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1st Dialog

• Passive system, no initiative

• No context (likely)

• No strategy

• Limited set of responses

• Pre-recorded responses





2nd Dialog

• Initiative

• Emotions

• Strategy

• Response generation

• Unlimited set of responses
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Language 
Understanding

• Problem: Speech input is often unpredictable
• Language ambiguity
• Speech recognition errors

• Solution: Automatically train machines from 
input-output pairs 



Language 
Understanding

• Text Mapping
• “Why did you kill yourself” -> “That detective is the 

right question”

• Information Extraction
• “Alpha one six this is Bravo two five adjust fire over” -> 

“Bravo two five adjust fire out”

• Semantic parsing
• “Why did you kill yourself” ->

speech-act  <A213>
  action  info-req
  actor  detective
  addressee  hologram 
     type  question
     q-slot cause
          time  past
          type  kill
          object  doctor



Text Mapping

• How do we do the mapping?

• We have...

• ... a set of Q/A pairs - “Training” data

• ... a question - “Test” data

• we have to select the “correct” answer



Text Mapping

• Text classification

• Text retrieval



Classification

• Answer = class

• Question = instance

• Training questions = training instances

• Simplest case = 2 classes



Binary classification



Classification

• Text as points?!

• How to compute that line?

• What do we do if the line does not exist?

• What do we do if >2 answers (classes)?



• “Bag of words”

• Stopping

• Stemming

Text as vectors

Why did you kill yourself

Why did 
you kill 

yourself?

Term tf
why 1
did 1
you 1
... ...



Text as vectors

Why did did you you kill kill yourself

Why did you did you kill you kill yourself

to capture order...

Why did you kill yourself



Term Weights

Term tf df
why 1 5
did 1 100
you 1 10
... ...

wi,j =
{

1 word i is present in string j
0 otherwise

wi,j = tfi,j

wi,j = tfi,j/dfi

wi,j = tfi,j/ log dfi

wi,j =
tfi,j

tfi,j + 0.5 + 1.5 doclen
avgdoclen

·
log( colsize+0.5

docfi
)

log(colsize + 1)

yi · [(w · xi) + b] ! 1, i = 1...m (20)

1
||w||2 (21)

L(w, b,α) =
1
2
||w||2 −

m∑

i=1

αi · {yi · [(w · xi) + b]− 1} (22)

∂

∂b
L(w, b,α) = 0,

∂

∂w
L(w, b,α) = 0 (23)

m∑

i=1

αiyi = 0 (24)

w =
m∑

i=1

αiyixi (25)

f(x) = sgn
(
(x · w) + b

)

= sgn
( m∑

i=1

αiyi(x · xi) + b
)

f(x) = sgn
( m∑

i=1

αiyi(Φ(x) · Φ(xi)) + b
)

= sgn
( m∑

i=1

αiyiK(x,xi) + b
)

K(x,xi) = exp(−||x− xi||2) (26)

3



Classification

• Text as points?!

• How to compute that line?

• What do we do if the line does not exist?

• What do we do if >2 answers (classes)?



Binary classification
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• subject to constraints

• maximize margin

• using Lagrange multipliers

Binary classification

dot product
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Binary classification

• extremum at

• i.e.

• and
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Binary classification
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Classification

• Text as points?!

• How to compute that line?

• What do we do if the line does not exist?

• What do we do if >2 answers (classes)?



SVM

feature spaceinput space
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• That “transformation” function can be very 
expensive to compute



SVM
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• Kernel function, e.g., 
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SVM

• Subject to constraints

• minimize
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SVM

• www.support-vector.net

• www.kernel-machines.org

• svmlight.joachims.org

• www.csie.ntu.edu.tw/~cjlin/bsvm/



Classification

• Text as points?!

• How to compute that line?

• What do we do if the line does not exist?

• What do we do if >2 answers (classes)?



N-class Classification

• one-against-all (N)
• select the class with the highest f(x)

• one-against-one (N(N-1)/2)
• voting: the class with largest number of wins



Text Retrieval



Text Retrieval

• Information Retrieval

• Answer = document

• Question = query

• match query against documents...



Text as vectors

Question

Answer

cos(Q,A)



Text Retrieval

• Compute vector for each answer

• Compute vector for the question

• Order answers by the similarity

• Select the top-ranked answer



Vectors are Bad!

• They work... But!

• no model

• ad-hoc weighting schemes

• ad-hoc similarity measure

• difficult to interpret

• impossible to explain

• unclear how to improve

of documents that are assumed to be examined first-relevant document subset. Thus,

the experimental task with the first-relevant initial condition is defined: Given that

some of the documents presented by the information organization system are marked

as relevant or non-relevant, isolate the rest of the relevant material.

2.3.2 System Design

The system design part of the framework describes how each system in our study

builds its data model. We specify what kind of feedback the system accepts and how

this information affects the data model. The interface or the visualization part of the

system is also very important. For each system we describe what information about

the data model is communicated to the user and how these clues are presented.

Both the ranked list and interactive relevance feedback document organization

systems provide the baseline for our experiments. The ranked list is generated by

the INQUERY system [7]. INQUERY uses an inference network model and estimates

probabilities of how much each document satisfies user’s information need [99]. The

intermediate nodes in the network correspond to semantic concepts and the leaves

represent the individual terms. An ad-hoc term weighting formula [7], which com-

bines Okapi’s tf score [80] and INQUERY’s normalized idf score, is used to estimate

conditional probabilities of a document containing a semantic concept given term:

wi,j =
tfi,j

tfi,j + 0.5 + 1.5 doclen
avgdoclen

·
log( colsize+0.5

docfi
)

log(colsize + 1)
(2.1)

where wi,j is the weight of the i-th term in the vocabulary in the j-th document,

tfi,j is the number of times the term occurs in the document, docfi is the number

of documents the term occurs in, doclen is the number of terms in the document,

avgdoclen is the average number of terms per document in the collection, and colsize

is the number of documents in the collection.

21



Language Model

Word 
generator

That detective is the right question



Language Model

• Random process 
• M

• Defined by the text probabilities 
• P(W|M) = P(w1,...,wN|M)



probability |ˌpräbəˈbilətē| |ˈprɑbəˌbɪlədi| |prɒbəˌbɪlɪti|
noun ( pl. -ties)
the extent to which something is probable; the likelihood of  something happening or being 
the case : the rain will make the probability of  their arrival even greater.
• a probable event : for a time, revolution was a strong probability.
• the most probable thing : the probability is that it will be phased in over a number of  years.
• Mathematics the extent to which an event is likely to occur, measured by the ratio of  the 
favorable cases to the whole number of  cases possible : the area under the curve represents 
probability | a probability of  0.5.
PHRASES
in all probability used to convey that something is very likely : he would in all probability make 
himself  known.
ORIGIN late Middle English : from Latin probabilitas, from probabilis ‘provable, 
credible’ (see probable ).



Probabilistic Matching

• Estimate language models of question MQ and 
answer MA

• Compare the models (e.g., cross entropy)
• number of bits to “encode” MQ with MA

• Select the most similar answer
• ... or top N best
• ... or with entropy below a threshold 

Brief Article

The Author

September 11, 2005

Eqα(a) =

∫
Vα

∫
Vβ

α(a)
∏m

i=1 β(qi)p(dα× dβ)
∫
Vα

∫
Vβ

∏m
i=1 β(qi)p(dα× dβ)

=
∑

t α(a)
∏m

i=1 β(qi)∑
t

∏m
i=1 β(qi)

−D(Eqα||αd) ∝
∑

a∈Vα

Eqα(a) log αd(a) (1)

P (y|x) =
1

Z(x)
exp

{
∑

i

λifi(y, x)

}
(2)

P (w1...wn) =
∫

Θ

n∏
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Pθ(wi)p(dθ) (3)

P (w1...wn) =
n∏

i=1

P (wi) (4)

P (W ) = P (w1...wn) =
n∏

i=1

P (wi) (5)

H(MQ||MA) = −
∑

w

P (w|MQ) log P (w|MA) (6)

1



ESTIMATION



Models

• Unigram
•  
• word independence
• P(“did you kill”) = P(“you did kill”)

• Higher-order models
• n-gram: condition on preceding words
• cache: condition on a window
• grammar: condition of grammar structure

• Are they useful?
• parameter estimation expensive
• need more data
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Unigram Model 
Revisited

• Unigram model:

• Exchangeability instead of independence

• de Finetti’s theorem

• hide dependencies in the parameters

probability measure over all 
possible parameter settings
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Unigram Model 
Revisited

• Estimating the generative density
• using N training strings (e.g, answers)

• Kernel-based estimation

• Delta kernel (others exist)

• Can show that

P (w) =
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Unigram Model 
Revisited

• LM

• A much better estimate

• Interpretation: averaged (smoothed) over the 
training strings

uW (w) =
|W |

|W | + µ
· uW,ml(w) +

µ

|W | + µ
· uGE,ml(w) (9)
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=
∑N

l=1 Pl(w)
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P(w) estimations

• Maximum-likelihood

• Discounting

• Interpolation



Maximum-likelihood

• relative word frequency

• unbiased
• if we repeat estimation an infinite number of times with 

different starting points, we will get correct probabilities

• Zero-frequency problem
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P (w1...wn) =
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Θ

n∏
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Pθ(wi)p(dθ) (3)

P (w1...wn) =
n∏

i=1

P (wi) (4)

P (W ) = P (w1...wn) =
n∏
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P (wi) (5)
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∑

w

P (w|MQ) log P (w|MA) (6)

P̂ (w|MW ) = uW,ml(w) =
#(w,W )

|W | (7)

uW (w) = λ · uW,ml(w) + (1− λ) · uGE,ml(w) = λ · #(w,W )
|W | + (1− λ) · #(w,GE)

|GE| (8)

1



Zero Frequency 
Problem

• Suppose some word not in the string
• we get zero probability for the word
• and any string with that word

• Happens with language



Discounting

• Laplace
• add 1 to every count, normalize

• Lindstone
• add a constant

• Absolute discounting

• Leave-one-out discounting

• Good-Turing estimation



Interpolation

• Problem with discounting
• treats all unseen words equally

• Use background probabilities
• interpolate ML estimates with General English 

expectations



Interpolation

• Jelinek-Mercer

• Dirichlet

• Witten-Bell

• Two-stage
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LM Summary

• Compute LM for each answer A
• use unigram model
• use Dirichlet smoothing

• Compute LM for the question

• Compute cross-entropy for each pair

• Select answer with the highest value

uW (w) =
|W |

|W | + µ
· uW,ml(w) +

µ

|W | + µ
· uGE,ml(w) (9)

p(dθ) =
1
N

N∑

l=1

Kl(dθ) (10)

Kδ,l(dθ) =
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1 dθ ∼ Pl(w)
0 otherwise

P (w1...wn) =
1
N

N∑
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n∏

i=1

Pl(wi) (11)

P (w|w1...wn) =
P (w,w1...wn)
P (w1...wn)

=
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l=1 Pl(w)
∏n

i=1 Pl(wi)∑N
l=1

∏n
i=1 Pl(wi)

(12)

p(w|MA) =
∑N

l=1 ul(w)
∏n

i=1 ul(ai)∑N
l=1

∏n
i=1 ul(ai)

(13)
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Discussion

• That’s how you do retrieval

• The assumption is that MQ is similar to MA

• Is it true?



Discussion

• Not really!

• Questions and answers are generated by 
different speakers

• Questions have specific form

• They are two different “languages”!



Discussion

• Single-language solution
• retrieve training questions, not answers
• individual questions
• ... or pseudo-questions created by combining all 

questions appropriate to a single answer

• Cross-lingual solution
• e.g. retrieve Chinese documents with an English query
• view questions and answers as coming from two 

languages



Cross-lingual method

• Question LM is replaced by the “translated” 
question LM: 
• we iterate over {Ql,Al}

• Two estimation functions u()
• one for questions and one for answers with their own 

parameters

• Interpretation
• estimate how the answer would look like and compare 

that estimation to the existing answers

uW (w) =
|W |

|W | + µ
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µ
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· uGE,ml(w) (9)
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p(w|MA) =
∑N

l=1 ul(w)
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i=1 ul(ai)∑N
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(13)

p(w|MQ) =
∑N

l=1 uAl(w)
∏n

i=1 uQl(qi)∑N
l=1

∏n
i=1 uQl(qi)

(14)
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Text Mapping Summary 

• Classification methods
• well-defined
• well-studied
• require feature vectors

• Retrieval methods
• vector-based
• probability-based
• estimation
• single-language and cross-language approaches



Information Extraction

• Markup important word sequences

• Maximize likelihood of observing a sequence 
of labels given a sequence of words: P(Y|X)

Y: FDC FDC FDC other other FO FO FO WO WO K

X: Alpha one six this is Bravo two five adjust fire over



Conditional Random 
Fields

• CRF defines an expression for P(Y|X):

• Markov CRF: iff

• The CRF is determined by the parameters
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P (y|x) =
1

Z(x)
exp
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∑

i

1ifi(y, x)

}
(2)

1

Y form a simple first-order chain, as illustrated in Figure 1.

Y1 Y2 Y3

. . .

Yn−1 Yn

X = X1, . . . , Xn−1, Xn

Figure 1: Graphical structure of a chain-structured CRFs for sequences. The
variables corresponding to unshaded nodes are not generated by the model.

2.1 Potential Functions

The graphical structure of a conditional random field may be used to factorize
the joint distribution over elements Yv of Y into a normalized product of strictly
positive, real-valued potential functions, derived from the notion of conditional
independence.1 Each potential function operates on a subset of the random
variables represented by vertices in G. According to the definition of conditional
independence for undirected graphical models, the absence of an edge between
two vertices in G implies that the random variables represented by these vertices
are conditionally independent given all other random variables in the model.
The potential functions must therefore ensure that it is possible to factorize the
joint probability such that conditionally independent random variables do not
appear in the same potential function. The easiest way to fulfill this requirement
is to require each potential function to operate on a set of random variables
whose corresponding vertices form a maximal clique within G. This ensures
that no potential function refers to any pair of random variables whose vertices
are not directly connected and, if two vertices appear together in a clique this
relationship is made explicit. In the case of a chain-structured CRF, such as that
depicted in Figure 1, each potential function will operate on pairs of adjacent
label variables Yi and Yi+1.

It is worth noting that an isolated potential function does not have a direct
probabilistic interpretation, but instead represents constraints on the configu-
rations of the random variables on which the function is defined. This in turn
affects the probability of global configurations – a global configuration with a
high probability is likely to have satisfied more of these constraints than a global
configuration with a low probability.

1The product of a set of strictly positive, real-valued functions is not guaranteed to satisfy
the axioms of probability. A normalization factor is therefore introduced to ensure that the
product of potential functions is a valid probability distribution over the random variables
represented by vertices in G.

3
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CRF on Text

• Feature functions?
• generally binary
• word
• word class (digit)
• word modification (capitalization)
• part of speech
• presence of a feature in position j, j+1, j+2, j-1, j-2



Training CRF

• Maximizing log-likelihood

• as

• with empirical distribution over training

• it might not have a closed solution

4 Maximum Entropy

The form of a CRF, as given in (3), is heavily motivated by the principle of
maximum entropy – a framework for estimating probability distributions from
a set of training data. Entropy of a probability distribution [16] is a measure of
uncertainty and is maximized when the distribution in question is as uniform as
possible. The principle of maximum entropy asserts that the only probability
distribution that can justifiably be constructed from incomplete information,
such as finite training data, is that which has maximum entropy subject to a
set of constraints representing the information available. Any other distribution
will involve unwarranted assumptions. [7]

If the information encapsulated within training data is represented using
a set of feature functions such as those described in the previous section, the
maximum entropy model distribution is that which is as uniform as possible
while ensuring that the expectation of each feature function with respect to
the empirical distribution of the training data equals the expected value of
that feature function with respect to the model distribution. Identifying this
distribution is a constrained optimization problem that can be shown [2, 10, 14]
to be satisfied by (3).

5 Maximum Likelihood Parameter Inference

Assuming the training data {(x(k), y(k))} are independently and identically dis-
tributed, the product of (3) over all training sequences, as a function of the
parameters λ, is known as the likelihood, denoted by p({y(k)}|{x(k)}, λ). Max-
imum likelihood training chooses parameter values such that the logarithm of
the likelihood, known as the log-likelihood, is maximized. For a CRF, the log-
likelihood is given by

L(λ) =
∑

k



log
1

Z(x(k))
+

∑

j

λjFj(y
(k), x(k))



 .

This function is concave, guaranteeing convergence to the global maximum.

Differentiating the log-likelihood with respect to parameter λj gives

∂L(λ)

∂λj
= Ep̃(Y ,X) [Fj(Y , X)]−

∑

k

Ep(Y |x(k),λ)

[

Fj(Y , x(k))
]

,

where p̃(Y , X) is the empirical distribution of training data and Ep[·] denotes
expectation with respect to distribution p. Note that setting this derivative to
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Training MCRF

• Chained CRF are much easier to train

• Beyond the scope of this lecture :-)

• see for example
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Semantic Parsing

• “Why did you kill yourself” ->

• Translation from text to frames

• Note: Frame creation, not retrieval

• Likelihood, recall the cross-lingual technique

Pθ(xi) is the appropriate probability distribution for
individual words. The quantity p(θ) is a probability
measure that tells us which parameter vector θ is a-
priory more likely. The author gives several approx-

imations for that expression for different Θ, P·(x),
and p(·). One of them is of particular interest to us.
Given a set of training strings S, the joint distri-

bution can be approximated as

P (x1, ..., xn) =
1

|S|
∑

s∈S

m∏

i=1

πs(xi) (1)

where |S| is the size of the training set and πs(xi)
is the empirical probability distribution of words in

string s. It is estimated by the relative term fre-

quency with an additional smoothing factor:

πs(x) = λπ
#(x, s)

|s| + (1− λπ)
∑

s #(x, s)
∑

s |s|

where #(x, s) is the number of times word x ap-
pears in string s, |s| is the length of the string s, and
the constant λπ is the tunable parameter that can be

determined from the training data.

Equation 1 assumes that all words xi came from

the same vocabulary. We can show that in the case

of two different vocabularies, the joint distribution

has the following form:

P (f, w1, ..., wn) =
1

|S|
∑

s∈{Fs,Ws}
φFs(f)

m∏

i=1

πWs(wi)

(2)

Here s iterates over the set of training pairs that
maps an utteranceWs to its frame interpretation Fs.

φF (f) is the empirical probability distribution of
slot-value pairs in frame F :

φF (f) = λφ
#(f, F )

|F | + (1− λφ)
∑

#(f, F )
∑

|F |

Combining these estimations we get the following

expression for P (f |W ):

P (f |W ) =
∑

s φFs(f)
∏m

i=1 πWs(wi)∑
s
∏m

i=1 πWs(wi)

Note one problem with this approach: the words

in the utterance are assumed to be exchangeable,

e.g., sentences “the area is secured” and “is the area

secured” will have the same probabilities, which

may potentially lead to question interpreted as state-

ments and vice versa. We deal with the problem by

including local order dependencies in πs(w) in the
form of a trigram model:

π3,s(w) = λ1
#(w−2w−1w, s)
#(w−2w−1, s)

+ λ2

∑
s #(w−2w−1w, s)

∑
s #(w−2w−1, s)

+ λ3
#(w−1w, s)
#(w−1, s)

+ λ4

∑
s #(w−1w, s)

∑
s #(w−1, s)

+ λ5
#(w, s)

|s| + λ6

∑
s #(w, s)
∑

s |s|

where
∑

i λi = 1. Here w−1 and w−2 are the words

immediately preceding w in s.

4 Experimental Setup

5 Results

6 Conclusions and Future Work

speech-act  <A213>
  action  info-req
  actor  detective
  addressee  hologram 
     type  question
     q-slot cause
          time  past
          type  kill
          object  doctor



Semantic Parsing

• Rank all slot-value pairs by the likelihood

• Cut the top part of the ranking
• determine threshold from the training data

• That’s the frame

• How to use the frames?


