INFORMATIONRETRIEVAL AND
 CLASSIFICATION APPROACHES

ANTON LEUSKI

CHICAGO - 2035

$15 T$ DiALOG

- Passive system, no initiative
- No context (likely)
- No strategy
- Limited set of responses
- Pre-recorded responses

2ND DIALOG

- Initiative
- Emotions
- Strategy
- Response generation
- Unlimited set of responses

Virtual Human

LANGUAGE UNDERSTANDING

- Problem: Speech input is often unpredictable
- Language ambiguity
- Speech recognition errors
- Solution: Automatically train machines from input-output pairs

LANGUAGE
 UNDERSTANDING

- Text Mapping
- "Why did you kill yourself" -> "That detective is the right question"
- Information Extraction
- "Alpha one six this is Bravo two five adjust fire over" -> "Bravo two five adjust fire out"
- Semantic parsing
- "Why did you kill yourself" ->
speech-act <A213>
action info-req
actor detective
addressee hologram
type question
q-slot cause
time past
type kill
object doctor

Text MApping

- How do we do the mapping?
- We have...
- ... a set of Q / A pairs - "Training" data
- ... a question - "Test" data
- we have to select the "correct" answer

TEXt MAPping

- Text classification
- Text retrieval

CLASSIFICATION

- Answer = class
- Question = instance
- Training questions $=$ training instances
- Simplest case $=2$ classes

BINARY CLASSIFICATION

CLASSIFICATION

- Text as points?!
- How to compute that line?
- What do we do if the line does not exist?
- What do we do if >2 answers (classes)?

TEXT AS VECTORS

Why did you kill yourself?

Term	tf
why	1
did	1
you	1
\ldots	\ldots

Why	did	you	kill	yourself

TEXT AS VECTORS

Why	did	you	kill	yourself

to capture order...

Why did	did you	you kill	kill yourself

Why did you	did you kill	you kill yourself

Term Weights

$$
\begin{aligned}
& w_{i, j}= \begin{cases}1 & \text { word } i \text { is present in string } j \\
0 & \text { otherwise }\end{cases} \\
& w_{i, j}=t f_{i, j} \\
& w_{i, j}=t f_{i, j} / d f_{i} \\
& w_{i, j}=t f_{i, j} / \log d f_{i} \\
& w_{i, j}=\frac{t f_{i, j}}{t f_{i, j}+0.5+1.5 \frac{\text { doclen }}{\text { avgdoclen }}} \cdot \frac{\log \left(\frac{\text { colsize }+0.5}{\text { doc } f_{i}}\right)}{\log (\text { colsize }+1)}
\end{aligned}
$$

CLASSIFICATION

- Text as points?!
- How to compute that line?
- What do we do if the line does not exist?
- What do we do if >2 answers (classes)?

BINARY CLASSIFICATION

BINARY CLASSIFICATION

- subject to constraints dot product

$$
y_{i} \cdot\left[\left(\mathbf{w} \cdot \mathbf{x}_{\mathbf{i}}\right)+b\right] \geqslant 1, i=1 \ldots m
$$

- maximize margin

$$
\frac{1}{\|\mathbf{w}\|^{2}}
$$

- using Lagrange multipliers

$$
L(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{m} \alpha_{i} \cdot\left\{y_{i} \cdot\left[\left(\mathbf{w} \cdot \mathbf{x}_{\mathbf{i}}\right)+b\right]-1\right\}
$$

BINARY CLASSIFICATION

- extremum at

$$
\frac{\partial}{\partial b} L(\mathbf{w}, b, \alpha)=0, \frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha)=0
$$

- i.e.

$$
\sum_{i=1}^{m} \alpha_{i} y_{i}=0
$$

- and

$$
\mathbf{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

BINARY CLASSIFICATION

$$
\begin{aligned}
f(\mathbf{x}) & =\operatorname{sgn}((\mathbf{x} \cdot \mathbf{w})+b) \\
& =\operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_{i} y_{i}\left(\mathbf{x} \cdot \mathbf{x}_{i}\right)+b\right)
\end{aligned}
$$

CLASSIFICATION

- Text as points?!
- How to compute that line?
- What do we do if the line does not exist?
- What do we do if >2 answers (classes)?

SVM

- That "transformation" function can be very expensive to compute

SVM

- Kernels to the rescue

$$
\begin{aligned}
f(\mathbf{x}) & =\operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_{i} y_{i}\left(\mathbf{\Phi}(\mathbf{x}) \cdot \boldsymbol{\Phi}\left(\mathbf{x}_{i}\right)\right)+b\right) \\
& =\operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_{i} y_{i} K\left(\mathbf{x}, \mathbf{x}_{i}\right)+b\right)
\end{aligned}
$$

- Kernel function, e.g.,

$$
K\left(\mathbf{x}, \mathbf{x}_{i}\right)=\exp \left(-\left\|\mathbf{x}-\mathbf{x}_{i}\right\|^{2}\right)
$$

SVM

- Subject to constraints

$$
\begin{gathered}
y_{i} \cdot\left[\left(\mathbf{w} \cdot \mathbf{x}_{\mathbf{i}}\right)+b\right] \geqslant 1-\xi_{i} \\
\xi_{i} \geqslant 0, i=1 \ldots m
\end{gathered}
$$

- minimize

$$
\tau(\mathbf{w}, \xi)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{m} \xi_{i}
$$

SVM

- www.support-vector.net
- www.kernel-machines.org
- svmlight.joachims.org
- www.csie.ntu.edu.tw/ ~cjlin/bsvm/

CLASSIFICATION

- Text as points?!
- How to compute that line?
- What do we do if the line does not exist?
- What do we do if >2 answers (classes)?

N-CLASS CLASSIFICATION

- one-against-all (N)
- select the class with the highest $\mathrm{f}(\mathrm{x})$
- one-against-one ($\mathrm{N}(\mathrm{N}-1) / 2$)
- voting: the class with largest number of wins

TEXT RETRIEVAL

TEXT RETRIEVAL

- Information Retrieval
- Answer = document
- Question = query
- match query against documents...

TEXt As VECTORS

TEXT Retrieval

- Compute vector for each answer
- Compute vector for the question
- Order answers by the similarity
- Select the top-ranked answer

VECTORS ARE BAD!

- They work... But!
- no model
- ad-hoc weighting schemes
- ad-hoc similarity measure
- difficult to interpret
- impossible to explain
- unclear how to improve

LANGUAGE MODEL

LANGUAGE MODEL

- Random process
- M
- Defined by the text probabilities
- $\mathrm{P}(W \mid M)=\mathrm{P}\left(w_{1}, \ldots, w_{N} \mid M\right)$

probability |,präbə'bilətē| |'prabə, bİədi| |prbbə, billti|

noun (pl. -ties)

the extent to which something is probable; the likelihood of something happening or being the case : the rain will make the probability of their arrival even greater.

- a probable event : for a time, revolution was a strong probability.
- the most probable thing : the probability is that it will be phased in over a number of years.
- Mathematics the extent to which an event is likely to occur, measured by the ratio of the favorable cases to the whole number of cases possible : the area under the curve represents probability | a probability of 0.5 .
PHRASES
in all probability used to convey that something is very likely : he would in all probability make himself known.
ORIGIN late Middle English : from Latin probabilitas, from probabilis 'provable, credible'(see probable).

Probabilistic MAtching

- Estimate language models of question M_{Q} and answer M_{A}
- Compare the models (e.g., cross entropy)
- number of bits to "encode" M_{Q} with M_{A}

$$
H\left(M_{Q}| | M_{A}\right)=-\sum_{w} P\left(w \mid M_{Q}\right) \log P\left(w \mid M_{A}\right)
$$

- Select the most similar answer
- ... or top N best
- ... or with entropy below a threshold

ESTIMATION

Models

- Unigram

$$
\begin{gathered}
P(W)=P\left(w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} P\left(w_{i}\right) \\
\text { nendence }
\end{gathered}
$$

- word independence
- $\mathrm{P}($ "did you kill") $=\mathrm{P}$ ("you did kill")
- Higher-order models
- n-gram: condition on preceding words
- cache: condition on a window
- grammar: condition of grammar structure
- Are they useful?
- parameter estimation expensive
- need more data

UNIGRAM MODEL REVISITED

- Unigram model:

$$
P\left(w_{1} \ldots w_{n}\right)=\prod_{i=1}^{n} P\left(w_{i}\right)
$$

- Exchangeability instead of independence
- de Finetti's theorem

$$
P\left(w_{1} \ldots w_{n}\right)=\int_{\Theta} \prod_{i=1}^{n} P_{\theta}\left(w_{i}\right) p(d \theta)
$$

- hide dependencies in the parameters

UNIGRAM MODEL REVISITED

- Estimating the generative density
- using N training strings (e.g, answers)
- Kernel-based estimation

$$
p(d \theta)=\frac{1}{N} \sum_{l=1}^{N} K_{l}(d \theta)
$$

- Delta kernel (others exist)

$$
K_{\delta, l}(d \theta)= \begin{cases}1 & d \theta \sim P_{l}(w) \\ 0 & \text { otherwise }\end{cases}
$$

- Can show that

$$
P\left(w_{1} \ldots w_{n}\right)=\frac{1}{N} \sum_{l=1}^{N} \prod_{i=1}^{n} P_{l}\left(w_{i}\right)
$$

UNIGRAM MODEL REVISITED

- LM

$$
P\left(w \mid w_{1} \ldots w_{n}\right)=\frac{P\left(w, w_{1} \ldots w_{n}\right)}{P\left(w_{1} \ldots w_{n}\right)}=\frac{\sum_{l=1}^{N} P_{l}(w) \prod_{i=1}^{n} P_{l}\left(w_{i}\right)}{\sum_{l=1}^{N} \prod_{i=1}^{n} P_{l}\left(w_{i}\right)}
$$

- A much better estimate
- Interpretation: averaged (smoothed) over the training strings

P(W) ESTIMATIONS

- Maximum-likelihood
- Discounting
- Interpolation

MAXIMUM-LIKELIHOOD

- relative word frequency

$$
\hat{P}\left(w \mid M_{W}\right)=u_{W, m l}(w)=\frac{\#(w, W)}{|W|}
$$

- unbiased
- if we repeat estimation an infinite number of times with different starting points, we will get correct probabilities
- Zero-frequency problem

ZERO FREQUENCY PROBLEM

- Suppose some word not in the string
- we get zero probability for the word
- and any string with that word
- Happens with language

DISCOUNTING

- Laplace
- add 1 to every count, normalize
- Lindstone
- add a constant
- Absolute discounting
- Leave-one-out discounting
- Good-Turing estimation

INTERPOLATION

- Problem with discounting
- treats all unseen words equally
- Use background probabilities
- interpolate ML estimates with General English expectations

INTERPOLATION

- Jelinek-Mercer
$u_{W}(w)=\lambda \cdot u_{W, m l}(w)+(1-\lambda) \cdot u_{G E, m l}(w)=\lambda \cdot \frac{\#(w, W)}{|W|}+(1-\lambda) \cdot \frac{\#(w, G E)}{|G E|}$
- Dirichlet

$$
u_{W}(w)=\frac{|W|}{|W|+\mu} \cdot u_{W, m l}(w)+\frac{\mu}{|W|+\mu} \cdot u_{G E, m l}(w)
$$

- Witten-Bell
- Two-stage

LM SUMMARY

- Compute LM for each answer A
- use unigram model
- use Dirichlet smoothing

$$
p\left(w \mid M_{A}\right)=\frac{\sum_{l=1}^{N} u_{l}(w) \prod_{i=1}^{n} u_{l}\left(a_{i}\right)}{\sum_{l=1}^{N} \prod_{i=1}^{n} u_{l}\left(a_{i}\right)}
$$

- Compute LM for the question
- Compute cross-entropy for each pair

$$
H\left(M_{Q}| | M_{A}\right)=-\sum_{w} P\left(w \mid M_{Q}\right) \log P\left(w \mid M_{A}\right)
$$

- Select answer with the highest value

DISCUSSION

- That's how you do retrieval
- The assumption is that M_{Q} is similar to M_{A}
- Is it true?

DIScussion

- Not really!
- Questions and answers are generated by different speakers
- Questions have specific form
- They are two different "languages"!

DISCUSSION

- Single-language solution
- retrieve training questions, not answers
- individual questions
- ... or pseudo-questions created by combining all questions appropriate to a single answer
- Cross-lingual solution
- e.g. retrieve Chinese documents with an English query
- view questions and answers as coming from two languages

CROSS-LINGUAL METHOD

- Question LM is replaced by the "translated" question LM:
- we iterate over $\left\{Q_{l}, A_{l}\right\}$

$$
p\left(w \mid M_{Q}\right)=\frac{\sum_{l=1}^{N} u_{A_{l}}(w) \prod_{i=1}^{n} u_{Q_{l}}\left(q_{i}\right)}{\sum_{l=1}^{N} \prod_{i=1}^{n} u_{Q_{l}}\left(q_{i}\right)}
$$

- Two estimation functions $u()$
- one for questions and one for answers with their own parameters
- Interpretation
- estimate how the answer would look like and compare that estimation to the existing answers

TEXT MAPPING SUMMARY

- Classification methods
- well-defined
- well-studied
- require feature vectors
- Retrieval methods
- vector-based
- probability-based
- estimation
- single-language and cross-language approaches

INFORMATION EXTRACTION

Y: FDC FDC FDC other other FO FO FO WO WO K
X: Alpha one six this is Bravo two five adjust fire over

- Markup important word sequences
- Maximize likelihood of observing a sequence of labels given a sequence of words: $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$

CONDITIONAL RANDOM Fields

- CRF defines an expression for $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$:

$$
P(y \mid x)=\frac{1}{Z(x)} \exp \left\{\sum_{i} \lambda_{i} f_{i}(y, x)\right\}
$$

- Markov CRF: iff

$$
f_{i}(y, x)=f_{i}\left(y_{j-1}, y_{j}, x, j\right)
$$

- The CRF is determined by the parameters

CRF ON TEXT

- Feature functions?
- generally binary
- word
- word class (digit)
- word modification (capitalization)
- part of speech
- presence of a feature in position $j, j+1, j+2, j-1, j-2$

TRAINING CRF

- Maximizing log-likelihood

$$
\mathcal{L}(\boldsymbol{\lambda})=\sum_{k}\left[\log \frac{1}{Z\left(\boldsymbol{x}^{(k)}\right)}+\sum_{j} \lambda_{j} F_{j}\left(\boldsymbol{y}^{(k)}, \boldsymbol{x}^{(k)}\right)\right]
$$

- as

$$
\begin{aligned}
\frac{\partial \mathcal{L}(\boldsymbol{\lambda})}{\partial \lambda_{j}}= & E_{\tilde{p}(\boldsymbol{Y}, \boldsymbol{X})}\left[F_{j}(\boldsymbol{Y}, \boldsymbol{X})\right]- \\
& \sum_{k} E_{p\left(\boldsymbol{Y} \mid \boldsymbol{x}^{(k)}, \boldsymbol{\lambda}\right)}\left[F_{j}\left(\boldsymbol{Y}, \boldsymbol{x}^{(k)}\right)\right]
\end{aligned}
$$

- with empirical distribution over training $\tilde{p}(\boldsymbol{Y}, \boldsymbol{X})$
- it might not have a closed solution

TRAINING MCRF

- Chained CRF are much easier to train
- Beyond the scope of this lecture :-)
- see for example
J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In International Conference on Machine Learning, 2001.
A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extraction and segmentation. In International Conference on Machine Learning, 2000.

SEMANTIC PARSING

- "Why did you kill yourself" ->

```
speech-act <A213>
    action info-req
    actor detective
    addressee hologram
    type question
    q-slot cause
        time past
        type kill
        object doctor
```

- Translation from text to frames
- Note: Frame creation, not retrieval
- Likelihood, recall the cross-lingual technique

$$
P(f \mid W)=\frac{\sum_{s} \phi_{F_{s}}(f) \prod_{i=1}^{m} \pi_{W_{s}}\left(w_{i}\right)}{\sum_{s} \prod_{i=1}^{m} \pi_{W_{s}}\left(w_{i}\right)}
$$

SEMANTIC PARSING

- Rank all slot-value pairs by the likelihood
- Cut the top part of the ranking
- determine threshold from the training data
- That's the frame
- How to use the frames?

