Beptember 2000) 323—-340 Special
Issue on Spoken Language Dialogue System Engineering.

11. Traum, D., Larsson, S.: The information state approadatialogue management. In van
Kuppevelt, J., Smith, R., eds.: Current and New Direction®iscourse and Dialogue.
Kluwer (2003) 325-353

12. Voorhees, E.M.: Overview of the trec 2003 question amsigeérack. In: Proceedings of
The Twelfth Text Retrieval Conference. (2003) 54-69

13. Leuski, A., Pair, J., Traum, D., McNerney, P.J., Geargie.,, Patel, R.: How to talk to a
hologram. In Edmonds, E., Riecken, D., Paris, C.L., Sid@dr,, eds.: Proceedings of the
11thinternational conference on Intelligent user inteef(IUI'06), Sydney, Australia, ACM
Press New York, NY, USA (2006) 360—362

14. Leuski, A., Patel, R., Traum, D., Kennedy, B.: Buildirfieetive question answering char-
acters. In: Proceedings of the 7th SIGdial Workshop on Riss® and Dialogue. (2006)
18-27



15

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

. O'Sullivan, C., Cassell, J., Vilhjalmsson, H., Dingala, J., Dobbyn, S., McNamee, B., Pe-
ters, C., Giang, T.: Levels of detail for crowds and groupsm@uter Graphics Foru1(4)
(2002)

Padilha, E., Carletta, J.: A simulation of small grougcdssion. Proceedings of EDILOG
2002: Sixth Workshop on the Semantics and Pragmatics obfued (2002) 117-124

Patel, J., Parker, R., Traum, D.: Simulation of smalugrdiscussions for middle level of
detail crowds. In: Proceedings of the Army Science Confege(2004)

Jan, D., Traum, D.R.: Dialog simulation for backgrouhdmacters. Lecture Notes in Com-
puter Science (2005) 65-74

Jan, D., Traum, D.: Dynamic movement and positioningnobedied agents in multiparty
conversations. In: In proceedings of AAMAS 2007: Sixth miional Joint Conference on
Autonomous Agents and Multi-Agent Systems. (2007) 5966

Rickel, J., Marsella, S., Gratch, J., Hill, R., Traum, Bwartout, W.: Toward a new gen-
eration of virtual humans for interactive experiences. EHEtelligent System47 (2002)
32-38

Traum, D.R., Rickel, J.: Embodied agents for multipatialogue in immersive virtual
worlds. In: Proceedings of the first International Jointfesence on Autonomous Agents
and Multiagent systems. (2002) 766—773

Traum, D., Rickel, J., Marsella, S., Gratch, J.: Negiatieover tasks in hybrid human-agent
teams for simulation-based training. In: In proceeding®&AMAS 2003: Second Inter-
national Joint Conference on Autonomous Agents and Muje#t Systems. (July 2003)
441-448

Traum, D.R., Robinson, S., Stephan, J.: Evaluation dfitparty virtual reality dialogue
interaction. In: Proceedings of Fourth International Geefice on Language Resources and
Evaluation (LREC 2004). (2004) 1699-1702

Traum, D., Swartout, W., Marsella, S., Gratch, J.: \dthumans for non-team interaction
training. In: In proceedings of the AAMAS Workshop on CregtiBonds with Embodied
Conversational Agents. (July 2005)

Traum, D., Swartout, W., Marsella, S., Gratch, J.: Fidlight, or negotiate: Believable
strategies for conversing under crisis. In: In proceedwfghe Intelligent Virtual Agents
Conference (IVA), Springer-Verlag Lecture Notes in Congpiu$cience (September 2005)
52-64



